
Response Letter

Paper Decision

Decision Accept (Spotlight)

RESPONSE to Decision The authors sincerely thank the Area Chair for accepting our paper and
selecting it as a Spotlight talk. It is a great honor for us who were the first time submitters to any
NeurIPS Workshops.

Comment Based on the feedback by the reviewers and the recommendation by the Area Chair,
the AI4Mat-NeurIPS-2024 Program Committee decided to accept this submission. Please prepare a
camera-ready submission taking into account the feedback from reviewers and the meta-review.

Meta Review Comment This submission proposes a novel approach that integrates fragment-based
graph neural networks (FBGNN) with many-body expansion (MBE) theory to predict potential energy
surfaces, providing a valuable contribution to computational material science. The combination
of machine learning techniques with quantum mechanical methods like DFT (Density Functional
Theory) and MP2 allows for higher-order corrections and offers computational savings, which are
especially useful for large molecular systems.

Reviewers generally praised the work for its innovative use of FBGNN to handle many-body interac-
tions and augment traditional first-principles methods. This hybrid approach could address scalability
challenges that arise when applying DFT to large-scale systems. However, reviewers noted the need
for further clarification on how fragments are chosen for first-order calculations and how the model
compares to full DFT/MP2 on more complex systems. Providing explicit wall-time comparisons
instead of percentage savings would also strengthen the case for the practical utility of the method.

Concerns about benchmarking against more advanced models, such as SE3Set and MACE, were
raised, and additional analysis on the transferability of the method to other molecular systems
was suggested. Nevertheless, the contribution is significant, and the framework holds promise for
advancing AI-guided material characterization.

RESPONSE to Comment and Metal Review Comment The authors thank the Area Chair for their
suggestions and thank all Scientific Reviewers for their comments. We prepared a camera-ready
version of the paper and submitted on 11/1/2024. In this version we tried our best to address all
review comments and have provided our response on OpenReview. Unfortunately, due to some family
emergency of the primary corresponding author and the health issue of the leading author, as well
as the narrow time window for the revision, we were not able to to fully address some comments,
especially the comparison of the model performance with all frontier GNN-based approaches and
the holistic discussion of fragmentation strategies. However, we will continue working on these
comments in the near future and update the results in our oral and poster presentations at the Workshop
in anything develops.

Reviewer qoPF

Summary The authors utilize GNN to provide higher order correction to 1-body MP2/DFT energies.
Authors utilize multi-scale hierarchical graphs to effectively model many body interactions.
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RESPONSE to Summary The authors thank the Reviewer for making this summary.

Quality The idea to use ML for higher order correction seems bit counter-intuitive at first, as
one would assume that ML would be more effective in modeling largest magnitudes of energy.
However it is a significant result if such correction can be cheaply used to augment first-principles
energies/forces. The manuscript is well written and clearly states the goals. The authors might
consider adding explanations on how do you decide on the fragments for 1st-order calculations. Also
can the authors provide a specific example on where this increased accuracy of MBE correction
would make a significant difference, as opposed to just using single fragment MP2.

RESPONSE to Quality The authors thank the Reviewer for the positive feedback and the two
suggestions.

We will address the Reviewer’s first suggestion about the fragmentation strategies here. Reviewer
aFUJ asked the same question, so we have copied our response to them as well.

At the current development stage of FBGNN-MBE, the fragmentation strategy was determined case-
by-case and depended on the chemical properties the systems in question. We currently focused on
the total ground state energy of a system and will investigate the excited state energy soon. We have
so far implemented a “top-down” fragmentation strategy with two principles: (1) We maintain the
smallest functionally meaningful unit. (2) We break only single bonds or non-bonding interactions.

In the present proof-of-concept work we studied water aggregates, phenol aggregates, and water–
phenol mixtures. In these systems every single molecule was a natural fragment and an intermolecular
interaction like hydrogen bond and van der Waals force plays an essential role in n-body energies
(n ≥ 2). For our future studies about organic polymers, we have tentatively planned to extend the
fragmentation strategy by treating each monomer as a fragment, cleaving the carbon–carbon (C C)
bonds, and considering each solvent molecule as a fragment too (if any). We will try our best not to
break any complete functional groups like phenyl ( C6H5) and carboxylic acid ( COOH) or known
unit like an amino acid and a DNA base.

