
A Related work

Our work builds upon a series of advances in private SGD [51, 7, 6, 28, 60, 80, 41] to make advance
in understanding the tradeoff of privacy and sample complexity for PCA. Such tradeoffs have been
studied extensively in canonical statistical estimation problems of mean (and covariance) estimation
and linear regression.

Private mean estimation. As one of the most fundamental problem in private data analysis, mean
estimation is initially studied under the bounded support assumptions, and the optimal error rate is
now well understood. More recently, [5] considered the private mean estimation problem for k-th
moment bounded distributions where the support of the data is unbounded and provided minimax
error bound in various settings. [56] studied private mean estimation from Gaussian sample, and
obtained an optimal error rate. There has been a lot of recent interests on private mean estimation
under various assumptions, including mean and covariance joint estimation [50, 8], heavy-tailed
mean estimation [54], mean estimation for general distributions [30, 74], distribution adaptive mean
estimation [12], estimation for unbounded distribution parameters [53], mean estimation under pure
differential privacy [39], local differential privacy [18, 19, 32, 47], user-level differential privacy [26],
Mahalanobis distance[10] and robust and differentially private mean estimation [61, 59, 62].

Private linear regression The goal of private linear regression is to learn a linear predictor of
response variable y from a set of examples {xi, yi}ni=1 while guarantee the privacy of the examples.
Again, the work on private linear regression can be divided into two categories: deterministic and
randomized. In the deterministic setting where the data is deterministically given without any
probabilistic assumptions, significant advances in DP linear regression has been made [77, 57, 68,
16, 7, 83, 31, 67, 82, 71]. In the randomized settings where each example {xi, yi} is drawn i.i.d.
from a distribution [66], [20] proposes an exponential time algorithm that achieves asymptotic
consistency. [13] provides an efficient and minimax optimal algorithm under sub-Gaussian design
and nearly identity covariance assumptions. Very recently, [62] for the first time gives an exponential
time algorithm that achieves minimax risk for general covariance matrix under sub-Gaussian and
hypercontractive assumptions. [75] gives the first computationally efficient algorithm to achieve
nearly optimal risk using DP-SGD with adaptive clipping.

Private PCA without spectral gap. There is a long line of work in Private PCA [37, 38, 36, 9, 14,
55, 23, 4]. We explain the closely related ones in Section 2.3, with analysis when the covariance
matrix has a spectral gap.

When there is no spectral gap, one can still learn a principal component. However, since the principal
component is not unique, the error is typically measured in how much of the variance is captured
in the estimated direction: 1− v̂⊤Σv̂/∥Σ∥. [14] introduces an exponential mechanism (from [64])
which samples an estimate from a distribution fΣ̂(v̂) = (1/C) exp{((εn)/c2)v̂⊤Σ̂v̂}, where C is a
normalization constant to ensure that the pdf integrates to one. This achieves a stronger pure DP,
i.e., (ε, 0)-DP, but is computationally expensive; [14] does not provide a tractable implementation
and [55] provides a polynomial time implementation with time complexity at least cubic in d. This
achieves error rate 1− v̂⊤Σv̂/∥Σ∥ = Õ(d2/(εn)) in [14, Theorem 7], which, when there is a spectral
gap, translates into

sin(v̂, v1)
2 = Õ

(κd2
εn

)
, (16)

with high probability. Closest to our setting is the analyses in [62, Corollary 6.5] that proposed an
exponential mechanism that achieves 1− v̂⊤Σv̂/∥Σ∥ = Õ(

√
d/n+(d+log(1/δ))/(εn)) with high

probability under (ε, δ)-DP and Gaussian samples, but this algorithm is computationally intractable.
This is shown to be tight when there is no spectral gap. When there is a spectral gap, this translates
into

sin(v̂, v1)
2 = Õ

(
κ
(√ d

n
+

d+ log(1/δ)

εn

))
. (17)

Distributed PCA. In distributed PCA, the dataset is stored across different local servers [43, 44,
81, 33]. [43, 44, 81] consider differentially private distributed PCA under the assumption that the
examples are deterministic and have norms bounded by a fixed and known constant. The algorithms
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appeared in [43, 44, 81] are based on the Gaussian mechanism [23] on local server and an aggregator
in the central server. The resulting utility guarantees are the same as those from [23], which are
discussed in Section 2.3.

B Preliminary on differential privacy

Lemma B.1 (Stability-based histogram [56, Lemma 2.3]). For every K ∈ N ∪∞, domain Ω, for
every collection of disjoint bins B1, . . . , BK defined on Ω, n ∈ N, ε ≥ 0, δ ∈ (0, 1/n), β > 0 and
α ∈ (0, 1) there exists an (ε, δ)-differentially private algorithm M : Ωn → RK such that for any set
of data X1, . . . , Xn ∈ Ωn

1. p̂k = 1
n

∑
Xi∈Bk

1

2. (p̃1, . . . , p̃K)←M(X1, . . . , Xn), and

3.

n ≥ min

{
8

εβ
log(2K/α),

8

εβ
log(4/αδ)

}
then,

P(|p̃k − p̂k| ≤ β) ≥ 1− α

Since we focus on one-pass algorithms where a data point is only accessed once, we need a basic
parallel composition of DP.

Lemma B.2 (Parallel composition [65]). Consider a sequence of interactive queries {qk}Kk=1 each
operating on a subset Sk of the database and each satisfying (ε, δ)-DP. If Sk’s are disjoint then the
composition (q1(S1), q2(S2), . . . , qK(SK)) is (ε, δ)-DP.

We also utilize the following serial composition theorem.

Lemma B.3 (Serial composition [22]). If a database is accessed with an (ε1, δ1)-DP mechanism and
then with an (ε2, δ2)-DP mechanism, then the end-to-end privacy guarantee is (ε1 + ε2, δ1 + δ2)-DP.

When we apply private histogram learner to each coordinate, we require more advanced composition
theorem from [49].

Lemma B.4 (Advanced composition [49]). For ε ≤ 0.9, an end-to-end guarantee of (ε, δ)-differential
privacy is satisfied if a database is accessed k times, each with a (ε/(2

√
2k log(2/δ)), δ/(2k))-

differential private mechanism.

