A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining

Appendix

Abstract

This supplementary material first provides the nomen-
clature of our method for reference, followed by further in-
formation for better reproducibility as well as additional
evaluations and qualitative results.

A. Nomenclature

Gaussian parameters

C Center of Gaussian splats

0] Opacity of Gaussian splats

S Scale of Gaussian splats

R Rotation as quaternions of Gaussian splats

SH  Spherical harmonics of Gaussian splats

X Gaussian splats, X = [C,0, S, R, SH|

cT Center splats obtained by Furthest Point Sampling
Method variables

G(-)  Grouping feature: selected Gaussian parameters for
computing the distance

E(-) Embedding feature: selected Gaussian parameters
served as the input for masked autoencoder

fc Dimension of the grouping feature

fE Dimension of the embedding feature

T Group tokens obtained from the tokenizer, T' €
R7XD

T, Visible tokens after masking, 7, € R(A-r)nxD

T, Masked tokens, T, € R™*D

Egoup Concatenation of embedding feature of all the &
splats in a group

E, Reconstructed embedding feature for masked re-
gions

E, Masked embedding feature

z Latent variable obtained from the encoder, z =

f9(Tv)

fo(-)  Encoder
go(-)  Decoder
T; Learnable token that is concatenated with z

T Recovered masked token, 7}, = 9oz ®TY)

P Projector outputting the recovered embedding fea-
ture

T True distribution function from which F is sampled

E[]  Expectation operator

Liecon Reconstruction loss calculated on embedding fea-

ture £
Scalars
N Splats number of the original splatted object
D Splats number after downsampling
n Groups numbers splats are splitted into
k Per-group splats number
r Mask ratio of the splats groups

B. Implementation Details

Problematic CAD Model: We excluded two models due
to error 'No vertex found’ encountered when loading into
Blender: 4a32519f44dc84aabafel26el2eb69ebfd
and 67ada28ebc79cc75a056£196¢cl27ed77.
Model Rendering. Fig. B.1 illustrates the evenly chosen
72 views across the upper atmosphere when rendering a
CAD model in ShapeNet [1] and ModelNet [6].

3DGS Initialization. To balance quality and speed, 5K
points are sampled for 3DGS initialization. We employ a
surface sampling method similar to the point cloud base-
line. The normals of the sampled points are determined
using the normals of their corresponding faces, and colors
are assigned through interpolation from neighboring points,
when available. For objects without material data, we ini-
tialize the color to gray.

Gaussian-MAE. Gaussian-MAE model is configured with
a masked encoder and a decoder, in which the masked en-
coder consists of the tokenizer and transformer encoder.
The transformer encoder has a dimension of 384, a depth
of 12 layers, and employs 6 attention heads per layer. The
encoder uses a mask ratio of 0.6 and includes positional em-
beddings. The decoder shares the same dimension of 384



Figure B.1. Sampled Views for ShapeSplat rendering. We
evenly select 72 views on the upper atmosphere for every object.

and utilizes 6 attention heads but with a shallower depth
of 4 layers. Both the encoder and decoder are regularized
using a drop path rate of 0.1. In addition, for the masked au-
toencoder (MAE), we use the /5 Chamfer-Distance [2] fol-
lowing [3]. Let Em = @(Tm) and F,,, be the reconstructed
embedding feature and ground truth embedding feature, re-
spectively. The reconstruction loss Lecon can be written as:
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Tokenizer. The tokenizer for Gaussian parameters first uti-
lizes an Conv1d layer that project the raw Gaussian param-
eters (embedding feature such as center, opacity, scale, rota-
tion, and sh) into a 128-dimensional tensor. It then employ
our splats pooling layer that effectively aggregate informa-
tion from a larger neighborhood down to a smaller dimen-
sion. Finally, a second Conv1ld followed by max pooing
processes the features, resulting in a group token of dimen-
sion 384, which is then passed to the transformer encoder.
Parameter Numbers. Tab. B.1 summarizes the total and
trainable parameter numbers for our pretraining and fine-
tuning model, as well as the giga floating point opera-
tions (GFLOPs) and giga multiply-accumulate operations
(GMAC:s). The pretraining model has the most trainable
parameters of 28.79M, while the linear probing in finetun-
ing is the lightest with only 0.008 M trainable parameters.
Training Details. Experiments on pretraining were con-
ducted using A6000 GPUs with a batch size of 128. For

finetuning with 2048, 4096, and 8192 sampled splats, we
used a batch size of 224 on H100 GPU. Both the pretrain-
ing and finetuning stages were trained over 300 epochs,
utilizing a cosine learning rate scheduler with a 10-epoch
warm-up period. The AdamW optimizer was employed,
with learning rates set to 1 x10~2 for pretraining and 5
x10~% for fine-tuning, alongside a weight decay of 0.05.
More details are provided in Tab. B.2.