For a new system, we will run a low-level first-principles MBE2 calculation where the total energy is
truncated at the two-fragment interactions to make sure the fragmentation does not introduce huge
estimated error to damage the chemistry. In this way the system will maintain the smallest functional
or repeating unit such as a full π-conjugation, and our model can capture short-range and long-range
interactions to simulate the real chemical systems, such as covalent bonds, ionic bonds, hydrogen
bonds, London dispersions, dipole–dipole interactions, π–π stacking, and solvation effects.

If a system does not exhibit natural or obvious fragments, such as polyacetylene and polytethlyene, we
will consider an alternative “bottom-up” strategy, where we will construct fragments from individual
atoms, functional groups, or monomers until some convergence is reached using a low-level first-
principles MBE2 calculation. In this way we will allow fragments to grow around each unit and
accommodate underlying effects from local electronic environment and molecular conformations.

We foresaw great room for us to explore and validate our fragmentation strategies and enhance our
model versatility and accuracy. However, due to the time constraints, we were unfortunately not able
to perform a systematic discussion in the present study. However, we did validated our top-down
fragmentation strategy using a series of water clusters H2On (n = 7, 10, 13, 16, and 21) by showing
first-principles MP2-MBE2 and MP2-MBE3 results in Tables 5-7 in Section A.5. When we treated
each water molecule as a single fragment, we reached an average of 3.00% and 0.39% relative
errors for these water clusters using MP2-MBE2 and MP2-MBE3, confirming a favorable choice of
fragmentation strategy.

We have included discussions about the fragmentation strategy in Appendix A.2.

We will address the Reviewer’s second suggestion about the necessity of performing MBE here. We
were actually a bit confused what the Reviewer meant by “single fragment MP2”.

If the Reviewer meant treating the whole aggregate as a single fragment and calculate its total energy
directly using MP2, we found that the calculation was very time-consuming and became unfeasible
for a larger system. For example, for random water clusters (H2On) withn = 7, 10, 13, 16, and 21,
as given in Table 7 in Section A.5, the CPU times for running a single-point MP2 calculation using
the aug-cc-pVDZ basis set were 1562.94, 18914.93, 128084.39, 51249.38, and 121046.76 seconds,
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respectively. This computational complexity was estimated to follow N4, which quickly becomes
infeasible for large systems.

If the Reviewer meant treating the total energy of the whole aggregate as the sum of the MP2-
calculated energy from any isolated single fragment without considering any many-fragment interac-
tions, we found such an MP2-MBE1 method introduced huge errors because these many-fragment
interactions, even as weak as van der Waals forces or hydrogen bonds, played essential roles in
chemical properties. For example, we examined the same series of water clusters using MP2-based
MBE without any approximations from FBGNN, and found that the truncation errors with MP2-BE1

were as high as 63.13, 103.19, 140.18, 180.09, and 247.90 kcal/mol. However, when we considered
two-fragment interactions (MP2-MBE2), the errors were reduced to 12.53, 22.98, 29.01, 38.92, and
12.53 kcal/mol. A further inclusion of three-fragment interactions (MP2-MBE3 further reduced the
errors to 1.36, 2.77, 3.15, 4.03, and 10.87 kcal/mol. In chemistry, we hope the errors can be as small
as 1 kcal/mol, which is referred to as the chemical accuracy, so that MP2-MBE3 provides a more
realistic descriptions of an actual chemical system.

Questions Can the authors comment on transferability of this method, i.e. can their model retain its
accuracy on a water-cresol simulation? Instead of giving tsave, can the authors also provide actual
wall times in doing MP2/DFT MBE calculation, vs 1 body MP2 + higher order GNN?

RESPONSE to Questions The authors thank the Review for raising the question of transferability
and suggesting about the providing wall times in doing MP2/DFT MBE calculations.

