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Figure 1: Real-world experiments scenario

The accompanying Supplementary Materials include the code to facilitate the reproduction of the1

results as well as an additional video to show the qualitative results of our HOI4ABOT model in2

real-time and working together with a robot to enhance its human intention reading capabilities.3

1 Experimental Scenario4

Our HOI4ABOT framework enhances the human intention reading through HOI anticipation. We5

conduct a real-world experiment with a Franka Emika Panda robot to support our proposed ap-6

proach. Fig. 1 provides a step-by-step overview of the considered bartender scenario. First, the7

robot detects a human in the scene and anticipates the human intention to approach a kitchen island.8

When the robot anticipates with confidence that the human will be close to the cup, it executes a9

movement to grab the bottle, thus preparing for pouring. If the intention of the human changes, the10

robot adapts its behavior and moves back to the initial position after placing the bottle on the table.11

on the other hand, if the human proceeds to grab the cup, the robot pours the drink and goes back to12

its initial position. This preparatory behavior reduces the serving time while improving the overall13

experience for the human.14
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2 Implementation Details15

In this section, we offer a comprehensive summary of the implementation details to aid in the repro-16

duction of the experiments and the replication of the results. All experiments were conducted using17

a single NVIDIA RTX A4000 graphics card with 16GB of memory and an Intel i7-12000K CPU.18

Hyperparameters. All trained models are conducted using the same strategy as [1]. We use19

the official code from https://github.com/nizhf/hoi-prediction-gaze-transformer and implement our20

HOI4ABOT model into their framework. All training settings are summarized in Table 1. We adopt21

Cross Binary Focal Loss [2] with γ = 0.5 and β = 0.9999, which improves training in extremely22

imbalanced datasets, such as VidHOI [3]. We train our models using the AdamW optimizer [4]. We23

define a scheduler for the learning rate, with an initial value of 1 × 10−8 that increases to a peak24

value of 1× 10−4 in 3 warm-up epochs. The learning rate then decreases with an exponential decay25

with a factor 0.1. We run the training for 40 epochs.26

Model configuration. All trained models use a similar configuration, but some variants such as27

‘stacked’ or ‘single’ are adapted to ensure having a similar number of trainable parameters in the28

architecture (57.04M). All models reported in our paper use the DINOv2 [5] as the image feature29

extractor, using the smallest variant available ViT-B/14 that only contains 22.06M parameters; and30

CLIP [6] for the semantic extractor, with the largest available variant ViT-L/14 that contains 85.05M31

parameters. However, due to the fact that the number of objects in the dataset is limited, we pre-32

extracted the features for all possible objects. For our baseline HOI4ABOT model, we consider two33

transformer models with cross-attention layers, each of them with depth 4 and MLP expansions of34

ratio 4.0. Each transformer uses the multi-head attention variant with 8 heads to better extract the35

relationships within a sequence of features. Moreover, we consider sinusoidal positional embedding36

to facilitate learning the temporal information of a sequence. Finally, we consider the embedding37

size of each extracted feature, bounding box, or image feature, as 384. The embedding size for the38

prepended class token is also 384, as this is the embedding dimensions of the features extracted39

using DINOv2. For the semantics, CLIP obtains a feature of dimensionality 764.40

Table 1: Training settings.
Optimizer AdamW
Weight Decay 1.0e-2
Scheduler ExponentialDecay
Warmup Epochs 3
Initial LR 1e-8
Peak LR 1e-4
Exponential Decay 0.1
Epochs 40
Random Seed 1551
Augmentation Horizontal Flip
Flip Ratio 0.5
Batch Size 16
Dropout 0.1

Table 2: Model settings.
Transformer Depth 4
Number of Heads 8
Feature Extractor DINOv2: ViT-B/14 [5]
Semantic Extractor CLIP: ViT-L/14 [6]
Embedding Dimension 384
Positional Embedding Sinusoidal
Exponential Decay 0.1
Mainbranch humans
MLP ratio 4.0

3 Inference time41

Our model is able to run in real-time thanks to the efficient design and reduced dimensionality.42