C Converse results

When privacy is not required, we know from Theorem 2.2 that under Assumptions A.1-A.3, we
can achieve an error rate of Õ(κ

√
V/n). In the regime of V = O(d) and κ = O(1), n = O(d)

samples are enough to achieve an arbitrarily small error. The next lower bounds shows that we need
n = O(d2) samples when (ε = O(1), 0)-DP is required, showing that private PCA is significantly
more challenging than a non-private PCA, when assuming only the support and moment bounds of
assumptions A.1-A.3. We provide a proof in Appendix C.3.

Theorem C.1 (Lower bound without Assumption A.4). LetMε be a class of (ε, 0)-DP estimators
that map n i.i.d. samples to an estimate v̂ ∈ Rd. A set of distributions satisfying Assumptions A.1–A.3
with M = O(d log n) and V = O(d) is denoted by P̃(λ1,λ2). There exists a universal constant
C > 0 such that

inf
v̂∈Mε

sup
P∈P̃(λ1,λ2)

ES∼Pn [sin(v̂(S), v1)] ≥ Cmin

(
κd2

εn

√
λ2

λ1
,

√
λ2

λ1

)
. (18)

We next provide the proofs of all the lower bounds.
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C.1 Proof of Theorem 5.3 on the lower bound for Gaussian case

Our proof is based on following differentially private Fano’s method [3, Corollary 4].
Theorem C.2 (DP Fano’s method [3, Corollary 4]). Let P denote family of distributions of interest
and θ : P → Θ denote the population parameter. Our goal is to estimate θ from i.i.d. samples
x1, x2, . . . , xn ∼ P ∈ P . Let θ̂ε be an (ε, 0)-DP estimator. Let ρ : Θ×Θ→ R+ be a pseudo-metric
on parameter space Θ. Let V be an index set with finite cardinality. Define PV = {Pv, v ∈ V} ⊂ P
be an indexed family of probability measures on measurable set (X ,A). If for any v ̸= v′ ∈ V ,

1. ρ(θ(Pv), θ(Pv′)) ≥ τ ,

2. DKL (Pv, Pv′) ≤ β,

3. DTV (Pv, Pv′) ≤ ϕ,

then

inf
θ̂ε

max
P∈P

ES∼Pn

[
ρ(θ̂ε(S), θ(P ))

]
≥ max

(
τ

2

(
1− nβ + log(2)

log(|V|)

)
, 0.4τ min

(
1,
|V|

e10nϕε

))
.

(19)

For our problem, we are interested in Gaussian PΣ and metric ρ(u, v) = sin(u, v). Using Theo-
rem C.2, it suffices to construct such indexed set V and the indexed distribution family PV . We use
the same construction as in [78, Theorem 2.1] introduced to prove a lower bound for the (non-private)
sparse PCA problem. The construction is given by the following lemma.

Lemma C.3 ([78, Lemma 3.1.2]). Let d > 10. For α ∈ (0, 1], there exists Vα ⊂ Sd−1
2 and an

absolute constant c1 > 0.0233 such that for every v ̸= v′ ∈ Vα, α/
√
2 ≤ ∥v − v′∥2 ≤

√
2α and

log(|Vα|) ≥ c1d.

Fix α ∈ (0, 1]. For each v ∈ Vα, we define Σv = (λ1 − λ2)vv
⊤ + λ2Id and Pv = N (0,Σv). It is

easy to see that Σv has eigenvalues λ1 > λ2 = · · · = λn. The top eigenvector of Σv is v. Using
Lemma F.4, we know for any v ̸= v′ ∈ V ,

α

2
≤ 1√

2
∥v − v′∥ ≤ ρ(v, v′) =

√
1− ⟨v, v′⟩2 ≤ ∥v − v′∥ ≤

√
2α . (20)

Using [78, Lemma 3.1.3], we know

DKL (Pv, Pv′) =
(λ1 − λ2)

2

λ1λ2
(1− ⟨v, v′⟩2) ≤ (λ1 − λ2)

2α2

λ1λ2
. (21)

Using Pinsker’s inequality, we have

DTV (Pv, Pv′) ≤
√

DKL (Pv, Pv′)

2
≤ α

√
(λ1 − λ2)2

2λ1λ2
. (22)

Now we set

α := min

(
1,max

(√
dc1λ1λ2

2n(λ1 − λ2)2
,
c1d

10nε

√
2λ1λ2

(λ1 − λ2)2

))
(23)

Combining all cases, it follows from Theorem C.2 and d > 10 that there exists a constant C such that

inf
v̂

sup
P∈PΣ

ES∼Pn [sin(v̂(S), v1(Σ))] ≥ Cmin

((√
d

n
+

d

εn

)√
λ1λ2

(λ1 − λ2)2
, 1

)
. (24)

C.1.1 Proof of Lemma C.3

We first point out that Lemma C.3 is a special case of [78, Lemma 3.1.2]. Here is the original
statement from [78].
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Lemma C.4 ([78, Lemma 3.1.2]). Define Bp
q (Rq) =

{
θ ∈ Rp :

∑p
j=1 |θj |

q ≤ Rq

}
. Let R̄q =

Rq − 1 ≥ 1 and p ≥ 5. There exists a finite subset Θϵ ⊂ Sp−1
2 ∩ Bp

q (Rq) and an absolute constant
c > 0 such that every distinct pair θ1, θ2 ∈ Θϵ satisfies

ϵ/
√
2 < ∥θ1 − θ2∥2 ≤

√
2ϵ

and

log |Θϵ| ≥ c

(
R̄q

ϵq

) 2
2−q

[
log(p− 1)− log

(
R̄q

ϵq

) 2
2−q

]
for all q ∈ [0, 1] and ϵ ∈ (0, 1].