Regarding the transferability, the authors agree with the Reviewer that it is important to test our
FBGNN-MBE model over diverse chemical systems with different characters of local and global
graphs. Therefore in the present study we investigated the performance of FBGNN-MBE on molecular
aggregates with different levels of intermolecular interactions in this study, such as water clusters with
hydrogen bonds (stronger), phenol clusters with hydrogen bonds and van der Waals forces (weaker),
and their mixtures. From these three systems we can preliminarily confirm about the transferability
of FBGNN-MBE, as long as the data set is of high quality and diversity. However, the methyl group
( CH3) did not exist in our training set, and implementation of a transfer learning strategy is beyond
the scope of present study due to the time constraint. Therefore we were not very confident about the
transferability to the water–cresol mixture for the moment. Having said that, we will construct more
diverse data sets, design more flexible local and global graph structures, introduce semi-empirical
electronic structures in the molecular descriptors [6, 7], and implement the transfer learning strategy
in future studies [2], so as to enhance the transferability our FBGNN-MBE.

Regarding the comparison of wall times, we understand that the Reviewer is interested learning about
the physical times we spent on a large MP2 or DFT calculation and the sum of all single-fragment
MP2 or DFT calculations and MBE-estimated corrections. However, we believe that wall times were
somewhat counterintuitive because our studies were performed on different computing nodes. We
calculated MP2 or DFT energies for both single fragments and whole clusters on CPU nodes, using
one CPU cores for each calculation, respectively. We then predicted two- and three-fragment energies
based on FBGNN-MBE on GPU nodes, using four NVIDIA A100 GPU cores for each generation.
Therefore we believe a more standardized comparison should occur between total CPU and GPU
times. In Table 2 and Section 4.1 of the camera-ready version, we included these statistics.

References

[1] Federico Zahariev, & M. S. Gordon. "Combined quantum Monte Carlo–effective fragment
molecular orbital method: fragmentation across covalent bonds." Physical Chemistry Chemical
Physics 23.26 (2021): 14308-14314.

[2] David Buterez, Jon Paul Janet, Steven J. Kiddle, Dino Oglic & Pietro Lió “Transfer learning
with graph neural networks for improved molecular property prediction in the multi-fidelity setting.”
Nature Communications 15.1 (2024): 1517.

Reviewer aFUJ

Originality The idea of combining the fragment-based idea with the many-body expansion (MBE)
theory is very good. Based on the idea of MBE, the idea of using MXMNet and PAMNet to process
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2b and 3b is very good. This provides a way to reproduce high-precision PES for larger systems.
The author has a thorough literature review of MBE and fragment-based GNN. Although the work is
based on the fragmentation method based on previous research [1][2], this combination is worthy of
recognition.
[1] Shuo Zhang, Yang Liu, & Lei Xie. “Molecular mechanics-driven graph neural network with
multiplex graph for molecular structures.” arXiv preprint arXiv:2011.07457, (2020).
[2] Shuo Zhang, Yang Liu, & Lei Xie. ”A universal framework for accurate and efficient geometric
deep learning of molecular systems.” Scientific Reports, 13(1), 19171, (2023).

RESPONSE to Originality The authors thank the Reviewer for this positive comment. However,
we also hope to clarify our method a little bit to avoid confusion. We borrowed MXMNet and
PAMNet from studies [1] and [2] as our backbone FBGNN approaches, so that we can say our
fragmentation strategies of the whole graphs came from MXMNet and PAMNet. However, we
borrowed our fragmentation strategies of chemical systems from earlier fragment-based methods
like first-principles MBEs [4], such as ASMF [5] from Bettens and coworkers, and GMBE [6, 7] and
energy-screened MBE [8] from Herbert and coworkers.

Quality The implementation of this idea and the demonstration of the results are clearly presented.
In the experimental analysis on the 2̋0 and phenol systems, the discussion of the results and model
performance of different models and different data sets is sufficient. In addition, the further analysis
of the impact of the molecular density on the character of the electronic structures and the sensitivity
analysis are worthy of recognition.

RESPONSE to Quality The authors thank the Reviewer for this detailed analysis.

Clarity The writing is clear and concise, and the presentation of data and program implementation
is well structured. The flow of the paper is logical, and the figures and tables effectively support the
arguments. Although the author discusses the weakness of the work in the analysis, it is recommended
to make a brief summary in the conclusion.

