
Integrating Graph Neural Networks and Many-Body
Expansion Theory for Potential Energy Surfaces

Siqi Chen1,∗ Zhiqiang Wang1,2,∗ Xianqi Deng1,3,∗ Yili Shen1,4,∗ Cheng-Wei Ju1,5

Jun Yi1,6 Lin Xiong1 Guo Ling1 Dieaa Alhmoud1 Hui Guan1,† Zhou Lin1,†
1University of Massachusetts Amherst 2Florida Atlantic University 3University at Albany

4University of Notre Dame 5The University of Chicago 6Wake Forest University
∗These authors contribute equally to this study.

†Corresponding authors: {huiguan,zhoulin}@umass.edu

Abstract

Rational design of next-generation functional materials relied on quantitative pre-
dictions of their electronic structures beyond single building blocks. First-principles
quantum mechanical (QM) modeling became infeasible as the size of a material
grew beyond hundreds of atoms. In this study, we developed a new computational
tool integrating fragment-based graph neural networks (FBGNN) into the fragment-
based many-body expansion (MBE) theory, referred to as FBGNN-MBE, and
demonstrated its capacity to reproduce full-dimensional potential energy surfaces
(FD-PES) for hierarchic chemical systems with manageable accuracy, complexity,
and interpretability. In particular, we divided the entire system into basic building
blocks (fragments), evaluated their single-fragment energies using a first-principles
QM model and attacked many-fragment interactions using the structure–property
relationships trained by FBGNNs. Our development of FBGNN-MBE demon-
strated the potential of a new framework integrating deep learning models into
fragment-based QM methods, and marked a significant step towards computation-
ally aided design of large functional materials.

1 Introduction

Discovery of complex materials that exhibited exceptional quantum mechanical (QM) properties and
function beyond single monomers and equilibrium structures, such as metal–organic frameworks
(MOF) [1], organic semiconductors (OSC) [2], and branched deoxyribonucleic acids (DNA) [3],
was crucial in emergent scientific and technological areas, such as carbon neutrality [4], renewable
energy [5], and next-generation optoelectronics [6]. Computational chemistry eliminated expensive
trial-and-error experiments and explored the vast chemical space. In the present study, we aimed to
accomplish a computational design for these complex materials based on their aggregate and dynamic
QM properties, which required a rapid and rigorous evaluation of their full-dimensional potential
energy surfaces (FD-PES) on the fly. This job cannot be done by first-principles QM models like
second-order Møller–Plesset perturbation theory (MP2) [7] or density functional theory (DFT) [8, 9]
due to the prohibitive costs for large systems because their computational complexity scaled as the
fifth and third power of the number of basis functions [10, 11].

Motivated by this problem, many fragment-based “divide-and-conquer” methods were developed
to accelerate typical QM approaches while maintaining the accuracy [12, 13]. Among all these
theories, many-body expansion (MBE) stood out due to its straightforward implementation and rapid
convergence for many-body interactions [14–16]. MBE partitioned a complex system into manageable
fragments (bodies) and expanded the total electronic energy or other relevant properties into a series
of one-body (1B) and many-body (nB) terms with progressively diminishing contributions. This
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hierarchical treatment not only streamlined a calculation with a reduced computational complexity but
also enabled a deeper analysis of the electronic structure landscape and the intricate many-fragment
interactions, both of which were critical properties for computational material discovery.

The Herbert group and the Xantheas group made prominent and complementary contributions in
recent methodology of MBE for both static and dynamic behaviors of condensed-phase systems.
Herbert and coworkers developed the generalized many-body expansion (GMBE) framework to
handle systems with ill-defined or overlapping fragments like fluoride-water complexes. They
also introduced energy-screened MBE with enhanced efficiency and intact accuracy by selectively
including only sizable many-body contributions in the total electronic energy [15, 17–25]. Xantheas
and coworkers leveraged MBE for potential energy surfaces (PES) and demonstrated that MBE can
provide a more quantitative understanding of molecular properties than simpler pairwise-additive
models. They further incorporated MBE into molecular dynamics (MD) simulations to involve subtle
QM phenomena for electrons and nuclei [16, 26–36]. Despite these advances, applying QM-based
MBE to functional materials with more sophisticated structures and more intense interactions than
water clusters remains a challenge due to the large numbers of n-fragment interactions for high n’s.

The integration of neural networks (NNs) offered a revolutionary approach to accelerate QM methods
like MBE [37–39]. In particular, Parkhill and coworkers merged NN into MBE (NN-MBE) and
demonstrated its strong predictive power for the FD-PES of methanol (CH3OH) clusters with mean
absolute errors (MAEs) of 9.79 and 12.55 kcal/mol for two-body (2B) and three-body (3B) energies
compared to MP2 but a reduced computational cost by six orders of magnitude [40]. However,
intrinsic problems of traditional NNs in terms of the missing physical information [37, 41], the
limited transferability and interpretability [42, 43], and inability to handle graph-structured data [44,
45] compromised their capacity in QM modeling [46, 47].

Instead, the development of graph neural networks (GNNs) experienced exceptional success in chem-
ical systems because their node–edge structures naturally aligned with three-dimensional atom–bond
structures and encoded mechanical information about chemical bonds and intermolecular interactions
[44, 45, 48–50]. Outstanding examples included SchNet [51], GeoMol [52], FP-GNN (fingerprints-
GNN) [53], and dyMEAN (dynamic multi-channel equivariant graph network) [54] which incorpo-
rated complex geometric information in the graph representation, PhysNet [55], DimeNet/DimeNet++
(directional message passing NN) [56, 57], E(n) EGNN (equivariant GNN) [58], SEGNN (steerable
E(3) equivariant GNN) [59], and ViSNet (vector-scalar interactive GNN) [60] which integrated
directional message passing framework and physical principles, and ml-QM-GNN (QM-augmented
GNN) [61], MD-GNN (mechanism-data-driven graph neural network) [62], MP-GNN (multiphysical
GNN) [63], and SS-GNN (simple-structured graph neural network) [64] which implemented quan-
titative mechanical and electronic properties. Most of these GNN models demonstrated enhanced
performance in molecular representation learning but they treated all atoms on equal footing without
considering the chemical hierarchy, which impacted their descriptive and predictive capacity for
complex systems with many building blocks.

