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The lateral view

The L view contains information

missing in the PA view that is 

relevant for diagnosis [1].

Most chest X-ray datasets have 
only the PA view, but some recent 
ones have also the L view.

Postero-anterior (PA) Lateral (L)
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Task

Single view model

Multi-view model

Predictions
Pneumonia 0.82
Mass 0.81
Hernia
0.79

Predictions
Pneumonia 0.84 ↑
Mass 0.80 ↓
Hernia
0.82 ↑
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Evaluate the contribution of a paired lateral view in chest X-ray 
prediction and find the best multi-view model
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Our work

We explore the two questions

– Does a paired lateral view help in prediction? If so, for 
which labels specifically?

– Instead of having a paired lateral view, is it better to 
increase training set with more PA samples and use a 
single view model?
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Materials and 
methods
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Dataset and preprocessing

PadChest [2]
160k images from 67k Spanish patients. 

Multiple labels per image from total 194.

Preprocessing

- Keep patients with paired PA and L views: total 31k
- Keep labels affecting 50+ patients: total 64.
- Images resized to 224x224 and pixels rescaled to [-1, 1]
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Models
Based on DenseNet blocks [3]. Baseline is single view DenseNet-121

Havaei et al., 2016 [4] Rubin et al., 2018 [5] Our contribution
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Experiments and 
results
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Performance of multiview models

All joint view models 
perform better than 
single view models. 
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Utilization of the lateral view

Change in AUC as 
proportion of 
patients with paired 
lateral views 
increase
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Label-wise increase with L view

32/64 labels see an 
improvement in AUC 
with AuxLoss
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More PA samples
We add 18k patients to the training set that have a PA view but no L view.
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Conclusion
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Takeaways

– Multi-view models significantly better than 
single view overall

– 32 labels improve with multi-view model

– Doubling PA images in training set -> change in 
AUC not significant
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Thank you
arxiv.org/abs/2002.02582
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Why AuxLoss

Advantages of AuxLoss

- Uses both views productively
- Robust to missing views
- Lowest variance across multiview 

models 
- Less sensitive to hyperparameter 

changes

Multiview models at test time perform similarly when given both 
views but diverge significantly when given only one view 

Figure 4: Distributions of AUC for a 40 combination 
hyperparameter search for each model. Some models are 
much more robust to hyperparameter changes than others.
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Training details

Hyperparameters found through extensive search 

– 40 epochs, batch size of 8 and Adam optimizer
– Early stopping on validation AUC
– Loss weighted by class frequency (clamped at 5.0 max)
– Learning rate scaled by 0.1 every 10 epochs but initial LR different 

for every model
– Curriculum learning: views dropped randomly for Hemis and 

AuxLoss
– Dropout of 0.1-0.2
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Label-wise increase with more PA samples

32 labels

22 overlap with 
AuxLoss
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