RESPONSE to Clarity The authors thank the Reviewer for the suggestion of adding a brief summary
of the weakness in the Conclusion section because this revision will strengthen our concluding
remarks. In the camera-ready version, we included the following sentences in Section 5: “While our
FBGNN-MBE framework was promising in both efficiency and accuracy, it exhibited at least two
limitations that required our attentions in future developments. First, our training sets were created
using 2× molecular densities, which allowed us to sample high-energy configurations and enhance
ergodicity and diversity of the data set, but also introduced biases towards repulsive 2B interactions
[doi:10.1021/acs.chemrev.0c01111]. Second, the present study focused on molecular aggregates
with weak to moderate many-fragment interactions and the current fragmentation strategy did not
cleave chemical bonds, so that the model transferability remained elusive. Finally, the present study
did not implement the predictions for potential energy gradients (forces) or excited state energies.”

Significance While the fragmentation approach relies on previously reported methods such as
MXMNet, and the experiment part only focuses on specific molecular systems H2O and phenol,
this attempt is an inspiration for people to explore high-precision PES of more complex molecular
systems. However, it would strengthen this paper if a wider range of fragmentation strategies were
explored, potentially expanding the scope and impact of this work.[3]
[3] Unke, O. T., Stöhr, M., Ganscha, S., Unterthiner, T., Maennel, H., Kashubin, S., ... & Müller, K.
R. (2024). Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on
diverse chemical fragments. Science Advances, 10(14), eadn4397.

RESPONSE to Significance The authors thank the Reviewer for making the constructive feedback
about the exploration of the fragmentation strategies. Reviewer qoPF raised the same concern in their
comments, so we have copied our response to them here.

At the current development stage of FBGNN-MBE, the fragmentation strategy was determined case-
by-case and depended on the chemical properties the systems in question. We currently focused on
the total ground state energy of a system and will investigate the excited state energy soon. We have
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so far implemented a “top-down” fragmentation strategy with two principles: (1) We maintain the
smallest functionally meaningful unit. (2) We break only single bonds or non-bonding interactions.

In the present proof-of-concept work we studied water aggregates, phenol aggregates, and water–
phenol mixtures. In these systems every single molecule was a natural fragment and an intermolecular
interaction like hydrogen bond and van der Waals force plays an essential role in n-body energies
(n ≥ 2). For our future studies about organic polymers, we have tentatively planned to extend the
fragmentation strategy by treating each monomer as a fragment, cleaving the carbon–carbon (C C)
bonds, and considering each solvent molecule as a fragment too (if any). We will try our best not to
break any complete functional groups like phenyl ( C6H5) and carboxylic acid ( COOH) or known
unit like an amino acid and a DNA base.

For a new system, we will run a low-level first-principles MBE2 calculation where the total energy is
truncated at the two-fragment interactions to make sure the fragmentation does not introduce huge
estimated error to damage the chemistry. In this way the system will maintain the smallest functional
or repeating unit such as a full π-conjugation, and our model can capture short-range and long-range
interactions to simulate the real chemical systems, such as covalent bonds, ionic bonds, hydrogen
bonds, London dispersions, dipole–dipole interactions, π–π stacking, and solvation effects.

If a system does not exhibit natural or obvious fragments, such as polyacetylene and polytethlyene, we
will consider an alternative “bottom-up” strategy, where we will construct fragments from individual
atoms, functional groups, or monomers until some convergence is reached using a low-level first-
principles MBE2 calculation. In this way we will allow fragments to grow around each unit and
accommodate underlying effects from local electronic environment and molecular conformations.

We foresaw great room for us to explore and validate our fragmentation strategies and enhance our
model versatility and accuracy. However, due to the time constraints, we were unfortunately not able
to perform a systematic discussion in the present study. However, we did validated our top-down
fragmentation strategy using a series of water clusters H2On (n = 7, 10, 13, 16, and 21) by showing
first-principles MP2-MBE2 and MP2-MBE3 results in Tables 5-7 in Section A.5. When we treated
each water molecule as a single fragment, we reached an average of 3.00% and 0.39% relative
errors for these water clusters using MP2-MBE2 and MP2-MBE3, confirming a favorable choice of
fragmentation strategy.

We have included discussions about the fragmentation strategy in Appendix A.2.

References

[4] Michael A. Collins & Ryan P. A. Bettens. “Energy-based molecular fragmentation methods.”
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Reviewer PGtA

Summary The study aims to predict higher-order energy terms (specifically 2-body and 3-body
interactions) based on many-body expansion theory to achieve a more accurate quantitative under-
standing of molecular properties. The authors generated a new dataset by conducting MD simulations
for the 2-body and 3-body energy tasks. They utilized MXMNet and PAMNet as backbone models
and compared their performance with other existing models.