State-of-the-art GNN models with subgraph of fragment-based frameworks, such as SubGNN (sub-
graph NN) [65], FragGraph [66], subGE (subgraph embedding) [67], MXMNet (multiplex molecular
GNN) [68], and PAMNet (physics aware multiplex GNN) [69], all represented building blocks like
molecules or monomers into subgraphs or local graphs, and captured interatomic, intermolecular and
interfragment interactions using local and global message-passing architectures. Such an analogy
between hierarchic graph structures and hierarchic chemical systems rendered these models outstand-
ing methods for studying complex systems. In particular, MXMNet and PAMNet developed by Xie
and coworkers significantly advanced the representation learning of hierarchic systems by integrating
molecular mechanics and multiplex graph representations and proved successful in reproducing
the molecular properties from the QM9 data set [70], the protein–ligand binding affinities from the
PDBBind data set [71], and the three-dimensional (3D) structures of ribonucleic acids (RNA) [72].

In the present study, we developed a novel computational model named FBGNN-MBE (fragment-
based graph neural network driven many-body expansion) to address all problems mentioned above.
Our ultimate goal was to accomplish a rapid, precise, transferable, and interpretable scheme to
evaluate FD-PES for any functional materials with many building blocks and important dynamic
properties. Our major contributions include:

• We established FBGNN-MBE to integrate the divide-and-conquer strategy of the MBE
formalism with the sophisticated modeling capacity of FBGNN.
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• We attacked the total ground state electronic energy using MBE and expected an extension
to excited state energies and other properties.

• We evaluated 1B energies using MP2 or DFT and generated 2B and 3B energies based on 3D
atomistic geometries and structure–property relationships trained by MXMNet or PAMNet.

• We provided a proof-of-concept for FBGNN-MBE using three benchmark systems with
weak to moderate many-fragment interactions.

• We arrived at chemical accuracy (< 0.3 kcal/mol) for 2B and 3B energies across all systems
and outperformed other MBE models using conventional GNNs.

• We interpreted the outstanding performance of FBGNN-MBE through the natures and
strengths of many-fragment interactions in benchmark systems.

• We designed application systems to evaluate FBGNN-MBE in reproducing experimental
measurable properties based on FD-PES.

• We confirmed the potential of FBGNN-MBE as a revolutionary protocol for computational
material discovery.

2 Methods

2.1 Many-Body Expansion Theory

MBE decomposed any aggregate property, such as the total ground state energy (E), into contributions
from individual fragments (1B) and many-fragment (nB) interactions. Truncated at a vanishing
high-order term, MBE facilitated an efficient approximation of the property in question. Beyond
reducing the computational cost, MBE also enabled the capture of the natures and strengths of
many-fragment interactions in a chemical system. The generic MBE theory partitioned a system into
N fragments and expands E until the a higher order tuncation (3 here) [16]:

E =

N∑
i

E1B
i +

N∑
i<j

E2B
ij +

N∑
i<j<k

E3B
ijk (1)

E1B
i represented a 1B energy for the isolated ith fragment. E2B

ij represented a 2B energy, capturing
the interactions between the ith and jth fragments. E3B

ijk represented a 3B energy, providing more
complicated interactions among the ith, jth, and kth fragments. As such

E1B
i = Ei (2)

E2B
ij = Eij − E1B

i − E1B
j (3)

E3B
ijk = Eijk − E2B

ij − E2B
ik − E2B

jk − E1B
i − E1B

j − E1B
k (4)

Although higher-order terms captured more complex interactions, we neglected beyond 3B energies
due to vanishing contributions, tolerable errors, and exponentially-growing sizes. We discussed our
fragmentation strategies in Section A.2. In FBGNN-MBE, we utilized a hybrid strategy by calculating
1B energies using MP2 or DFT but leveraging FBGNNs for 2B and 3B energies (Figure 1).

partition

MP2 or DFT

GNN

MBE

system fragments

one-body energies approximate

total energy

1 body

2 body
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many-body energies

Figure 1: Schematic strategy of our FBGNN-MBE approach integrating FBGNNs into the MBE
theory, using a water cluster as an illustrative example.

2.2 Fragment-Based Graph Neural Networks

General Architecture of GNNs A GNN typically employed multiple convolution layers to trans-
form input features into node embeddings, followed by graph pooling to generate a graph representa-
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tion, which can then be used for various downstream tasks such as predicting 2B and 3B energies [44,
45, 73]. In chemical applications, the input graph was structured with features, including nodes
representing individual atoms and edges capturing pairwise interatomic interactions as functions of
atomistic structures. Each node was initialized with features that described its atomic properties,
such as atomic number, charge, electronegativity, and even orbitals, while each edge reflected an
interatomic distance or a bond length. These features iteratively updated the node embeddings by
aggregating information from neighboring nodes and effectively extract the local environment each
atom resided in.

Backbone MXMNet and PAMNet Models We employed MXMNet [68] and PAMNet [69] as
our backbone FBGNN models. Building on the general GNN framework, MXMNet and PAMNet
leveraged multiplex global–local architectures to align with hierarchic chemical systems. They
represented the entire material as the global graph (Gg) and every single building block as a local
graph (Gl, or subgraph). They also represented short-range interatomic interactions as local edges
(El) within a local graph, and long-range interfragment interactions as global edges (Eg) between
local graphs. Both models applied a two-layer multiplex graph (G = Gg,Gl). The global graph
viewed the entire system as a network of pre-defined fragments (local graphs) and many-fragment
interactions (global edges), symbolized as Gg = (Gl, Eg). Each local graph, containing a single
fragment, viewed this fragment as a network of atoms [nodes (V)] and chemical bonds (local edges),
symbolized as Gl = (V, El). The cross mapping modules and the message passing algorithms [42]
integrated all information from the global and local layers (Figure 2). This scheme allowed us to
implement the geometric information about a chemical system directly into the global and local graph
representations for downstream tasks and to seamlessly connect to the next-stage model design to
further refine and process these models.