Evaluation. For the classification task, ShapeSplat uses the
labels from the original dataset. In the part segmentation
task, to ensure a fair comparison with point cloud-based
methods, our model predicts labels for the given point cloud
positions. Features from all Gaussian centers are forwarded
to the ground truth point cloud locations through distance-
based interpolation, followed by feature integration using a
Conv1ld layer. We report the best results from the separate
runs using checkpoints saved at epochs 250, 275, and 300
during pretraining.

As discussed in [5], the ModelNet40 dataset contains no-
table duplication and label errors that hinder model perfor-
mance. The evaluation on ModelNet10, which is less af-
fected by these issues, provides a more reliable benchmark
and we assign more weight on it when drawing conclusions.

Model Total (M) Trainable (M) GFLOPs GMACs
Pretrain 28.79 28.79 93.77 46.16
Finetune (full) 21.78 21.78 235.06 116.65
Finetune (mlp3) 21.78 0.267 235.06 116.65
Finetune (linear) 21.52 0.008 235.04 116.64

Table B.1. Model Parameters and Computation Counts. The
table reports the total and trainable parameters (in millions), as
well as GFLOPs and GMAG:s for the pretraining and finetuning.

C. Per-attribute Reconstruction Error

Tab. C.1 provides the detailed per-attribute reconstruction
error corresponding to Figure 6 in the main paper. Note
that the target reconstruction is determined by the choice of
embedding feature, which results in blank areas in the ta-
ble. Bundling other Gaussian attributes with the center into
either the embedding feature or the grouping feature leads
to improved overall reconstruction, and as evident from the
classification results, better reconstruction then yields per-
formance increase. We also present the results for Grouping
in Gaussian Feature Space without Center, where Gaussian
centers are entirely excluded during pretraining and finetun-
ing. This experiment shows that reasonable performance
can still be achieved by relying solely on other parameters.

D. Gaussian Splats Reconstruction

Fig. D.1 presents the reconstructed Gaussian splats using
the Gaussian-MAE model with input of 4096 Gaussians
during pretraining. Our model effectively rebuilds fine de-
tails, such as the foot of the table and the frames of the chair.



Pre—-training Classification Segmentation
Config ShapeNet [1] ScanObjectNN [4] ModelNet [6] ShapeNetPart [7]
optimizer AdamW AdamW AdamW AdamW
learning rate le-3 Se-4 Se-4 le-4
weight decay Se-2 Se-2 Se-2 Se-2
learning rate scheduler  cosine cosine cosine cosine
training epochs 300 300 300 300
batch size 128 32 128 128
number of splats 1024 2048 1024 2048
number of splats groups 64 128 64 128
splats group size 32 32 32 32
augmentation Scale&Trans Scale&Trans Scale&Trans Scale&Trans
GPU device 1 A6000 (48G) 1 A6000 (48G) 1 A6000 (48G) 1 A6000 (48G)

Table B.2. Hyperparameter Recipes for Pretraining and Finetuning.
Embedding Feature Grouping Feature Reconstruction Error iV[od:lNeE}yO)
centroid opacity scale  rotation sh ceuracy {7

Grouping only by Gaussian Center
center center 2.27 - - - - 93.72
center + opacity center 2.53 0.22 - - - 93.83
center + sh center 2.71 - - - 0.361 93.83
center + scale + rotation center 2.53 - 0.0128  0.126 - 94.27
all center 2.70 0.20 0.0156  0.132  0.364 95.37
Grouping only by Gaussian Center, use Splats Pooling Layer
center center 2.32 - - - - 94.71
center + opacity center 2.60 0.19 - - - 94.82
center + sh center 3.11 - - - 0.050 94.82
center + scale + rotation center 2.82 - 0.0101 0.125 - 95.37
center+opacity+scale+rotation  center 2.63 0.19 0.0097  0.122 - 95.82
all center 2.72 0.19 0.0098  0.127  0.047 95.48
Grouping in Gaussian Feature Space, without Center
opacity opacity - 0.007 - - - 51.32
scale + rotation scale + rotation - - 0.0089  0.047 - 90.86
sh sh - - - - 0.063 78.96
opacity+scale+rotation+sh opacity+scale+rotation+sh - 0.058 0.0106  0.069 0.166 92.29
Grouping in Gaussian Feature Space, with Center
center + opacity center + opacity 5.12 0.05 - - - 94.60
center + scale + rotation center + scale + rotation 5.76 - 0.010 0.066 - 94.89
center + sh center + sh 3.50 - - - 0.118 95.04
all all 9.19 0.08 0.011 0.082  0.201 95.26

Table C.1. Per-attribute Reconstruction Error of Different Grouping Methods.



