
A AUROC of Main Results

We include full results of AUROC scores here.

Model QQP PIT PIT PAWS PAWS PAWS QQP average-> WMT -> WMT -> PAWS -> QQP -> PIT -> WMT -> PAWS
(5.5) (11.4) (32.4) (33.2) (34.5) (35.6) (43.7)

BOW 51.9 52.5 49.0 56.1 44.0 53.2 49.1 50.8
BiLSTM 50.1 51.5 49.3 50.4 50.6 49.8 50.1 50.3
BERT 75.0 70.7 51.2 69.2 58.2 70.7 54.7 64.2
BERT+EP 73.5 74.6 52.2 66.9 62.3 69.4 53.4 64.6
BART 75.7 76.4 53.3 71.7 65.0 77.6 56.6 68.0
RoBERTa 77.9 76.9 52.4 77.4 71.2 80.6 54.3 70.1
IDP 71.0 65.7 63.9 56.0 55.0 50.3 67.0 61.3
OODP 85.0 85.0 67.2 76.7 77.5 84.9 74.4 78.7
GAP 85.1 84.7 66.4 76.2 77.5 84.9 74.7 78.5
GAPX 83.8 81.1 58.3 77.7 77.5 84.6 59.5 74.6

Table 3: Model performance on different out-of-distribution combinations of QQP, PAWS and PIT, in
terms of area under curve (AUROC).

Model QQP PAWS PIT QQP PIT average->QQP ->PAWS ->PIT ->PIT ->QQP
(0) (0) (0) (2.8) (3.4)

BOW 60.9 57.7 47.7 47.4 61.3 55.0
BiLSTM 64.6 49.6 50.9 52.8 49.0 53.4
BERT 90.0 97.6 85.1 77.3 73.4 84.7
BERT+EP 89.8 95.8 82.7 76.1 73.7 83.6
BART 90.6 98.2 89.1 78.2 77.9 86.8
RoBERTa 92.0 98.7 90.2 82.0 80.0 88.6
OODP 79.6 84.6 73.6 72.8 76.4 77.4
IDP 88.1 95.4 86.8 77.9 74.6 84.6
GAP 78.9 92.3 84.5 72.3 76.4 80.9
GAPX 90.7 98.1 87.4 72.5 79.2 85.6

Table 4: Model performance for in-distribution performances on QQP, PAWS, and PIT, in terms of
area under curve (AUROC).
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Figure 5: Comparing AUROC scores of different models at varying degrees of distribution shift.

B Additional Ablations

B.1 Additional Variants

We also conducted ablations on several variants of GAPX.
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• GAPX(neg-log) replaces perplexity with the neg-log likelihood of the concatenated (s1, s2)
as the measure. Specifically, GAPX(neg-log) modifies the Eqn. 5 and Eqn. 6 such that:

NLL(s1, s2) = log((

n∏
i=1

1

P (wi|w1:i−1)
).

λ(s1, s2) = cdf(NLL(s1, s2),Weibull(a, c, loc, scale)).

• GAPX(w/ IDP) ensembles GAP with IDP.

• GAPX(w/ BART) explores the option of ensembling GAP with BART as described in
Appendix.4.2.

These variants of GAPX mostly perform similarly to the GAPX model proposed in the main paper,
which ensembles GAP with RoBERTa.

Model QQP PIT PIT PAWS PAWS PAWS QQP average-> WMT -> WMT -> PAWS -> QQP -> PIT -> WMT -> PAWS
(5.5) (11.4) (32.4) (33.2) (34.5) (35.6) (43.7)