The architecture of MXMNet included three modules (Figure 2 in burgundy boxes). The embedding
module converted the Coulomb matrix [74], which contained atomic charges and interatomic dis-
tances, into a trainable embedding vector as the initial node feature for the multiplex graph. The
multiplex molecular (MXM) module incorporated the local message passing mechanism, the global
message passing mechanism [42], and the cross layer mapping for interactively updating node embed-
dings and local graph representation, and was the foundational component in the multiplex molecular
graphs. The prediction module leveraged the final node embeddings to predict fragment-specific and
system-wide properties in question [68]. An overall heterogeneous structure like this proved superior
to conventional GNNs [75, 76]. Building upon MXMNet, PAMNet implemented an additional
fusion module to integrate different types of interactions into the final prediction while ensuring the
E(3)-invariance of the presentations (Figure 2 in orange boxes). This fusion model not only enhanced
the model accuracy and efficiency in capturing key features from geometric and electronic structures
but also simplified the process [69]. Given the complexity of the data structure, we utilized the Adam
optimizer [77]for faster convergence and higher suitability for complex systems. We provided the
pseudo-algorithms of MXMNet and PAMNet in the context of MBE in Section A.1.
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Figure 2: Schematic design of MXMNet (burgundy boxes) and PAMNet (orange boxes) for a multi-
fragment complex system [68, 69].

3 Experiments

3.1 Benchmark Systems

To provide a proof-of-concept of our MXMNet-MBE and PAMNet-MBE models and assess their
robustness, accuracy, and efficiency to reproduce 2B and 3B interactions, we established benchmark
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systems with three molecular clusters whose structures and behaviors depended on weak or moderate
interactions between building blocks, including pure water (H2O) with moderate or strong hydrogen
bonds, pure phenol (C6H5OH) with weak hydrogen bonds and van der Waals interactions, and a 1:1
water–phenol (H2O:C6H5OH) mixture showing a synergistic effect of the two interactions [78, 79].
We carved all systems from condensed phases, and designed every single water or phenol molecule
as a single fragment, and collected all possible dimers and trimers for the evaluation of 2B and 3B
energies in Equation (1). We calculated 1B energies using DFT or MP2 and predicted 2B and 3B
energies using MXMNet and PAMNet models.

3.2 Molecular Dynamics and Quantum Mechanical Calculations.

Table 1: Summary of Molecular Dynamics Details

Data Set Molecules T (K) Dimers Trimers tem (ns) teq (ns) tpr (ns)
H2O 67 370 48,643 1,053,911 0.5 0.1 2.0

C6H5OH 10 360 45,045 120,120 0.5 0.1 1.0
H2O:C6H5OH 10:10 694 190,000 228,000 0.5 0.1 0.1

To sample an ergodic and sufficient data set for each benchmark system, we included high-energy
points from its FD-PES. We employed MD simulations at the canonical ensemble (constant NV T )
using GROMACS [80] at a doubled (2×) density, and generated their initial configurations using
PACKMOL [81]. We also set temperatures close to or above the boiling point to ensure a faster
equilibration. For each simulation we performed energy minimization (tem), equilibration (teq), and
production (tpr), and collected a large number of snapshots. We summarized all the details of our
MD simulations in Table 1. From each snapshot, we collected all dimers and trimers to create a
data set with a broad representation of geometric configurations and interfragment interactions. For
each data set, we randomly split them into an 80:5:15 ratio for training, validation, and test sets. To
establish the training set and calibrate the validation and test sets, we calculated all monomer, dimer,
and trimer energies using QM methods, which were MP2 [7, 82] with the aug-cc-pVDZ basis set [83,
84] for water clusters and DFT with the ωB97X-D3 exchange–correlation functional [85] and the
6-311+G(d,p) basis set for phenol-involving clusters [86], all in Q-Chem 6.2 [87]. Following the QM
calculations, we calculateed 2B and 3B energies (E2B

ij and E3B
ijk) as outlined in Equations (3) and (4).

3.3 Inputs and Outputs

The input structure of our data sets was comprised of atom types (e.g., O, H, C), 3D atomic coordinates
to capture spatial relationships, and calculated 1B, 2B and 3B energies for all possible monomers,
dimers, and trimers. The output structure was comprised of FBGNN-predicted 2B and 3B energies
for these configurations.

3.4 Hyperparameter Tuning

Hyperparameter tuning was executed using the validation set for each benchmark system [88]. We
identified six critical hyperparameters: the number of epochs (Nepoch), the number of convolutional
layers (Nlayer), the local cutoff distance (Dlc), the global cutoff distance (Dgc), the batch size (Nbatch),
and the learning rate (klearn), because they demonstrated significant impact on GNN performance in
molecular modeling [89]. During this process we evaluated the model performance after each epoch
by monitoring the validation loss and employed an early stopping mechanism to prevent overfitting.

4 Results and Discussions

To confirm the potential of FBGNN-MBE models in reproducing FD-PES for functional materials, we
exhibited their state-of-the-art performance in predicting 2B and 3B energies for all three benchmark
systems. In Figures 3 and 4, we compared 2B and 3B energies evaluated using MP2 or DFT with
their counterparts predicted by MXMNet-MBE and PAMNet-MBE. We also summarized their values
of R-squared coefficient (R2), mean signed errors (MSE), MAE, and average CPU/GPU times for
first-principles (FP) and GNN treatments in Table 2, with their definitions in the Section A.4.
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Table 2: Comparative Performance of MXMNet-MBE and PAMNet-MBE Models

Model Dataset R2 ⟨EFP⟩ MSE MAE ⟨tFP⟩ ⟨tGNN⟩
kcal/mol s

MXMNet

H2O 2B 0.9400 +0.2550 +0.0015 0.2604 1.29 0.09
H2O 3B 0.9998 −0.0008 +0.0005 0.0121 2.97 0.08

C6H5OH 2B 0.9955 +1.1199 −0.0002 0.1483 147.51 8.83
C6H5OH 3B 0.8704 +0.0010 +0.0007 0.0522 428.17 3.94

H2O:C6H5OH 2B 0.9980 +0.8180 −0.0023 0.0684 69.77 4.67
H2O:C6H5OH 3B 0.8421 −0.0088 0.0000 0.0355 198.77 3.98

PAMNet

H2O 2B 0.9230 +0.2550 +0.0021 0.2766 1.29 0.11
H2O 3B 0.9999 −0.0008 +0.0015 0.0109 2.97 0.07

C6H5OH 2B 0.9963 +1.1199 −0.0075 0.1348 147.51 8.88
C6H5OH 3B 0.8772 +0.0010 +0.0007 0.0526 428.17 3.35

H2O:C6H5OH 2B 0.9982 +0.8180 −0.0024 0.0654 69.77 4.68
H2O:C6H5OH 3B 0.8515 −0.0088 +0.0001 0.0353 198.77 3.76

Figure 3: Comparison between MXMNet-predicted and MP2/DFT-evaluated 2B and 3B energies for
all three benchmark systems.