Inference time versus the number of human-object pairs. Due to the nature of HOIs, each43

interaction needs to be computed for each human-object pair existing in the scene at a given time44

step. Therefore, to speed up the results and parallelize the forward pass for a given video, we stack45

all found human-object pairs in the batch dimension. Still, we consider it necessary to observe how46

different models’ inference speed is affected by the number of pairs in a given video. Therefore, we47

run 1000 executions of our model processing a given video with I interactions. We implement all48
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Figure 2: Model performance depends on the number of interactions for different architectures. Our
variants (‘Dual’ and ‘Stacked’) have similar inference times (curves overlap) while outperforming
by large margins the ST-GAZE model [1]

0 20 40 60 80 100 120 140 160

50

100

150

Number of interactions

In
fe

re
nc

e
tim

e
[m

s]

Dual Detection + Anticipation
Dual Hydra
Dual Detection

Figure 3: Model performance depends on the number of interactions for different model variants.
The proposed multi-head approach allows us to detect and anticipate HOIs at multiple time horizons
while maintaining a similar inference speed as the ‘Dual’ version (purple and dark orange curves
overlap). We observe the benefit of the Hydra compared to running a specific ‘Dual’ transformer per
detection and per anticipation.

models reported in Fig. 2 and 3 in the same batch strategy and observe a similar tendency in the49

increase of the inference time for a higher number of interactions.50

Efficiency comparison with current state-of-the-art [1]. Both HOI4ABOT and [1] adopt a51

transformer-based architecture to comprehend the temporal relationships between the humans and52

objects in the scene. However, our model is designed to be efficient and to run in real-time despite53

having a large number of interactions, contrary to [1]. The comparison of the efficiency of both54

models is depicted in Fig. 2, which shows that our HOI4ABOT outperforms [1] by large margins55

in terms of speed. Next, we list the major differences in the model design that cause our improve-56

ment. First, we do not use any additional modality to predict HOIs, compared to [1] that leverages57

pre-extracted gaze features to capture the human’s attention. Predicting these gaze features is costly58

as it requires detecting and tracking each human’s head in the scene, predicting the corresponding59

gaze per human, and matching it to the corresponding body. Thus the speed decreases considerably60

depending on the number of humans in the scene. Moreover, [1] also considers an initial spatial61

transformer that leverages all humans and objects per frame, thus [1] speed is more affected by the62

number of frames considered.63
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Table 3: Anticipation mAP in Oracle mode.

Method t mAP Preson-wise top-5

Rec Prec Acc F1

STTran
1 29.09 74.76 41.36 36.61 50.48
3 27.59 74.79 40.86 36.42 50.16
5 27.32 75.65 41.18 36.92 50.66

Zhifan
1 37.59 72.17 59.98 51.65 62.78
3 33.14 71.88 60.44 52.08 62.87
5 32.75 71.25 59.09 51.14 61.92

Dual (scratch)
1 38.46 73.32 63.78 55.37 65.59
3 34.58 73.61 61.7 54 64.48
5 33.79 72.33 63.96 55.28 65.21

Dual (Hydra)
1 37.77 74.07 64.9 56.38 66.53
3 34.75 74.37 64.52 56.22 66.4
5 34.07 73.67 65.1 56.31 66.4

Stacked (scratch)
1 36.14 70.03 64.61 53.99 64.34
3 34.65 73.85 62.13 54.15 64.77
5 34.27 72.29 61.81 53.65 64.03

Stacked (Hydra)
1 37.8 72.05 65.58 56.23 66.09
3 34.9 72.96 65.05 56.3 66.2
5 35 72.86 65.18 56.36 66.2

Efficiency comparison of the Hydra HOI4ABOT. Human intention reading requires understand-64

ing both current and future HOIs. Therefore, we develop a multi-head HOI4ABOT, called Hydra,65

that allows us to predict HOIs at different time horizons in the future through a single forward step.66

While Table 3 shows the benefit of our Hydra variant compared to training from scratch, in this67

subsection we focus on the benefit of efficiency. Fig. 3 shows the inference time in milliseconds68

depending on the number of human-object pairs across different variants. We consider the ‘Dual69

detection’ as the baseline of our HOI4ABOT model when only predicting the HOI in the present.70

’Dual Detection + Anticipation’ is an optimized model that uses two dual transformer blocks that71

benefit from the same image backbone, one for HOI detection and the other for HOI anticipation72

in a single future τ = 3. Finally, our ‘Dual Hydra’ performs HOI detection and anticipation for73