GAPX 75.5/75.5 74.4/74.5 55.1/55.5 70.8/70.8 69.7/70.2 76.4/76.4 52.3/54.3 67.7/68.2
GAPX(neg-log) 75.9/75.9 74.8/74.8 56.0/61.7 62.6/65.9 62.9/63.4 72.3/72.4 62.9/63.0 66.8/68.2
GAP(w/ IDP) 73.2/73.4 74.0/74.0 55.4/61.6 57.8/58.3 54.7/54.7 67.7/67.9 66.3/66.5 64.2/65.2
GAPX(w/ BART) 74.6/74.6 74.6/74.6 55.2/55.4 70.7/70.8 69.7/70.2 75.9/76.0 55.1/56.0 68.0/68.2
GAPX(w/ BERT) 72.6/72.6 74.7/74.7 55.1/55.2 70.2/70.2 69.7/70.2 75.7/75.9 56.1/56.3 67.7/67.9

Table 5: Performance on different out-of-distribution combinations of QQP, PAWS and PIT, in terms
of macro F1/accuracy (ACC).

Model QQP PAWS PIT QQP PIT average->QQP ->PAWS ->PIT ->PIT ->QQP
(0) (0) (0) (2.8) (3.4)

GAPX 84.4/84.5 92.7/92.7 79.3/79.3 62.3/63.4 72.0/72.4 78.1/78.5
GAPX(neg-log) 83.3/83.4 91.2/91.5 80.9/80.9 68.9/70.1 72.2/72.7 79.3/78.7
GAP(threshed) 78.2/78.3 86.5/86.8 77.4/77.7 67.4/68.5 69.4/69.8 75.8/76.2
GAPX(w/ BART) 82.6/82.8 93.0/93.1 79.4/79.4 62.3/63.4 71.4/71.5 77.7/78.0
GAPX(w/ BERT) 82.6/82.7 91.9/92.0 76.8/76.8 62.3/63.4 69.9/69.9 76.7/77.0

Table 6: In-distribution performances on QQP, PAWS, and PIT, in terms of macro F1/accuracy (ACC).

Model QQP PIT PIT PAWS PAWS PAWS QQP average-> WMT -> WMT -> PAWS -> QQP -> PIT -> WMT -> PAWS
(5.5) (11.4) (32.4) (33.2) (34.5) (35.6) (43.7)

GAPX(perplexity) 75.5/75.5 74.4/74.5 55.1/55.5 70.8/70.8 69.7/70.2 76.4/76.4 52.3/54.3 67.7/68.2
GAPX(cosine) 65.2/66.9 53.7/59.4 31.2/45.4 60.0/63.5 63.2/63.9 59.8/62.8 35.4/46.7 52.7/58.4
GAPX(softmax) 70.3/71.1 63.2/65.7 31.2/45.4 60.0/63.5 63.2/63.9 59.8/62.8 39.2/48.2 55.3/60.1
GAPX(maha) 65.3/66.9 60.5/63.6 35.7/46.8 63.2/64.8 65.5/65.7 61.0/63.0 35.1/46.5 55.2/59.6
GAPX(energy) 69.9/70.8 66.6/68.2 31.4/45.4 70.7/70.8 69.5/70.0 76.7/76.7 39.5/48.4 60.6/64.3

Table 7: Out-of-distribution performance when using different out-of-distribution metrics.

Model QQP PAWS PIT QQP PIT average->QQP ->PAWS ->PIT ->PIT ->QQP
(0) (0) (0) (2.8) (3.4)

GAPX(perplexity) 84.4/84.5 92.7/92.7 79.3/79.3 62.3/63.4 72.0/72.4 78.1/78.5
GAPX(cosine) 82.6/82.8 93.5/93.5 81.0/81.1 66.0/67.2 73.0/74.0 79.2/79.7
GAPX(softmax) 82.2/82.5 93.5/93.5 82.6/82.6 71.9/72.4 73.8/74.6 80.8/81.1
GAPX(maha) 84.4/84.5 92.2/92.2 81.3/81.3 66.4/68.6 72.5/73.2 79.4/80.0
GAPX(energy) 82.8/83.0 92.2/92.2 81.4/81.5 71.7/72.3 73.6/74.3 80.3/80.7

Table 8: In-distribution performance of different out-of-distribution metrics.