4.1 Overall Performance Assessment

We herein analyzed the overall performance of MXMNet-MBE and PAMNet-MBE to provide a
proof-of-concept for these two models using benchmark systems. In the tasks of predicting 2B
and 3B energies, both MXMNet-MBE and PAMNet-MBE demonstrated extremely high accuracy
and efficiency, with only subtle differences between each other. For 2B energies, they achieved
R2 > 0.92, |MSE| < 0.003 kcal/mol, and MAE < 0.28 kcal/mol for pure water, and R2 > 0.99,
|MSE| < 0.008 kcal/mol, and MAE < 0.15 kcal/mol for pure phenol and water–phenol mixture.
Regarding 3B energies, they arrived at the best performance of R2 > 0.999, |MSE| < 0.002 kcal/mol,
and MAE < 0.013 kcal/mol for pure water, and R2 > 0.84, |MSE| < 0.001 kcal/mol, and MAE
< 0.06 kcal/mol for pure phenol and water–phenol mixture. The values of MSEs were universally
negligible compared to the typical error bars of MP2 [90] and DFT [91], indicating the absence
of systematic errors or biases in FBGNN-MBE. Similarly, all MAEs fell significantly below the
threshold of chemical accuracy of 1 kcal/mol. Along with large values of R2 they implied the
potential of well-trained FBGNN models to replace MP2 or DFT in generating lower order terms
in MBE with minimal deviations from the actual values. Additionally, the significant reductions in
computational costs by more than 91.5% or higher confirmed that FBGNN-MBE can accelerate the
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Figure 4: Comparison between PAMNet-predicted and MP2/DFT-evaluated 2B and 3B energies for
all three benchmark systems.

fragment-based calculations by two to four orders of magnitude. This was because the computational
complexity was decreased from N5M5 for MP2 and N3M5 for MP2-MBE to NM5 for MP2-based
FBGNN-MBE, or N3M3 for DFT and DFT-MBE to NM3 for DFT-based FBGNN-MBE, for a
system containing N fragments with M basis functions each fragment.

4.2 Comparison between MXMNet-MBE and PAMNet-MBE

We herein proved the marginally stronger performance of PAMNet-MBE compared to MXMNet-
MBE due to the inclusion of the fusion module. Behaviors of MXMNet-MBE and PAMNet-MBE
were similar, with PAMNet-MBE slightly outperforming MXMNet-MBE in accuracy and slightly
underperforming in efficiency for 2B energies. For example, for pure phenol, MXMNet-MBE attained
impressive R2 = 0.9955 and MAE = 0.1483 kcal/mol and reduced the time cost by 99.92%, while
PAMNet-MBE achieved R2 = 0.9963 and MAE = 0.1348 kcal/mol and reduced the time cost by
99.88%. This result indicated that the implementation of the fusion module in PAMNet enhanced
the capacity to capture moderate two-fragment interactions but introduced a minor increase in the
computational cost. Regarding the larger and more sophisticated 3B energy data sets, PAMNet-MBE
showed a higher efficiency in addition to a higher accuracy. From these observations we concluded
that PAMNet was the preferred choice as a FBGNN for our current and future FBGNN-MBE tasks.

4.3 Comparison across Data Sets

We herein discussed the relationship between the natures and strengths of 2B and 3B interactions in a
system and the behaviors of PAMNet-MBE and MXMNet-MBE. A comparison across different data
sets reflected the character of these benchmark systems in addition to the accuracy of the FBGNN-
MBE models. For example, all MAEs of 2B energies were significantly higher than 3B counterparts,
because the magnitudes of 2B energies were usually greater than 3B energies. For a similar reason,
due to the stronger hydrogen bonds in pure water (a few kcal/mol), its MAEs associated with 2B
energies were also considerably higher than pure phenol and water–phenol mixture which were
dominated by weaker van der Waals interactions. Moreover, for pure water both MXMNet-MBE
and PAMNet-MBE exhibited a stronger performance in 3B energies than 2B energies, which was
intriguing and counterintuitive but can be attributed to several factors. (a) Water trimers encompassed
broader ranges of geometries and QM effects and a larger data set and offered more informative data
for model training, while dimers were usually oversimplified by missing some critical interactions. (b)
3B terms from the 2×-density clusters incorporated both attractive (negative) and repulsive (positive)
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effects, while the repulsion dominated in dimers, which were captured by the models. (c) Long-range
interactions and polarizations prevailed in 3B interactions, which aligned with the model strength.