Assume d ≥ 10 and set q = 0 and Rq = d
8 + 1. Lemma C.4 implies that there exists a finite subset

Vα ⊂ Sd−1
2 ∩ Bd

q

(
d
8 + 1

)
and an absolute constant c such that for v ̸= v′ ∈ Vα satisfies

α√
2
≤ ∥v − v′∥ ≤

√
2α (25)

and

log(|Vα|) ≥ c
d

8

(
log(d− 1)− log(

d

8
)

)
=

cd

8
log

(
8

(
1− 1

d

))
≥ cd

8
log(6.3) . (26)

For completeness, we also provide a direct proof of Lemma C.3, following the proof strategy of
Lemma C.4. The following lemma is a variant of classic Varshamov-Gilbert bounds that appeared in
[63, Lemma 4.10]. A similar lemma can be also found in [3, Lemma 6].
Lemma C.5 ([63, Lemma 4.10]). Let l be a positive integer that is at most k/4. Then there exists a
subset Θ ⊂ {0, 1}k and absolute constant c′ > 0.233 such that

1. For any w ∈ Θ, ∥w∥0 = l,

2. For any w ̸= w′ ∈ Θ, ∥w − w′∥0 ≥ l/2,

3. log(|Θ|) ≥ c′l log(k/l).

For d ≥ 10, let k = d− 1 and l be an integer between 1 and (d− 1)/4. We will choose l later. Let Θ
be such a set that satisfies the conditions in Lemma C.5. Now for α ∈ (0, 1], we construct Vα. Define
f : {0, 1}d−1 → Rd as follows.

f(w) =

(√
1− α2,

wα√
l

)
∈ Rd. (27)

Let

Vα := {f(w) : w ∈ Θ} . (28)

It is easy to see that

∥f(w)∥ =
√
1− α2 + ∥w∥2α2/l = 1 . (29)

For any v ̸= v′ ∈ Vα, if v = f(w) and v′ = f(w′), we know

α√
2
≤ ∥v − v′∥ =

√
∥w − w′∥2α2

l
≤
√
2α (30)

where the last inequality follows from the fact that ∥w − w′∥0 ≤ 2l.

Note that above inequalities hold for any l between 1 and (d− 1)/4. Let l = (d− 1)/8. Then we
have

log(|Vα|) = log(|Θ|) ≥ c′((d− 1)/8) log

(
d− 1

(d− 1)/8

)
≥ c′d

10
(31)

for any d ≥ 2.
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C.2 Proof of Theorem 5.4

We first construct an indexed set V and indexed distribution family PV such that xix
⊤
i satisfies A.1,

A.2 and A.3 in Assumption 1. Our construction is defined as follows.

By [3, Lemma 6] , there exists a finite set V ⊂ Sd−1
2 , with cardinality |V| ≥ 2d, such that for any

v ̸= v′ ∈ V , ∥v − v′∥ ≥ 1/2.

Let f(0,Id) denotes the density function of N (0, Id). Let Qv be a uniform distribution on two
point masses {±α− 1

4 v}. Let Q0 be Gaussian distribution N (0, Id). For α ∈ (0, 1], we construct
Pv := (1−α)Q0 +αQv . It is easy to see that Pv is a distribution over Rd with the following density
function.

Pv(x) =


α
2 , if x = −α− 1

4 v ,
α
2 , if x = α− 1

4 v ,

(1− α)f(0,Id)(x) otherwise
. (32)

The mean of Pv is 0. The covariance of Pv is Σv = (1 − α)Id +
√
αvv⊤. The top eigenvalue

is λ1 = 1 − α +
√
α, the top eigenvector is v, and the second eigenvalue is λ2 = 1 − α. And

κ = O(α−1/2).

If x = α−1/4v, then ∥xx⊤ −Σv∥2 = O(α−1/2). If x ∼ N (0, Id), we know ∥xx⊤ −Σv∥2 = O(d).
This implies Pv satisfies A.2 in Assumption 1 with M = O((d+ α−1/2) log(n)) for n i.i.d. samples.

It is easy to see that ∥E[(xx⊤ − Σv)(xx
⊤ − Σv)

⊤]∥2 = O(d). This means Pv satisfies A.3 in
Assumption 1 with V = O(d).

By the fact that E[⟨x, u⟩2] = O(1) and E[⟨x, u⟩4] = O(1) for any unit vector u, we have γ2 =
∥E[(xx⊤ − Σv)uu

⊤(xx⊤ − Σv)
⊤]∥2 = O(1) for any unit vector u.

Our proof technique is based on following lemma.

Lemma C.6 ([5, Theorem 3]). Fix α ∈ (0, 1]. Define Pv = (1− α)Q0 + αQv for v ∈ V such that
such that ρ(θ(Pv), θ(Pv′)) ≥ 2t. Let θ̂ be a (ε, δ) differentially private estimator. Then,

1

|V|
∑
ν∈V

Pv

(
ρ
(
θ̂, θ(Pv)

)
≥ t
)
≥

(|V| − 1) ·
(

1
2e

−ε⌈nα⌉ − δ 1−e−ε[nα⌉

1−e−ε

)
1 + (|V| − 1) · e−ε⌈nα⌉ . (33)

Set ρ(θ(Pv), θ(Pv′)) = sin(v, v′)/κ. By Lemma F.4, ρ(θ(Pv), θ(Pv′)) ≥ ∥v − v′∥/κ = Ω(
√
α).

Lemma C.6 implies

sup
P∈P̃

ES∼Pn [sin(v̂(S), v1(Σ))] ≥
1

|V|
∑
v∈V

ES∼Pn
v
[sin(v̂(S), v1(Σv))] (34)

= κt
1

|V|
∑
v∈V

Pv

(
sin(v̂(S), v1(Σv))

κ
≥ t

)
(35)

≳ κt
(2d − 1) ·

(
1
2e

−ε⌈nα⌉ − δ
1−e−ε

)
1 + (2d − 1)e−ε⌈nα⌉ , (36)

For d ≥ 2, we know 2d − 1 ≥ ed/2. We choose

α = min

{
1

nε

(
d

2
− ε

)
,
1

nε
log

(
1− e−ε

4δeε

)
, 1

}
. (37)

This implies

1

2
e−ε⌈nα⌉ − δ

1− e−ε
≥ 1

4
e−ε(nα+1) > 0 . (38)
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So we have there exists a constant C such that

inf
v̂

sup
P∈P̃

ES∼Pn [sin(v̂(S), v1(Σ))] ≥ Cκ
√
α

1
4e

d/2e−ε(nα+1)

1 + ed/2e−ε(nα+1)
(39)

≳ κmin

(
1,

√
d ∧ log ((1− e−ε) /δ)

nε

)
. (40)

C.3 Proof of Theorem C.1

Similar to the proof of Theorem 5.3, we use DP Fano’s method in Theorem C.2. It suffices to
construct an indexed set V and indexed distribution family PV such that xix

⊤
i satisfies A.1, A.2 and

A.3 in Assumption 1. Our construction is defined as follows.