(a) Sampled

(b) Masked

Figure D.1. Visualizations of Masked Inputs and Recon-
structed Gaussians. We show: (a) Renderings of downsampled
4096 Gaussians, (b) Renderings with 60% Gaussians masked, (c)
Renderings of reconstructed Gaussians. The pretrained Gaussian-
MAE is able to reconstruct fine details, e.g., frames of the chair.

(c) Reconstructed

Additionally, Fig. D.2 compares the reconstructions on the
same objects but with 1K, 4K, and 8 K Gaussians. The
ones with 8 K Gaussians clearly capture more color and ge-
ometric details. Not only does pretraining on denser inputs
result in better reconstructions, but it also boosts perfor-
mance on downstream tasks (cf. Tab. E.1).

E. Ablation on Pretraining Splats Number

Throughout our experiments in the main paper, we use an
input number of 1K for pretraining. Tab. E.1 ablates dif-
ferent input number of Gaussians w.rt. downstream task
performance. Pretraining using 8 K Gaussians leads to the
best results on ModelNet10 classification and ShapeNet-
Part segmentation. Compare to training from scratch, the
pretraining stage significantly boost the downstream task
performance.

F. Details on ScanObjectNN Experiments

In the main paper we report the generalization performance
of our pretrained model on the real-world point clouds in
ScanObjectNN [4] dataset. We didn’t report the perfor-
mance on the Gaussian splatted objects as the segmented

Input ModelNet10 ModelNet40 ShapeNet-Part
N\A 93.39 91.44 83.2
1024 95.37 93.35 86.0
2048 95.37 92.95 85.8
4096 95.26 92.58 85.9
8192 95.70 92.70 86.1

Table E.1. Ablation on Number of Splats in Pretraining (over-
all accuracy for ModelNet10 and ModelNet40, instance mloU for
ShapeNet-Part). We increase the total number of Gaussian splats
from 1024 to 2048, 4096, and 8192 and the number of splats
groups by the respective multiples during pretraining. N\ A refers
to training from scratch, i.e., without pretraining stage. Evidently,
pretraining stage significantly boost the downstream task perfor-
mance.

mesh is not provided but only point clouds in ScanOb-
jectNN dataset, thus it’s not possible to render views for the
objects and train the Gaussian splats. Given Gaussian-MAE
already outperforms the baseline [3] in object-only classifi-
cation, we expect a larger performance gain when finetuned
using Gaussian splats.

G. Future Work

While our proposed method successfully employed a self-
supervised learning strategy via MAE, achieving competi-
tive results compared to point cloud counterparts, there are
several promising avenues for further exploration based on
our dataset. One direction is to delve deeper into the es-
tablished self-supervised learning paradigm by leveraging
Gaussian attributes to enhance the encoder’s informative-
ness for downstream tasks. Also, exploring ways to uti-
lize all Gaussian splats without downsampling is important,
as downsampling significantly reduces reconstruction qual-
ity, as shown in Fig. D.2. Additionally, transferring knowl-
edge from 2D foundation models into the Gaussian domain
presents an intriguing direction. Furthermore, unlike im-
age or point cloud data, which have seen integration with
large language models (LLMs), exploring similar trends to
integrate LLMs into the 3DGS field could yield valuable
insights.

H. Impact Statement

The introduction of the ShapeSplat dataset and the
Gaussian-MAE model mark new advancements in 3D rep-
resentation and understanding. ShapeSplat, a large-scale
dataset with around 65K objects across 87 categories, was
created using 2 GPU years of computation on a TITAN XP
GPU, providing a robust resource for research in 3D Gaus-
sian Splatting (3DGS). Our work facilitates unsupervised
pretraining and supervised finetuning for classification and
segmentation tasks, revealing critical insights into the distri-
bution of optimized Gaussian parameters and their differing
impacts on these tasks. To fully exploit the contribution of
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Figure D.2. Qualitative Comparison of Reconstructed Gaussian Splats with Different Total Numbers. We compare the reconstruction
results with 1024, 4096, and 8192 Gaussian splats. As the number of splats increases, the reconstructions by Gaussian-MAE capture notably
more color and geometric details, such as the colors of the bench and the frames of the chair, highlighting the importance of denser splat
inputs as the finer color and geometry boost the downstream task performance.

gaussian parameters space, we introduce Gaussian feature
grouping and splats pooling layers, which effectively em-
bed similar Gaussians. By making our dataset and model
publicly available, we aim to drive further research in 3D
representation learning, enabling the community to explore
and expand upon our work.
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