4.4 Comparison with Conventional GNN Models

We herein demonstrated the state-of-the-art accuracy of FBGNN-MBE. We conducted a comparative
analysis against MBE approaches built upon several established GNN architectures at the frontier of
computational chemistry and molecular representation learning, including SchNet [51], DimeNet [56]
DimeNet++ [57], and ViSNet [60]. Using 2B and 3B energies of pure water clusters, we compared
their accuracy in terms of the values of R2 and MAEs (Table 3). For 2B energies, MXMNet-MBE
and PAMNet-MBE achieved the highest R2 values of 0.9400 and 0.9230, respectively, and the lowest
MAEs of 0.2604 and 0.2766 kcal/mol, respectively. These results substantially outperformed any
other model, which all showed R2 < 0.67 (without obvious trends) and MAE > 0.86 kcal/mol
(more than three times as much). The performance gap was equally pronounced for the 3B energies,
where MXMNet-MBE and PAMNet-MBE achieved nearly-perfect R2 values of 0.9998 and 0.9999,
respectively, with remarkably low MAE values of 0.0121 and 0.0109 kcal/mol, respectively. While
other models like DimeNet++-MBE also performed well on 3B energies (R2 = 0.9986, MAE
= 0.0214 kcal/mol), MXMNet-MBE and PAMNet-MBE still maintained a clear edge in accuracy.
These results underlined the enhanced predictive accuracy of FBGNN-MBE models for both 2B and
3B interactions in water clusters characterized by moderate-strength hydrogen bonds, due to the the
efficacy of FBGNNs in capturing the complexities of both attractive and repulsive interactions.

Table 3: Comparative Performance of FBGNN-MBE with Other GNN-MBE Models.

Data Set H2O 2B H2O 3B
GNN Model R2 MAE (kcal/mol) R2 MAE (kcal/mol)

MXMNet 0.9400 0.2604 0.9998 0.0121
PAMNet 0.9230 0.2766 0.9999 0.0109
SchNet 0.6491 0.8756 0.9783 0.0957

DimeNet 0.6638 0.8796 0.9958 0.0240
DimeNet++ 0.6545 0.8698 0.9986 0.0214

ViSNet 0.6532 0.8752

4.5 Deeper Performance Analysis

We herein conducted a deeper analysis to understand the impact of the molecular density on the
character of the electronic structures. We reported the average 2B and 3B energies from MP2 or
DFT calculations as ⟨EFP⟩ in Table 2. Across all benchmark systems, the values of ⟨EFP⟩ for the 2B
energies were always sizable positive values, while those for the 3B energies were either positive or
negative but still negligible considering the error bars of MP2 and DFT. The behaviors of 2B energies
were counterintuitive at first sight because we had expected attractive hydrogen bonds and van der
Waals interactions, but can actually be attributed to the 2× densities of these sampled clusters. We
employed such 2× densities because we wanted to ensure an inclusion of high energy configurations
in the samples to treat the increased complexity, amplify the importance of hydrogen bonds, and
promote the precise reproduction of 2B/3B interactions. However, this treatment also altered the
physics of the interacting clusters. For example, by increasing the density and pressure, low-density
water (LDW) transitions into high-density water (HDW) through the disruption of hydrogen bonds
between the first and second coordination shells, resulting in significant structural shifts and more
linear hydrogen bonding configurations [92]. At the same time, HDW illustrated a stronger (Pauli)
repulsion between closely packed molecules to counteract the attractive hydrogen bonds. Both factors
introduced sizable positive contributions for the 2B energies [93, 94]. The behaviors of 3B energies,
though smaller in magnitude, were not significantly impacted by the high density and still reflected a
complex interplay of cooperative and anti-cooperative effects [95, 96].

4.6 Sensitivity Analysis

We herein understood and optimized the model reliability of FBGNN-MBE in complex tasks like
predicting 2B and 3B energies [97] to guide future design and improvement. We analyzed the
sensitivity of FBGNN-MBE approaches over varying hyperparameters. We used R2 coefficients and
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MAEs of 2B and 3B energies as evaluation metrics. We presented detailed discussions about these
hyperparameters in Section A.3, and summarized optimized values in Table 4.

Table 4: Summary of Optimized Hyperparameters

Model Data set Nepoch Nlayer Dgc (Å) Dlc (Å) Nbatch klearn

MXMNet

H2O 2B 104 4 5.0 1.7 64 0.0001
H2O 3B 43 4 5.0 1.7 64 0.0001

C6H5OH 2B 154 4 15.0 3.0 64 0.0001
C6H5OH 3B 435 6 15.0 5.0 64 0.0001

H2O:C6H5OH 2B 494 4 10.0 5.0 64 0.0001
H2O:C6H5OH 3B 240 4 15.0 3.0 64 0.0001

PAMNet

H2O 2B 207 2 5.0 1.7 64 0.0001
H2O 3B 66 6 5.0 1.7 64 0.0001

C6H5OH 2B 256 4 15.0 3.0 64 0.0001
C6H5OH 3B 54 3 15.0 5.0 64 0.0001

H2O:C6H5OH 2B 464 4 15.0 3.0 64 0.0001
H2O:C6H5OH 3B 78 4 15.0 4.0 64 0.0001

5 Conclusions and Future Directions

We presented FBGNN-MBE, a novel computational framework that hybridized FBGNNs with
the MBE theory and exhibited enhanced robustness, accuracy, transferability, and interpretability
from conventional NN- and GNN-accelerated QM models. Our method addressed the prohibitive
computational costs of pure QM or QM-MBE methods in modeling aggregate and dynamic properties
of large functional materials. In contrast to existing QM-MBE, we only evaluated 1B energies from
first principles but generated nB (n ≥ 2) energies based on structure–energy relationships trained
by FBGNN. Instead of conventional GNN models, we implemented fragment-based MXMNet and
PAMNet formalisms as backbone GNN approaches for a more intuitive alignment between model
architecture and chemical hierarchy. Benchmarked on three clusters with different natures and
strengths of intermolecular interactions, including pure water, pure phenol, and 1:1 water–phenol
mixture, we revealed that well-trained FBGNN-MBE reached state-of-the-art chemical agreement
with traditional QM-MBE models, with MAEs < 0.3 kcal/mol for 2B energies and < 0.02 kcal/mol
for 3B energies, but reduced the computational cost by two to four orders of magnitude.