Let λ1 > λ2 > 0. By Lemma C.3, there exists a finite set Vα ⊂ Sd−1
2 , with cardinality |Vα| = 2Ω(d),

such that for any v ̸= v′ ∈ Vα, α/
√
2 ≤ ∥v − v′∥ ≤

√
2, where α :=

√
λ2/λ1.

Let f(0,S) denotes the density function of N (0, S). We construct Pv over Rd for v ∈ Vα with the
following density function.

Pv(x) =


1−λ2/λ1

2d , if x = −
√
dλ1v ,

1−λ2/λ1

2d , if x =
√
dλ1v ,

1− 1−λ2/λ1

d f
(0,

λ2

1− 1−λ2/λ1
d

Id)
(x) otherwise

. (41)

The mean of Pv is 0. The covariance of Pv is Σv := (λ1 − λ2)vv
⊤ + λ2Id. It is easy to see that the

top eigenvalue is λ1, the top eigenvector is v, and the second eigenvalue is λ2.

If x =
√
dλ1v, then ∥xx⊤ − Σv∥2 = ∥(dλ1 − λ1 + λ2) − λ2Id∥2 = O(dλ1). If x ∼

N (0, λ2

1− 1−λ2/λ1
d

Id), by the fact that λ2

1− 1−λ2/λ1
d

≤ λ1, we know ∥xx⊤ − Σv∥2 ≤ O(dλ1). This

implies Pv satisfies A.2 in Assumption 1 with M = O(d log(n)) for n i.i.d. samples.

Similarly, ∥E[(xx⊤−Σv)(xx
⊤−Σv)

⊤]∥2 ≤ ∥d(λ2
1− λ1λ2)vv

⊤ + dλ2λ1 +3ΣvΣ
⊤
v ∥2 = O(dλ2

1).
This means Pv satisfies A.3 in Assumption 1 with V = O(d).

For v ̸= v′ ∈ Vα, we have DTV(Pv, Pv′) = (1 − λ2/λ1)/d. By Lemma F.4, sin(v, v′) ≥ ∥v −
v′∥/
√
2 ≥ (

√
λ2/λ1)/2.

By Theorem C.2, there exists a constant C such that

inf
v̂

sup
P∈PΣ

ES∼Pn [sin(v̂(S), v1(Σ))] ≥ Cmin

(√
λ2

λ1
,
d2

nε

√
λ1λ2

(λ1 − λ2)2

)
. (42)

D The analysis of Private Oja’s Algorithm

We analyze Private Oja’s Algorithm in Algorithm 2.

D.1 Proof of privacy in Lemma 3.1

We use following Theorem D.1 to prove our privacy guarantees.
Theorem D.1 (Privacy amplification by shuffling [29, Theorem 3.8]). For any domain D, let
R(i) : S(1) × · · · × S(i−1) × D → S(i) for i ∈ [n] (where S(i) is the range space of R(i)) be a
sequence of algorithms such thatR(i)(z1:i−1, ·) is an (ε0, δ0)-DP local randomizer for all values of
auxiliary inputs z1:i−1 ∈ S(1) × · · · × S(i−1). Let AS : Dn → S(1) × · · · × S(n) be the algorithm
that given a dataset x1:n ∈ Dn, samples a uniform random permutation π over [n], then sequentially
computes zi = R(i)(z1:i−1, xπ(i)) for i ∈ [n] and outputs z1:n. Then for any δ ∈ [0, 1] such that

ε0 ≤ log
(

n
16 log(2/δ)

)
, As is (ε, δ +O(eεδ0n))-DP, where

ε = O

(
(1− e−ε0)

(√
eε0 log(1/δ)√

n
+

eε0

n

))
. (43)
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Let R(t)(wt−1, Aπ(t)) := wt. Let ε0 =

√
2 log(1.25/δ0)

α . We show R(t)(wt−1, ·) is an (ε0, δ0)-DP
local randomizer.

If there is no noise in each update step, the update rule is

w′
t ← wt−1 + ηtclipβ (Atwt−1) , (44)

wt ← wt−1/∥wt−1∥ (45)

The sensitivity of w′
t is 2βηt with respect to a difference in At. By Gaussian mechanism in Lemma 2.4

and post processing property of local differential privacy, we know wt is (ε0, δ0)-DP local randomizer.

Assume that ε0 =

√
2 log(1.25/δ0)

α ≤ 1
2 . By Theorem D.1, for δ̂ ∈ [0, 1] such that ε0 ≤

log
(

n
16 log(2/δ̂)

)
, Algorithm 2 is (ε̂, δ̂ +O(eε̂δ0n))-DP and for some constant c1 > 0,

ε̂ ≤ c1

(1− e−ε0)


√

eε0 log(1/δ̂)
√
n

+
eε0

n

 (46)

≤ c1

(e0.5 − e−0.5ε0)

√
log(1/δ̂)
√
n

+
eε0 − 1

n

 (47)

≤ c1

((1 + ε0)− (1− ε0/2))

√
log(1/δ̂)
√
n

+
1 + 2ε0 − 1

n

 (48)

= c1ε0

1

2

√
log(1/δ̂)

n
+

2

n

 (49)

≤ c2

√
log(1/δ0)

α

√
log(1/δ̂)

n
, (50)

for some absolute constant c2 > 0.

Set δ̂ = δ/2, δ0 = c3δ/(e
ε̂n) for some c3 > 0 and α = C ′ log(n/δ)/(ε

√
n). We have

ε̂ ≤ c2

√
log(eε̂n/(c3δ))

α

√
log(2/δ)

n
(51)

=

√
log(eε̂n/(c3δ)) log(2/δ)

C ′ log(n/δ)
· ε. (52)

For any ε ≤ 1, by Eq. (52), there exists some sufficiently large C ′ > 0 such that ε̂ ≤ ε.

Recall that we assume ε0 =

√
2 log(1.25/δ0)

α ≤ 1
2 . This means ε = O(

√
log(n/δ)

n ).