τ = [0, 1, 3, 5] in a single step by using our multi-head strategy. We observe the benefit of our Hy-74

dra variant compared to the model ensemble, as it has a comparable speed to the single head while75

anticipating HOIs in three additional future horizons.76

4 Extensive comparison with variants77

Our HOI4ABOT model outperforms the current state-of-the-art across all tasks and metrics in the78

VidHOI dataset, as shown in Tabel 3. In this section, we extend the comparison from the manuscript79

for the HOI anticipation for our ‘Dual’ and ‘Stacked’ variants, both when being trained by scratch80

or through the multi-head Hydra mode. Our results show that the ‘Stacked’ variant obtains slightly81

better performance in the mAP for longer futures. We consider this marginal improvement to be82

motivated because of the width difference in the transformer blocks, as well as the bigger repre-83

sentation space from which we project when classifying the HOIs. The ‘Stacked’ variant is based84

on a single self-attention block that operates on the human windows and object windows stacked85

in time. Therefore, the ‘Stacked’ transformer has double the width compared to the ‘Dual’ variant.86

Given that the output of a transformer model has the same shape as its input, the obtained tokens are87

also wider in the ‘Stacked’ variant. Having a bigger embedding dimension in the projected token88

allows the encoding of more information, which could result in better performance. However, Table89

3 shows that the ‘Stacked’ variant has a lower recall and therefore lower F1-Score. These findings90

might indicate that the ‘Stacked’ variant struggles when anticipating HOIs in the videos where the91
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Figure 4: Schematic of the Behaviour Tree for our HOI4ABOT framework.

interaction changes in the anticipation horizon, being more conservative in its predictions. There-92

fore, we consider the ‘Dual’ variant to be optimal as it balances both precision and recall metrics93

across all tasks, as shown by outperforming all other models in the F1-score for the Hydra version.94

5 Behavior Tree95

In this section, we describe the structure of the Behavior Tree [7] used in our real-world experi-96

ments, which is shown in Fig. 4. The primary focus of this work is to enhance the assistive ability97

of robots through human intention reading using HOI anticipation. We conduct a simple real-world98

experiment with a Franka Emika Panda robot to showcase the benefits of our approach. This pa-99

per does not intend to provide a general development of BT for HOI tasks. However, the same100

methodology employed can be extended to more complex scenarios thanks to the modularity of BT.101

The entire tree is built from three sub-trees: the ‘Pour branch’, the ‘Approach branch’, and the102

‘Move Away branch’. First, the ‘Pour branch’ is responsible for pouring the liquid into the cup. It103

is executed once the bottle is grabbed, and the ‘hold’ interaction between the human and the cup is104

detected. To achieve this conditional execution we add the ‘Execute check’ behavior at the beginning105

of the branch. Then, we reset the ‘Grabbed flag’ and set the ‘Poured flag’ to prevent any potential106

duplication of pouring into the cup. Secondly, the goal of the ‘Approach branch’ is to grab the bottle.107

This sub-tree is executed when the bottle is not currently grabbed and the robot anticipates the ‘next108

to’ interaction with a confidence greater than a pre-defined threshold. Once the bottle is grabbed,109

the ‘Grabbed flag’ is set. Thirdly, the ‘Move Away branch’ is responsible for releasing the bottle110

and moving back to its initial position. This branch is executed when the bottle is grasped by the111

robot and the robot anticipates the interaction ‘next to’ with a confidence lower than a predefined112

threshold. After executing the movements the ‘Grabbed flag’ is reset.113

The appropriate sub-branch is selected by using the ‘Main Selector’ composite node. This node114

attempts to execute each sub-tree starting from left to right. The selector node executes the next115

branch in the sequence when the check in the preceding branch is not satisfied. Finally, the last116

behavior in the sequence is an ‘Idle’ behavior where the robot waits for a short period of time.117

The root of the tree is a sequential node, which first collects all messages from the appropriate118

ROS topics, next checks if the beverage has been already poured, and finally executes the ‘Main119

Selector’. To achieve continuous operation, the ‘Root’ node is decorated by a ‘Repeat’ modifier,120

which executes the root node indefinitely.121
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