While our FBGNN-MBE framework was promising in both efficiency and accuracy, it exhibited
at least two limitations that required our attentions in future developments. First, our training sets
were created using 2× molecular densities, which allowed us to sample high-energy configurations
and enhance ergodicity and diversity of the data set, but also introduced biases towards repulsive 2B
interactions [98]. Second, the present study focused on molecular aggregates with weak to moderate
many-fragment interactions and the current fragmentation strategy did not cleave chemical bonds,
so that the model transferability remained elusive. Finally, the present study did not implement
the predictions for potential energy gradients (forces) or excited state energies. Looking ahead, we
will apply FBGNN-MBE in the place of QM and QM-MBE in producing aggregate and dynamic
properties that require on-the-fly evaluations of a FD-PES, such as Monte Carlo (MC) and MD
simulations, and will extend the present framework beyond ground state electronic energies, such as
optical band gaps and vibrational frequencies. We will enhance the model transferability to various
chemical systems by implementing transfer learning [99]. We will improve the model capacity in
physical interpretation by implementing the energy decomposition analysis (EDA) [100] so that
we can quantitatively fraction the nB energies into different attractive and repulsive terms, such as
electrostatics, Pauli repulsion, exchange–correlation, and dispersion. These applications will enhance
the model potentials in the rational design of next-generation functional materials.
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A Appendix

A.1 Source Codes and Results

Online Repository We uploaded all source codes and data sets associated with our FBGNN-MBE
models, along with their results to the online repositories on Google Drive https://drive.google.
com/drive/u/1/folders/1ZY1EUURG4hD80MgXuxkp7Q0-aaZZ4MtI and on GitHub https://
github.com/Lin-Group-at-UMass/FBGNN-MBE.

Pseudo-Algorithms To make sure the readers can reproduce our MXMNet-MBE and PAMNet-
MBE models, we provided their protocols as the following pseudo-algorithms.

Algorithm 1: MXMNet-MBE
Input: Molecule data, including atom types, geometries (3D coordinates), and energies (1B, 2B,

3B) derived from MBE
Output: Predicted 2B and 3B energies
Step 1: Initialize embeddings and compute geometric features
h ⇒ initialize_node_embeddings(x)
(edge_indexg, distg) ⇒ radius(pos, cutoffg)
(edge_indexl, distl) ⇒ remove_self_loops(edge_index)
idx_angles ⇒ compute_angle_indices(edge_indexl)
Step 2: Encode geometric information
rbfg ⇒ BesselBasis(distg)
rbfl ⇒ BesselBasis(distl)
angle1 ⇒ compute_angles(pos, idx_angles.two_hop)
angle2 ⇒ compute_angles(pos, idx_angles.one_hop)
sbf1 ⇒ SphericalBasis(distl, angle1)
sbf2 ⇒ SphericalBasis(distl, angle2)
Step 3: Message passing layers
node_sum ⇒ 0
for l ⇒ 1 to n_layers do

Global message passing
h ⇒ GlobalMP(h, rbfg, edge_indexg)
Local message passing
(h, t) ⇒ LocalMP(h, rbfl, sbf1, sbf2, idx_angles)
node_sum ⇒ node_sum + t

end
Step 4: Global pooling and prediction output ⇒ global_add_pool(node_sum, batch)
return output
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Algorithm 2: PAMNet-MBE
Input: Molecule data, including atom types, geometries (3D coordinates), and energies (1B, 2B,

3B) derived from MBE
Output: Predicted 2B and 3B energies
Step 1: Initialize embeddings and compute geometric features
h ⇒ initialize_node_embeddings(x)
(edge_indexg, distg) ⇒ radius(pos, cutoffg)
(edge_indexl, distl) ⇒ remove_self_loops(edge_index)
idx_angles ⇒ compute_angle_indices(edge_indexl)
Step 2: Encode geometric information
rbfg ⇒ BesselBasis(distg)
rbfl ⇒ BesselBasis(distl)
angle1 ⇒ compute_angles(pos, idx_angles.two_hop)
angle2 ⇒ compute_angles(pos, idx_angles.one_hop)
sbf1 ⇒ SphericalBasis(distl, angle1)
sbf2 ⇒ SphericalBasis(distl, angle2)
Step 3: Message passing with attention
out_global ⇒ [], out_local ⇒ []
att_global ⇒ [], att_local ⇒ []
for l ⇒ 1 to n_layers do

Global message passing
(h, outg, attg) ⇒ GlobalMP(h, rbfg, edge_indexg)

Append outg to out_global
Append attg to att_global
Local message passing
(h, outl, attl) ⇒ LocalMP(h, rbfl, sbf2, sbf1, idx_angles)
Append outl to out_local
Append attl to att_local

end
Step 4: Feature fusion with attention
att_scores ⇒ concat(att_global, att_local)
att_weights ⇒ softmax(LeakyReLU(att_scores))
out ⇒ concat(out_global, out_local)
out ⇒ (out · att_weights).sum()
Step 5: Final pooling and prediction
output ⇒ global_pool(out, batch)
return output

A.2 Fragmentation Strategies

At the current development stage of FBGNN-MBE, the fragmentation strategy was determined
case-by-case and depended on the chemical properties the systems in question. We currently focused
on the total ground state energy of a system and will investigate the excited state energy soon. We
have so far implemented a “top-down” fragmentation strategy with two principles: (1) We maintain
the smallest functionally meaningful unit. (2) We break only single bonds or non-bonding interactions
[102].

In the present proof-of-concept work we studied water aggregates, phenol aggregates, and water–
phenol mixtures. In these systems every single molecule was a natural fragment and an intermolecular
interaction like hydrogen bond and van der Waals force plays an essential role in n-body energies
(n ≥ 2). For our future studies about organic polymers, we have tentatively planned to extend the
fragmentation strategy by treating each monomer as a fragment, cleaving the carbon–carbon (C C)
bonds, and considering each solvent molecule as a fragment too (if any). We will try our best not to
break any complete functional groups like phenyl ( C6H5) and carboxylic acid ( COOH) or known
unit like an amino acid and a DNA base.

For a new system, we will run a low-level first-principles MBE2 calculation where the total energy is
truncated at the two-fragment interactions to make sure the fragmentation does not introduce huge
estimated error to damage the chemistry. In this way the system will maintain the smallest functional
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or repeating unit such as a full π-conjugation, and our model can capture short-range and long-range
interactions to simulate the real chemical systems, such as covalent bonds, ionic bonds, hydrogen
bonds, London dispersions, dipole–dipole interactions, π–π stacking, and solvation effects.