D.2 Proof of clipping in Lemma 3.2

Let zt = Atwt−1. Let µt := E[zt] = Σwt−1. By Lemma 2.1, we know for any ∥v∥ = 1, with
probability 1− ζ,

|v⊤(zt − µt)| ≤ Kγλ1 log
a(2/ζ) . (53)

Applying union bound over all basis vectors v ∈ {e1, . . . , ed} and all samples, we know with
probability 1− ζ, for all j ∈ [d] and t ∈ [n]

|zt,j | ≤ Kγλ1 log
a(2nd/ζ) + λ1 . (54)

This implies that with probability 1− ζ, for all t ∈ [n], we have

∥zt∥ ≤ (Kγ loga(2nd/ζ) + 1)λ1

√
d . (55)
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D.3 Proof of utility in Theorem 3.3

Lemma 3.2 implies that with probability 1−O(ζ), Algorithm 2 does not have any clipping. Under
this event, the update rule becomes

w′
t ← wt−1 + ηt (At + 2αβGt)wt−1 (56)

wt ← w′
t/∥w′

t∥ , (57)

where β = (Kγ loga(nd/ζ) + 1)λ1

√
d and each entry in Gt ∈ Rd×d is i.i.d. sampled from standard

Gaussian N (0, 1). This follows form the fact that ∥wt−1∥ = 1 and Gtwt−1 ∼ N (0, Id).

Let Bt = At + 2αβGt. We show Bt satisfies the three conditions in Theorem 2.2 ([45, Theo-
rem 4.12]). It is easy to see that E[Bt] = Σ from Assumption A.1. Next, we show upper bound of
max

{∥∥E [(Bt − Σ)(Bt − Σ)⊤
]∥∥

2
,
∥∥E [(Bt − Σ)⊤(Bt − Σ)

]∥∥
2

}
. We have∥∥E [(Bt − Σ)(Bt − Σ)⊤

]∥∥
2

=
∥∥E[(At + 2αβGt − Σ)(At + 2αβGt − Σ)⊤]

∥∥
2

≤
∥∥E[(At − Σ)(At − Σ)⊤]

∥∥
2
+ 4α2β2∥E[GtG

⊤
t ]∥2

≤ V λ2
1 + 4α2β2C2d , (58)

where the last inequality follows from Lemma F.3 and C2 > 0 is an absolute constant. Let Ṽ :=

V λ2
1 + 4α2β2C2d. Similarly, we can show that

∥∥E [(Bt − Σ)⊤(Bt − Σ)
]∥∥

2
≤ Ṽ .

By Lemma F.2, we know with probability 1− ζ, for all t ∈ [T ],

∥Bt − Σ∥2
= ∥At + 2αβGt − Σ∥2
≤∥At − Σ∥2 + 2αβ∥Gt∥2

≤Mλ1 + 2C3αβ
(√

d+
√

log(n/ζ)
)

.

Let M̃ := Mλ1 + 2C3αβ
(√

d+
√

log(n/ζ)
)

.

Under the event that ∥Bt − Σ∥2 ≤ M̃ for all t ∈ [n], we apply Theorem 2.2 with a learning rate
ηt =

h
(λ1−λ2)(ξ+t) where

ξ = 20max

 M̃h

(λ1 − λ2)
,

(
Ṽ + λ2

1

)
h2

(λ1 − λ2)2 log(1 +
ζ

100 )

 . (59)

Then Theorem 2.2 implies that with probability 1− ζ,

sin2 (wn, v1) ≤
C log(1/ζ)

ζ2

(
d

(
ξ

n

)2h

+
h2Ṽ

(2h− 1) (λ1 − λ2)
2
n

)
, (60)

for some positive constant C.

Set α = C′ log(n/δ)
ε
√
n

, the above bound implies

sin2 (wn, v1) ≤
C log(1/ζ)

ζ2

(
h2V λ2

1

(2h− 1) (λ1 − λ2)
2
n
+

(Kγ loga(nd/ζ) + 1)2λ2
1 log

2(n/δ)d2h2

(2h− 1)(λ1 − λ2)2ε2n2
+ d

(
ξ̃
)h)

,

(61)
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where ξ̃ = (ξ/n)2, and

ξ̃ := max

(
M2λ2

1h
2

(λ1 − λ2)2n2
+

(Kγ loga(nd/ζ) + 1)2λ2
1 log

3(n/δ)h2d2

(λ1 − λ2)2ε2n3
,

V 2λ4
1h

4

(λ1 − λ2)4 log
2(1 + ζ

100 )n
2
+

(Kγ loga(nd/ζ) + 1)4λ4
1 log

4(n/δ)h4d4

(λ1 − λ2)4 log
2(1 + ζ

100 )ε
4n4

+
λ4
1h

4

(λ1 − λ2)4 log
2(1 + ζ

100 )n
2

)
. (62)

For ζ = O(1) and K = O(1), selecting h = c log n, and assuming

n ≥C

(
Mλ1 log(n)

λ1 − λ2
+

(Kγ loga(nd/ζ) + 1)2/3λ
2/3
1 log(n/δ) log2/3(n)d2/3

(λ1 − λ2)2/3ε2/3

+
V λ2

1(log(n))
2

(λ1 − λ2)2
+

(Kγ loga(nd/ζ) + 1)λ1 log(n/δ) log(n)d

(λ1 − λ2)ε
+

λ2
1 log

2(n)

(λ1 − λ2)2

)
, (63)

with large enough positive constants c, and C, we have ξ̃ ≤ 1 and dξ̃α ≤ 1/n2. Hence it is sufficient
to have

n = Õ
( λ2

1

(λ1 − λ2)2
+

Mλ1

λ1 − λ2
+

V λ2
1

(λ1 − λ2)2
+

d (γ + 1)λ1 log(1/δ)

(λ1 − λ2)ε

)
,

with a large enough constant.

E The analysis of DP-PCA

We provides the proofs for Theorem 5.1, Theorem 6.1, and Lemma 6.2 that guarantees the privacy
and utility of DP-PCA.

E.1 Proof of Theorem 5.1 on the privacy and utility of DP-PCA

From Theorem 6.1 we know that Alg. 4 returns Λ̂ satisfying 2Λ̂ ≥ λ2
1∥Hu∥2 with high probability.