17



C Additional Discussions

C.1 Ablations on C, Eqn. 4

Model QQP PIT PIT PAWS PAWS QQP average-> PIT -> QQP -> PAWS -> QQP -> PIT -> PAWS
(2.8) (3.4) (32.4) (33.2) (34.5) (43.7)

GAPX(0) 62.3/63.4 72.0/72.4 55.1/55.5 70.8/70.8 69.7/70.2 52.3/54.3 63.7/64.4
GAPX(10) 63.3/64.0 72.1/72.7 48.3/51.5 69.5/69.5 69.7/70.2 47.3/52.4 61.7/63.4
GAPX(100) 66.9/67.1 72.1/72.6 48.4/50.7 71.3/71.5 71.2/71.3 52.3/54.4 63.7/64.6

Table 9: Comparing using different amount of data to set C. Macro F1/ACC are reported.

To set C in Equation. 4, in the case of 0 samples, we roughly estimate an integer from 1-5 for the
interpolation constant C. For adversarial distributions like PAWS, we expect a lower perplexity
because both sentences share the same bag-of-word, so we set C = 1. For standard distributions
like QQP and WMT, we expect a modest perplexity, so we set C = 3. For informal distributions
like PIT, where sentences do not strictly follow syntax and grammar, we expect a higher perplexity,
so we set C = 5. In other cases, with validation data, we determine the best constant C based on
the validation data (if there are multiple constants with the same results on the validation data, we
take the smallest one). As shown in Table 3 (WMT results are not included here due to the lack of
validation data), although using 0 or 10 samples achieve worse performances than using 100 samples,
meaning the best constant threshold is not found, the results appear to be stable overall (on average
2% fluctuations in macro F1 and 1% fluctuations in accuracy). If a small amount of validation data is
accessible, the performance of GAPX can be further improved.

C.2 Interpreting the Results
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Figure 6: An example from QQP illustrating how to interpret the result of our method, by OODP.

Figure 6, Figure 7, and Figure 8 shows examples of how our autoregressive paraphrase identification
models work. For OODP, our model will output a log of conditional probability for each word in s2
given s1 and all the previous words in s2, namely:

logP (w
(i)
2 |s1, Y = 1, w

(1:i−1)
2 ).

For IDP, we can use the log of the quotient of the conditional probability for each word given by
the positive model and the negative model as an indicator which words contribute the most to the
prediction result:

logP (w
(i)
2 |s1, Y = 1, w

(1:i−1)
2 )− logP (w

(i)
2 |s1, Y = 0, w

(1:i−1)
2 ).

For GAP, we can use the the score defined in Eqn.. 4 split on each word, namely:

logP (w
(i)
2 |s1, Y = 1, w

(1:i−1)
2 )− (1− λ(s1, s2)) logP (w

(i)
2 |s1, Y = 0, w

(1:i−1)
2 )− λ(s1, s2)C.
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Figure 7: An example from QQP illustrating how to interpret the result of our method, by IDP.

Bidirectional Encoder

Autoregressive D
ecoder

Is

India

a

soft

nation

in

terms

of

its

foreign

relationsrelations

？

Can

I

register

my

marriage

to

a

foreign

national

in

relationsIndia

？

1.4

2.7

7.0

0.2

8.8

-1.0

0.5

-0.4

3.0

-1.7

relations-2.2

0.3

s1 s2 Pr

Bidirectional Encoder

Autoregressive D
ecoder

Positive Model

Negative Model

-

Autoregressive D
ecoder

Distribution Model

Interpolation

Figure 8: An example from QQP illustrating how to interpret the result of our method, by GAP.