If a system does not exhibit natural or obvious fragments, such as polyacetylene and polytethlyene, we
will consider an alternative “bottom-up” strategy, where we will construct fragments from individual
atoms, functional groups, or monomers until some convergence is reached using a low-level first-
principles MBE2 calculation. In this way we will allow fragments to grow around each unit and
accommodate underlying effects from local electronic environment and molecular conformations.

We foresaw great room for us to explore and validate our fragmentation strategies and enhance our
model versatility and accuracy. However, due to the time constraints, we were unfortunately not able
to perform a systematic discussion in the present study. We did validate our top-down fragmentation
strategy using a series of water clusters (H2O)n (n = 7, 10, 13, 16, and 21) by showing first-principles
MP2-MBE2 and MP2-MBE3 results in Table 5 in Section A.5. When we treated each water molecule
as a single fragment, we reached an average of 3.00% and 0.39% relative errors for these water
clusters using MP2-MBE2 and MP2-MBE3, confirming a favorable choice of fragmentation strategy.

A.3 Sensitivity Analysis

Number of Layers Nlayer had a significant impact on the capacity of a GNN model in capturing
chemical features [103] and its optimal value was data set-dependent. Our analysis found that
increasing Nlayer from 2 to 4 improved the values of R2 and MAE for MXMNet-MBE and PAMNet-
MBE, indicating a better fit to the training data. However, setting Nlayer = 6 usually led to marginally
diminishing returns with a slight decrease in R2 and a slight increase in MAE, suggesting possible
overfittings (Figure 5. This result supported recent findings that while a deeper GNN architecture can
enhance model performance it did not always yield better generalization particularly in molecular
property prediction tasks due to overfittings [104].

Figure 5: Effects of Nlayer values on MXMNet-trained and PAMNet-trained values of R2 and MAE
for all benchmark systems.

Local and Global Cut-Off Distances Dlc and Dgc controled the range of interatomic, inter-
molecular, and interfragment interactions considered by our FBGNN-MBE. They were sensitive
to the character of the system in question and were also crucial to the model performance. For
pure water clusters, Dlc = 1.7 Å and Dgc = 5.0 Å provided optimal results for 3B interactions.
These values confirmed that the short-range oxygen–hydrogen bond (O H, length 0.96Å [105])
and hydrogen bonds (O H· · ·O, length 2.5 to 4.0 Å [106, 107]) dominate the water clusters. For
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example, MXMNet-MBE reached R2 = 0.9400 and MAE = 0.2604 kcal/mol. For pure phenol
clusters, these two values became 3 to 5 Å and 15 Å to effectively capture the long-range van der
Waals interactions. For water-phenol mixtures, intermediate cutoff values balanced the short-range
and long-range interactions. This result suggested that for a system with medium interfragment
interactions like hydrogen bonds, capturing moderate-range interactions provided the best balance
between incorporating essential chemical information that can be missed by a smaller cut-off distance
and avoiding overfitting due to a larger cut-off distance [108].

Number of Batches Nbatch emerged as a key factor affecting model performance. Smaller values of
Nbatch like 64 consistently resulted in lower MAE values for both MXMNet-MBE and PAMNet-MBE.
This result suggested that smaller batches facilitate more frequent weight updates and allowed the
GNN models to fine-tune their parameters more effectively. In contrast, larger values of Nbatch
like 256 or 512 were associated with higher MAE values, likely due to less frequent updates and
convergence to suboptimal solutions [109].

Learning Rate klearn also impacted the model performance. A low value of klearn like 0.0001
consistently outperformed higher ones for both MXMNet-MBE and PAMNet-MBE. For example,
for the pure water data set, increasing klearn to 0.01 for PAMNet-MBE led to a sharp decline in
performance, with R2 dropping to as low as 0.5981 and a notable increase in MAE to up to 0.9468
kcal/mol. This result confirmed the earlier finding that selecting an appropriate klearn can ensure
stable and effective convergence during training [104].

A.4 Mathematical Definition of Evaluation Metrics

Herein we presented the definition of all evaluation metrics used in Table 2 and Figures 3 and 4. We
set MP2/DFT evaluated 2B and 3B energies as {xi} and their FBGNN–predicted counterparts as
{yi}

R-Square R2 was the coefficient of determination between MP2/DFT and FBGNN-MBE results,
defined as

R2 = 1−

∑
i

(yi − xi)
2

∑
i

(
yi −

1

N

∑
i

yi

)2 (5)

Average MP2/DFT result The average result from first-principles (FP) MP2/DFT calculations was
defined as

⟨EFP⟩ =
1

N

∑
i

xi (6)

Mean Signed Error MSE was defined as the average of the signed difference between MP2/DFT
and FBGNN-MBE results; as such

MSE =
1

N

∑
i

(yi − xi) (7)

Mean Absolute Error MAE was defined as the average of the unsigned difference between
DFT/MP2 and FBGNN-MBE results; as such

MAE =
1

N

∑
i

|yi − xi| (8)

A.5 Future Applications

Real-Life Systems The ultimate goal of our development of FBGNN-MBE formalisms is to replace
QM or QM-MBE methods when an on-the-fly evaluation of FD-PBE is needed for any complex
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many-fragment chemical systems. Therefore, it is also worthwhile to validate their capacity in the
real-life application scenarios through a systematic assessment of their accuracy, efficiency, and
reliability. In the present study in progress, we plan to evaluate the behaviors of MXMNet-MBE and
PAMNet-MBE on normal-density water clusters in reproducing three physical properties that can
also be generated using MP2 and MP2-PBE, including the total energies of water clusters [(H2O)n],
the one-dimensional (1D) projection of the FD-PES, and the trajectories of MD simulations. These
tasks require us to retrain the MXMNet-MBE and PAMNet-MBE using a mixed data set of normal
and 2× density clusters. We will select a series of sizes [(H2O)n] where the size grows from a small
isolated molecular complex (n = 7) to an actual droplet that solvates the central molecule equally to
one in the liquid phase (n = 21) [110].