Then, from Lemma 6.2, we know that with high probability Alg 5 returns an unbiased estimate of the
gradient mean with added Gaussian noise. Under this case, the update rule becomes

w′
t ← wt−1 + ηt

(
1

B

B∑
i=1

AB(t−1)+i + βtGt

)
wt−1 (64)

wt ← w′
t/∥w′

t∥ , (65)

where βt =
8K
√

2Λ̂t log
a(Bd/ζ)

√
2d log(2.5/δ)

εB , Λ̂t denote the estimated eigenvalue of covariance of
the gradients at t-th iteration, and each entry in Gt ∈ Rd×d is i.i.d. sampled from standard Gaussian
N (0, 1). This follows form the fact that ∥wt−1∥ = 1 and Gtwt−1 ∼ N (0, Id).

Let β :=
16Kγλ1 loga(Bd/ζ)

√
2d log(2.5/δ)

εB such that β ≥ βt, which follows from the fact that Λ̂ ≤√
2λ2

1∥Hu∥2 ≤
√
2λ2

1γ
2 (Theorem 6.1 and Assumption A.4). Let Bt = (1/B)

∑B
i=1 AB(t−1)+i +

βtGt. We show Bt satisfies the three conditions in Theorem 2.2 ([45, Theorem 4.12]). It
is easy to see that E[Bt] = Σ from Assumption A.1. Next, we show upper bound of
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max
{∥∥E [(Bt − Σ)(Bt − Σ)⊤

]∥∥
2
,
∥∥E [(Bt − Σ)⊤(Bt − Σ)

]∥∥
2

}
. We have∥∥E [(Bt − Σ)(Bt − Σ)⊤

]∥∥
2

=

∥∥∥∥∥E[( 1B
B∑
i=1

AB(t−1)+i + βtGt − Σ)(
1

B

B∑
i=1

AB(t−1)+i + βtGt − Σ)⊤]

∥∥∥∥∥
2

≤

∥∥∥∥∥E[( 1B
B∑
i=1

AB(t−1)+i − Σ)(
1

B

B∑
i=1

AB(t−1)+i − Σ)⊤]

∥∥∥∥∥
2

+ β2∥E[GtG
⊤
t ]∥2

= V λ2
1/B + β2∥E[GtG

⊤
t ]∥2

≤ V λ2
1/B + β2C2d , (66)

where the last inequality follows from Lemma F.3 and C2 > 0 is an absolute constant. Let Ṽ :=

V λ2
1/B + β2C2d. Similarly, we can show that

∥∥E [(Bt − Σ)⊤(Bt − Σ)
]∥∥

2
≤ Ṽ . By Lemma F.5

and Lemma F.2, we know with probability 1− ζ, for all t ∈ [T ],

∥Bt − Σ∥2

=

∥∥∥∥∥ 1

B

B∑
i=1

AB(t−1)+i + βtGt − Σ

∥∥∥∥∥
2

≤C3

(
Mλ1 log(dT/ζ)

B
+

√
V λ2

1 log(dT/ζ)

B
+ β

(√
d+

√
log(T/ζ)

))
.

Let M̃ := C3

(
Mλ1 log(dT/ζ)

B +

√
V λ2

1 log(dT/ζ)
B + β

(√
d+

√
log(T/ζ)

))
. Under the event that

∥Bt − Σ∥2 ≤ M̃ for all t ∈ [T ], we apply Theorem 2.2 with a learning rate ηt = α
(λ1−λ2)(ξ+t) where

ξ = 20max

 M̃α

(λ1 − λ2)
,

(
Ṽ + λ2

1

)
α2

(λ1 − λ2)2 log(1 +
ζ

100 )

 . (67)

Then Theorem 2.2 implies that with probability 1− ζ,

sin2 (wT , v1) ≤
C log(1/ζ)

ζ2

(
d

(
ξ

T

)2α

+
α2Ṽ

(2α− 1) (λ1 − λ2)
2
T

)
, (68)

for some positive constant C. Using n = BT and Eq. (66), the above bound implies

sin2 (wT , v1) ≤
C log(1/ζ)

ζ2

(
α2V λ2

1

(2α− 1) (λ1 − λ2)
2
n
+

K2γ2λ2
1 log

2a(nd/(Tζ)) log(1/δ)d2α2T

(2α− 1)(λ1 − λ2)2ε2n2
+ d

(
ξ̃
)α)

.

(69)

where ξ̃ = (ξ/T )2, and

ξ̃ := max

(
M2λ2

1α
2 log2(dT/ζ)

(λ1 − λ2)2n2
+

V λ2
1 log(dT/ζ)α

2

(λ1 − λ2)2nT
+

K2γ2λ2
1 log

2a(nd/(Tζ)) log(1/δ) log(T/ζ)α2d2

(λ1 − λ2)2ε2n2
,

V 2λ4
1α

4

(λ1 − λ2)4 log
2(1 + ζ

100 )n
2
+

K4γ4λ4
1 log

4a(nd/(Tζ)) log2(1/δ)α4d4T 2

(λ1 − λ2)4 log
2(1 + ζ

100 )ε
4n4

+
λ4
1α

4

(λ1 − λ2)4 log
2(1 + ζ

100 )T
2

)
. (70)
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For ζ = O(1) and K = O(1), selecting α = c log n, T = c′(log n)2, and assuming log n ≥
λ2
1/(λ1 − λ2)

2 and

n ≥C

(
Mλ1 log(n) log(d log(n))

λ1 − λ2
+

√
V λ2

1 log(dT )

(λ1 − λ2)
+

γλ1 log
a(nd/ log(n))

√
log(1/δ) log(log(n)) log(n)d

(λ1 − λ2)ε

+
V λ2

1(log(n))
2

(λ1 − λ2)2
+

γλ1 log
a(nd/ log(n))

√
log(1/δ)(log(n))2d

(λ1 − λ2)ε

)
, (71)

with large enough positive constants c, c′, and C, we have ξ̃ ≤ 1 and dξ̃α ≤ 1/n2. Hence it is
sufficient to have

n = Õ
(
exp(λ2

1/(λ1 − λ2)
2) +

Mλ1

λ1 − λ2
+

V λ2
1

(λ1 − λ2)2
+

d γ λ1

√
log(1/δ)

(λ1 − λ2)ε

)
,

with a large enough constant.