In all three models, higher scores represent a higher chance of being non-paraphrases. For IDP and
GAP, the threshold is 0 while for OODP the threshold is 3. All three models predict this sentence pair
to be non-paraphrases, attending to slightly different key words. The top 3 words with the highest
scores in OODP and GAP are ’register’, ’marriage’, and ’national’. All of them represent the words
that are unlikely to occur in a paraphrase of the original sentence. The top 3 words with the highest
scores in IDP are ’I’, ’marriage’, and ’a’. Its reliance on the word ’a’ might be due to the error
propagation of the autoregressive decoding.

C.3 Implementation of out-of-distribution metrics

To compare our perplexity metric with different off-the-shelf out-of-distribution metrics (Fig. 4(b)
and 5(b)), we first train a RoBERTa model as described in Sec. 4.2. Both MAHA and COSINE
need in-distribution validation data, for which we use half of the development data provided in each
dataset. We use the other half of the development data to estimate the Weibull distribution of the
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metrics. We rely on the implementation of SOFTMAX, ENERGY, MAHA, and COSINE from Zhou
and Chen [65]. The metrics are calculated as follow:

1. SOFTMAX. We use the maximum class probability 1 − maxj=0,1pj among 2 classes
(paraphrases and non-paraphrases) in the final softmax layer.

2. ENERGY. We use the following formula to calculate energy score:

g = − log

1∑
j=0

exp (wT
j h),

where wj is the weight of the jth class in the softmax layer, and h is the input to the softmax
layer (of the concatenated (s1, s2) input).

3. MAHA. We use the input representation h of the penultimate layer of the model, and
fit a Gaussian distribution to each class in the in-distribution development data Dval =
{(xi, yi)}Mi=1:

µj = Eyi=j [hj ]

Σ = E[(hi − µyi
)(hi − µyi

)T ].

Then, the MAHA distance is calculated as:
g = − min

j=0,1
(h− µj)Σ

+(h− µj),

where Σ+ is the pseudo-inverse of Σ.

4. COSINE. We use the maximum cosine similarity of h (of the concatenated (s1, s2) input)
to samples in the validation dataset:

g = − M
max
i=1

cos (h, h
(val)
i ).

C.4 RCA Implementation Details

To instantiate a measurement of RCA* scores. We use the RoBERTa model described in Section 4.2
as our classifier. To measure the distribution shift from a source distribution Ds to a target distribution
Dt. We use a training set of Ds, a test set of Ds, and a development set of Dt. All the measurements
of RCA* scores in this paper fix the size of the development to be 1000, and use the test set of Ds to
be the entire test set of the original dataset.
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Figure 9: Distribution of RCA* for randomly held-out in-distribution samples

To calibrate the RCA* scores, we measure the distribution shift of one dataset to itself. We first train
a binary classifier RoBERTa M1 (of paraphrases and non-paraphrase) with the training set of Ds for
3 epoches with an Adam Optimizer of learning rate 2e-5 (training with multiple runs with different
random seeds to select the best model on a development set of Ds, different from the development set
of Dt). Then we apply M1 to the development set of Dt to relabel those data. We take the relabeled
data to retrain a classifier M2 and apply M2 to the test set of Ds. We measure the performance drop
from M1 to M2 on the test set of Ds as the RCA score. Note here that we make small changes to the
originally proposed RCA score where the performances are measured in terms of ACC scores. We
found that AUROC scores are in practice more stable for measuring RCA scores, so we use AUROC
scores instead. To get the final RCA* score, we use the equation:

RCA ∗ (Ds,Dt) = RCA(Ds,Dt)−RCA(Ds,Ds),
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where RCA ∗ (Ds,Dt) is the RCA* score from Ds to Dt, while RCA(Ds,Dt) is the RCA score
from Ds to Dt. Under this definition, the RCA* score of one dataset to itself is defined to be 0. To
repeat the measurements of distribution shift from Ds to itself, at each time, we hold-back 1000
random pairs from Ds, and measure the RCA. We include plots of the distribution of the RCA* in
Fig. 9 as well as the corresponding raw RCA* data below:

PIT: 4.4, 0.65, 1.9, 0.91, 5.1, 4.0, 1.1, 0.63, -0.1, -0.43, 2.9, 0.6, -1.7, 0.83, -0.27, 7.8, 1.7, 3.8, 0.78,
-1.2, 2.1, 1.1, -1.3, -1.2, 1.3, -1.2, 0.032, 3.0, -2.0, -1.8, -1.2, 1.8, -2.4, 6.2, -0.47, 0.26, -0.88, -1.1, 4.2,
3.4, 3.3, 0.22, -0.25, 0.065, 2.6, 0.15, -0.93, 0.27, -0.49, -1.5, -0.79, 0.38, 2.3, 0.83, -1.4, 0.81, -0.63,
-1.6, 0.97, -1.6, 0.82, 1.1, 1.9, 2.3, 0.23, -1.1, 0.72, -0.87, 1.7, 0.04, -0.38, 0.23, 1.7, -1.2, 0.1, 1.4,
-0.15, 1.2, -2.6, -1.4, 0.75, 2.3, -1.2, -0.68, 5.6, -0.13, -1.1, 0.16, -0.39, 0.097, -1.9, -1.1, -0.26, -1.3,
-1.3, -0.8, 0.3, 0.73, -1.9, -0.51

QQP: -0.27, 0.72, -2.3, 1.3, -2.5, 1.1, -1.1, -1.4, 2.0, -2.1, -0.77, -0.63, 0.045, -0.97, -2.1, 0.11, 1.3,
-0.25, -1.1, 0.39, 0.65, 1.2, 0.87, 1.5, 0.058, 3.5, -0.039, 1.6, -1.2, 2.5, 0.64, -0.48, 2.5, -1.8, -0.52,
-2.1, -0.22, -1.4, 0.97, 3.0, -2.9, -0.92, -0.42, 0.72, 1.8, -1.3, 0.63, -2.0, 0.4, -1.2, -0.65, -2.0, 0.7, 0.95,
-1.3, -2.1, 1.2, -1.0, 2.5, -0.32, -1.8, -0.59, -0.016, -1.4, -1.3, 2.5, 1.4, -2.2, -1.2, 0.98, 0.93, 0.98, -2.1,
-1.1, -1.8, -0.43, -0.42, 7.3, -0.75, -1.5, -0.87, -2.4, -0.61, 0.084, -1.7, -0.16, -2.4, -2.0, -1.6, -2.9, -1.7,
-2.3, -1.9, -2.3, -1.7, -3.1, -1.6, 0.2, -1.7, -2.9

PAWS: -3.0, -0.0092, -0.46, -5.6, -1.7, 2.7, 0.5, 2.4, 3.6, 0.034, -4.1, -3.2, 3.6, 8.2, 0.71, -0.079, 2.9,
5.4, 1.7, -5.2, 3.2, 2.8, -3.0, 2.0, -2.2, -1.7, -0.2, 4.1, -0.22, 3.9, 1.1e+01, 1e+01, 1.2, 0.0074, -0.91,
-2.2, 3.9, -2.9, -2.7, -2.8, -4.2, -4.1, -1.0, -3.1, 2.6, -0.83, 0.74, 1.7, 0.56, 2.2, 0.87, -0.5, 0.83, -5.5, 0.4,
-3.0, 1.1, -3.1, 0.92, -1.6, 4.1, -3.1, -0.99, 0.79, -0.15, -1.3, 5.2, 0.18, -5.7, 3.4, 2.9, 3.2, -4.0, -2.4, -4.9,
-0.51, -1.8, -2.7, -3.7, 6.6, 0.65, 2.5, 1.5, -2.3, 3.1, 1.9, 1.2, -2.1, 1.7, 0.95, 2.1, -2.7, 5.9, -4.0, 1.8,
-1.8, -0.2, 4.6, -1.3, -1.0
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