In our preliminary study, we select random water complexes with n = 7, 10, 13, 16, and 21 molecules
and validate the need of performing MBE even at the MP2 level. Here MP2-MBEm represents a
MP2-based first-principles MBE truncated at the m-body terms, and MXMNet-MBEm and PAMNet-
MBEm represents FGBNN-based MBE truncated at the m-body terms as discussed in the present
study. We summarized the absolute and relative errors for MP2-MBEm (m = 1, 2, 3) using these
five random clusters (Table 5), and estimated the upper limits for absolute and relative errors for
MXMNet-MBEm and PAMNet-MBEm (m = 2, 3) by adding the errors of MP2-MBEm from Table
5 to the MAEs of FBGNN-MBE-generated 2B and/or 3B calculations accumulated from Table 2
(Table 6). We extracted the total CPU times needed for first-principles MP2 (without MBE) using
these clusters (Table 7), and estimated the total CPU/GPU times needed for MXMNet-MBEm and
PAMNet-MBEm (m = 2, 3) by adding the accumulated times needed for 1B calculations and the
FBGNN-MBE-based 2B and 3B generations.

Table 5: Error Analysis for First-Principles MP2-MBE Using Random Water Clusters

Cluster
Energy Error
MP2 MP2-MBE1 MP2-MBE2 MP2-MBE3

hartree kcal/mol % kcal/mol % kcal/mol %
(H2O)7 −533.92 63.13 0.01884 12.53 0.00374 1.36 0.00041
(H2O)10 −762.77 103.19 0.02156 22.98 0.00480 2.77 0.00058
(H2O)13 −991.61 140.18 0.02253 29.01 0.00466 3.15 0.00051
(H2O)16 −1220.45 180.09 0.02362 38.92 0.00508 4.03 0.00053
(H2O)21 −1601.86 247.90 0.02466 56.20 0.00559 10.87 0.00108

Table 6: Estimated Maximum Error Analysis for FBGNN-MBEn Using Random Water Clusters

Cluster
Estimated Maximum Error

MXMNet-MBE2 PAMNet-MBE2 MXMNet-MBE3 PAMNet-MBE3

kcal/mol % kcal/mol % kcal/mol % kcal/mol %
(H2O)7 18.00 0.00537 18.38 0.00549 8.10 0.00242 8.31 0.00248
(H2O)10 34.70 0.00725 35.43 0.00740 18.86 0.00394 19.16 0.00400
(H2O)13 49.32 0.00793 50.58 0.00813 33.84 0.00543 34.08 0.00548
(H2O)16 70.17 0.00916 72.11 0.00942 55.61 0.00726 55.53 0.00725
(H2O)21 110.88 0.01103 114.29 0.01137 113.83 0.01132 112.45 0.01119

Table 7: Time Analysis for MP2-MBEn and Estimated Time Analysis for Random Water Clusters

Cluster
MP2 MXMNet-MBE3 PAMNet-MBE3

CPU Time Estimated CPU/GPU Time
s s s

(H2O)7 1562.94 9.12 9.05
(H2O)10 18914.93 18.24 17.94
(H2O)13 128084.39 35.73 34.43
(H2O)16 51249.38 62.89 59.69
(H2O)21 121046.76 135.07 125.79

From these results, we can see that the truncation at the 1B terms for water clusters introduce huge
relative errors up to 0.025%. (This number appears small but is still too high for a chemical accuracy.)
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Inclusion of the 2B and 3B terms significantly enhance the results by reducing the relative errors to up
to 0.0056% and 0.0011%, respectively, because an intermolecular interaction, even as weak as van der
Waals force or hydrogen bond, play essential roles in chemical properties. This conclusion validates
the necessity of applying MBE theory beyond the 1B terms and suggests a truncation at 3B terms or
higher. Due to the differences between MP2-MBE and FBGNN-MBE for these water clusters, the
estimated maximum errors of FBGNN-MBE are larger than MP2-MBE but still acceptable, all below
0.011%. In addition, our FBGNN-MBE calculations can reduce the computational cost by at least
three orders of magnitude for water clusters compared to single-shot MP2 calculations for the whole
clusters. These two pieces of findings, although made based on estimated errors and computational
costs, tentatively validates the efficiency and accuracy of FBGNN-MBE methods.

Planned Comparison with Other Conventional GNN Models In the near future, we will make a
more complete assessment of the model performance of FBGNN-MBE by comparing with latest ad-
vanced fragment-based NN or GNN models designed for molecular properties, such as SE3Set [111],
MACE [112], MGSSL [113], MolGAT [114], FragGen [115], FragNet [116], GraphFP [117], Sub-
graphormer [118], and ESC-GNN [119].

Utility in Molecular Dynamics In the present set up, we approximated the first-principles FD-
PESs, or in other words, geometry-dependent electronic energies under the Born–Oppenheimer
approximation at T = 0 K, using FBGNN-MBE-generated counterparts. We can evaluate all relevant
forces as the gradients of these potential energies [98, 120]. In this way, we expected to replace a
first-principles FD-PES with a FBGNN-MBE-generated FD-PES in ab initio molecular dynamics
(AIMD). Because of this equivalent substitution, the obedience or violations to some underlying
rules for FGBNN-MBE-generated forces, such as energy conservation, will depend on the overall
set up of the AIMD simulation. If the AIMD simulation is set up at constant NV E (microcanonical
ensemble), the energy will be conserved. However, if AIMD simulation is set up at constant NV T
(canonical ensemble) or µV T (grand canonical ensemble), the temperature remains a constant
through a computational thermostat but the energy will no longer be conserved.

24


	Introduction
	Methods
	Many-Body Expansion Theory
	Fragment-Based Graph Neural Networks

	Experiments
	Benchmark Systems
	Molecular Dynamics and Quantum Mechanical Calculations.
	Inputs and Outputs
	Hyperparameter Tuning

	Results and Discussions
	Overall Performance Assessment
	Comparison between MXMNet-MBE and PAMNet-MBE
	Comparison across Data Sets
	Comparison with Conventional GNN Models
	Deeper Performance Analysis
	Sensitivity Analysis

	Conclusions and Future Directions
	Acknowledgement
	Appendix
	Source Codes and Results
	Fragmentation Strategies
	Sensitivity Analysis
	Mathematical Definition of Evaluation Metrics
	Future Applications