E.2 Algorithm and proof of Theorem 6.1 on top eigenvalue estimation

Algorithm 4: Private Top Eigenvalue Estimation

Input: S = {gi}Bi=1, (ε, δ)-DP, failure probability ζ

1 Let g̃i ← g2i − g2i−1 for i ∈ 1, 2, . . . , ⌊B/2⌋. Let S̃ = {g̃i}⌊B/2⌋
i=1

2 Partition S̃ into k = C1 log(1/(δζ))/ε subsets and denote each dataset as Gj ∈ Rd×b, where
each dataset is of size b = ⌊B/2k⌋

3 Let λ(j)
1 be the top eigenvalue of (1/b)GjG

⊤
j for ∀j ∈ [k]

4 Partition [0,∞) into
Ω←

{
. . . ,

[
2−2/4, 2−1/4

) [
2−1/4, 1

) [
1, 21/4

)
,
[
21/4, 22/4

)
, . . .

}
∪ {[0, 0]}

5 Run (ε, δ)-DP histogram learner of Lemma B.1 on {λ(j)
1 }kj=1 over Ω

6 if all the bins are empty then Return ⊥
7 Let [l, r] be a non-empty bin that contains the maximum number of points in the DP histogram
8 Return Λ̂ = l

Taking the difference ensures that g̃i is zero mean, such that we can directly use the top eigenvalue of
(1/b)GjG

⊤
j for j ∈ [k]. We compute a histogram over those k top eigenvalues. This histogram is

privatized by adding noise only to the occupied bins and thresholding small entries of the histogram
to be zero. The choice k = Ω(log(1/ζ)/ε) ensures that the most occupied bin does not change after
adding the DP noise to the histograms, and k = Ω(log(1/δ)/ε) is necessary for handling unbounded
number of bins. We emphasize that we do not require any upper and lower bounds on the eigenvalue,
thanks to the private histogram learner from [11, 56] that gracefully handles unbounded number of
bins.

The privacy guarantee follows from the privacy guarantee of the histogram learner provided in
Lemma B.1.

For utility analysis, we follow the analysis of [53, Theorem 3.1]. The main difference is that we
prove a smaller sample complexity sine we only need the top eigenvalue, and we analyze a more
general distribution family. The random vector g̃i is zero mean with covariance 2λ2

1Hu ∈ Rd×d,
where Hu = E[(Ai − Σ)uu⊤(Ai − Σ)⊤]/λ2

1, and g̃i satisfies with probability 1− ζ,

| ⟨g̃i, v⟩ | ≤ 2Kλ1

√
∥Hu∥2 loga(1/ζ) , (72)

which follows from Lemma 2.1. Applying union bound over all basis vectors v ∈ {e1, . . . , ed}, we
know with probability 1− ζ,

∥g̃i∥ ≤ 2Kλ1

√
d∥Hu∥2 loga(d/ζ) .
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We next show that conditioned on event E = {∥g̃i∥ ≤ 2Kλ1

√
d∥Hu∥2 loga(d/ζ)}, the covariance

E[g̃ig̃⊤i |E ] is close to the true covariance E[g̃ig̃⊤i ] = 2λ2
1Hu. Note that

E[g̃ig̃⊤i |E ] =
E[g̃ig̃⊤i I{∥g̃i∥ ≤ 2Kλ1

√
d∥Hu∥2 loga(d/ζ)}]

P(E)

⪯ E[g̃ig̃⊤i ]
P(E)

⪯ 2λ2
1Hu

1− ζ
. (73)

We next show the empirical covariance (1/b)
∑b

i=1 g̃ig̃
⊤
i concentrates around 2λ2

1Hu. First of all,
using union bound on Eq. (72), we have with probability 1− ζ, for all i ∈ [b] and j ∈ [d],

|g̃ij | ≤ 2Kλ1

√
∥Hu∥2 loga(bd/ζ) .

Under the event that |g̃ij | ≤ 2Kλ1

√
∥Hu∥2 loga(nd/ζ) for all i ∈ [b], j ∈ [d], [79, Corrollary 6.20]

together with Eq. (73) implies

P

(∥∥∥∥∥1b
b∑

i=1

g̃ig̃
⊤
i − 2λ2

1Hu

∥∥∥∥∥
2

≥ α

)
≤ 2d exp

(
− bα2

8K2λ2
1∥Hu∥2 log2a( bdζ )d(2λ

2
1∥Hu∥2/(1− ζ) + α)

)
.

The above bound implies that with probability 1− ζ,∥∥∥∥∥1b
b∑

i=1

g̃ig̃
⊤
i − λ2

12Hu

∥∥∥∥∥
2

= O
(
Kλ2

1∥Hu∥2 loga(bd/ζ)
√

d log(d/ζ)

b
+K2λ2

1∥Hu∥2 log2a(bd/ζ)
d log(d/ζ)

b

)
.

This means if b = Ω(K2d log(dk/ζ) log2a(bdk/ζ)), then with probability 1 − ζ, for all j ∈ [k],
(1 − 21/8)λ2

1∥Hu∥2 ≤ λ
(j)
1 ≤ (1 + 21/8)λ2

1∥Hu∥2. This means all of λ
(j)
1 must be within

21/4λ2
1∥Hu∥2 interval. Thus, at most two consecutive buckets are filled with λ

(j)
1 . By private

histogram from Lemma B.1, if k ≥ log(1/(δζ))/ε, one of those two bins are released. The resulting
total multiplicative error is bounded by 21/2.

E.3 Algorithm and proof of Lemma 6.2 on DP mean estimation

Algorithm 5: Private Mean Estimation [56, 50]

Input: S = {gi}Bi=1, (ε, δ), target error α, failure probability ζ, approximate top eigenvalue Λ̂

1 Let τ = 21/4K
√
Λ̂ loga(25).

2 for j=1, 2, . . . , d do
3 Run ( ε

4
√

2d log(4/δ)
, δ
4d )-DP histogram learner of Lemma B.1 on {gij}i∈[B] over

Ω = {· · · , (−2τ,−τ ], (−τ, 0], (0, τ ], (τ, 2τ ], (2τ, 3τ ] · · · }.
4 Let [l, h] be the bucket that contains maximum number of points in the private histogram
5 ḡj ← l
6 Truncate the j-th coordinate of gradient {gi}i∈[B] by

[ḡj − 3K
√
Λ̂ loga(Bd/ζ), ḡj + 3K

√
Λ̂ loga(Bd/ζ)].

7 Let g̃i be the truncated version of gi.

8 Compute empirical mean of truncated gradients µ̃ = (1/B)
∑B

i=1 g̃i and add Gaussian noise:

µ̂ = µ̃+N

(
0,

(
12K
√

Λ̂ loga(Bd/ζ)
√

2d log(2.5/δ)

εB

)2

Id

)
9 Return µ̂

The histogram learner is called d times, each with (ε/(4
√

2d log(4/δ)), δ/(4d))-DP guarantee, and
the end-to-end privacy guarantee is (ε/2, δ/2) from Lemma B.4 for ε ∈ (0, 0.9). The sensitivity of

the clipped mean estimate is ∆ =
√
d6K

√
Λ̂ loga(Bd/ζ). Gaussian mechanism with covariance

(2∆
√
2 log(2.5/δ)/ε)2Id satisfy (ε/2, δ/2)-DP from Lemma 2.4 for ε ∈ (0, 1). Putting these two

together, with serial composition of Lemma B.3, we get the desired privacy guarantee.
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The proof of utility follows similarly as [61, Lemma D.2]. Let Il = (l
√

Λ̂, (l + 1)
√

Λ̂]. Denote the
population probability of j-th coordinate at Il as hj,l = P(gij ∈ Il). Denote the empirical probability
as ĥj,l =

1
B

∑B
i=1 I(gij ∈ Il). Denote the private empirical probability being released as h̃j,l.

Fix j ∈ [d]. Let Ik be the bin that contains the µj . Then we know [µj−Kλ1

√
∥Hu∥2 loga(25), µj +

Kλ1

√
∥Hu∥2 loga(25)] ⊆ [µj − τ, µj + τ ] ⊂ (Ik−1 ∪ Ik ∪ Ik+1). By Lemma 2.1, we know

P(|gij −µj | ≥ τ) ≤ P(|gij −µj | ≥ Kλ1

√
∥Hu∥2 loga(25)) ≤ 0.04. This means h(k−1),j +hk,j +

h(k+1),j ≥ 0.96 and min(h(k−1),j , hk,j , h(k+1),j) ≥ 0.32.

By Dvoretzky-Kiefer-Wolfowitz inequality and an union bound over j ∈ [d], we have that
with probability 1 − ζ, maxj,l |hj,l − ĥj,l| ≤

√
log(d/ζ)/B. Using Lemma B.1, if B =

Ω((
√
d log(1/δ)/ε) log(d/(ζδ))), with probability 1−ζ , we have maxj,l |h̃j,l−ĥj,l| ≤ 0.005. Thus,

with our assumption on B, we can make sure with probability 1−ζ , maxj,l |h̃j,l−hj,l| ≤ 0.01. Then
we have min(h(k−1),j , hk,j , h(k+1),j) − 0.01 ≥ 0.31 ≥ 0.04 + 0.01 ≥ maxl ̸=k−1,k,k1 hj,l + 0.01.
This implies with probability 1 − ζ, the algorithm must pick one of the bins from Ik−1, Ik, Ik+1.
This means |ḡj − µj | ≤ 2τ ≤ 21.5Kλ1

√
∥Hu∥2 loga(25). By tail bound of Lemma 2.1, we know

for all j ∈ [d] and i ∈ [B], |gij − ḡj | ≤ |gij − µj |+ |ḡj − µj | ≤ 3Kλ1

√
∥Hu∥2 loga(Bd/ζ). This

completes our proof.

F Technical lemmas

Lemma F.1. Let x ∈ Rd ∼ N (0,Σ). Then there exists universal constant C such that with
probability 1− ζ,

∥x∥2 ≤ C Tr(Σ) log(1/ζ) . (74)

Proof. Let x̃ := Σ−1/2x. Then x̃ is also a Gaussian with x̃ ∼ N (0, Id). By Hanson-Wright
inequality ( [76, Theorem 6.2.1]), there exists universal constant c > 0 such that with probability
1− ζ,

∥x∥2 = x̃⊤Σx̃ ≤ Tr(Σ) + c(∥Σ∥F + ∥Σ∥2) log(2/ζ) ≤ C Tr(Σ) log(1/ζ) . (75)

Lemma F.2 ([76, Theorem 4.4.5]). Let G ∈ Rd×d be a random matrix where each entry Gij is i.i.d.
sampled from standard Gaussian N (0, 1). Then there exists universal constant C > 0 such that with
probability 1− 2e−t2 , ∥G∥2 ≤ C(

√
d+ t) for t > 0.

Lemma F.3. Let G ∈ Rd×d be a random matrix where each entry Gij is i.i.d. sampled from standard
Gaussian N (0, 1). Then we have ∥E[GG⊤]∥2 ≤ C2d and ∥E[G⊤G]∥2 ≤ C2d.

Proof. By Lemma F.2, there exists universal constant C3 > 0 such that

P
(
∥G∥ ≥ C1(

√
d+ s)

)
≤ e−s2 , ∀s > 0 . (76)

Then

∥E[GG⊤]∥2 ≤ E[∥GG⊤∥2] (77)

≤ E[∥G∥22] (78)

=

∫ ∞

0

2rP(∥G∥2 ≥ r)dr ≤ C1d+ C3

∫ ∞

√
d

2re−
(r−

√
d)2

2 d (79)

= C1(d+
√
2πd+ 2) ≤ C2d , (80)

where C2 is an absolute constant. The proof for the second claim follows similarly.
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Lemma F.4. Let x, y ∈ Sd−1
2 . Then

1− ⟨x, y⟩2 ≤ ∥x− y∥2 . (81)

If ∥x− y∥2 ≤ 2, then

1− ⟨x, y⟩2 ≥ 1

2
∥x− y∥2 . (82)

The following lemma follows from matrix Bernstein inequality [73].
Lemma F.5. Under A.1, A.2, and A.3, in Assumption 1, with probability 1− ζ,∥∥∥ 1

B

∑
i∈[B]

Ai − Σ
∥∥∥
2

= O
(√λ2

1V log(d/ζ)

B
+

λ1M log(d/ζ)

B

)
. (83)
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