RESPONSE to Summary The authors thank the Reviewer for making an exact summary of our
study.

Strengths

1. The work contributes a new dataset, and the model demonstrates good fitting performance
on the data.

2. The authors provide a comprehensive analysis of the results from various perspectives.

RESPONSE to Strengths The authors thank the Reviewer for summarizing the strengths of our
study.

Weaknesses

1. I have concerns about the comparison with other models used to claim state-of-the-art
performance, as these models are either outdated or lack higher-order terms for this task.
More advanced models, such as SE3Set and MACE with fragment-based representations or
many-body terms, would be more appropriate for comparison.

2. The model’s novelty appears limited. Although MXMNet-MBE and PAMNet-MBE are
employed for the tasks, there are no clear descriptions of how they differ from the original
MXMNet and PAMNet models. The modifications made to the compared models are not
described in sufficient detail, which may hinder replicability in the current manuscript.

RESPONSE to Weaknesses The authors thank the Reviewer for raising the two weaknesses of our
study and providing corresponding constructive feedbacks.

We will address the Reviewer’s first suggestion about adding comparisons to more advanced models
here. We agree with the Reviewer that a comparison with more up-to-date models is more appropriate
for the present study. Therefore we are actively working on the implementation of SE3Set [1],
MACE [2], MGSSL [3], MolGAT [4], FragGen [5], FragNet [6], GraphFP [7], Subgraphormer [8], and
ESC-GNN [9] in our study. The authors of SE3Set have not published their source codes because
their paper is still under review with another conference (11/1/2024), and we are still waiting for
their response. Due to the time constraint, the family emergency of the corresponding author and the
health issue of the leading author, we are very sorry to say that we were not able to implement the
rest of these models by 11/1/2024. If anything develops before the Workshop, we will make sure to
include them in our oral and poster presentations.

We will address the Reviewer’s second suggestion here by providing more information about the
fragment-based implementation of our models and the pseudo-algorithms to facilitate the reproduction
of our results.

Regarding the novelty of the fragment-based approach, we believe that our major novelty did not lie
in the FBGNN models themselves because we simply borrowed MXMNet and PAMNet from the
work of Xie and coworkers as our backbone GNN models. Instead, our novelty lied in the adoption of
FBGNN models to the fragment-based QM approaches such as MBE theory. In this way, we aligned
the subgraph-based hierachies of GNNs with the chemical hierarchies of complex molecular systems,
broke down such a system into M chemically meaningful pieces, and utilized a “divide-and-conquer”
strategy rather than calculating the entire system in one shot. This treatment was estimated to reduce
the computational cost from N3M3 to NM3 (DFT) or from N5M5 to N3M5 (MP2) for a system
containing N fragments with M basis functions each fragment.. The Reviewer can refer to our
responses to Reviewers qoPF and aFUJ for a discussion of our fragmentation strategies, which were
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different from the original works of MXMNet and PAMNet and provided a physical understanding of
how molecular fragments work together towards the chemical properties.

Regarding the replicability of our FBGNN-MBE models, we have provided the pseudo-algorithms
that outline the protocols in MXMNet-MBE and PAMNet-MBE in Section A.1 of the camera-ready
submission.

Summary Given these reasons, I believe this paper falls below the acceptance threshold.

RESPONSE to Summary The authors thank the Reviewer for making this suggestion even it
disfavors our acceptance. We acknowledge all of our weakenesses and have been trying our best to
improve the present study.
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Reviewer rvQW

Comment Authors propose FBGNN-MBE, which aim to combine the strengths of many body
expansions and graph neural nets. They divide the structure into small fragments, get 1st body
contributions from first-principles and 2nd and 3rd body contributions from MXMNet or PAMNet
models. I find the idea to be interesting and timely, given the increasing importance of modeling largest
molecular systems with higher accuracy in QM. Authors test their approach in several benchmark
systems (water, phenol and water:phenol). They run MD with their new methods, and show overall
that the method results in significant computational speed up at the expense of reasonable-looking
errors in energies. Manuscript is well-written, clear and timely. Minor suggestion: could authors
comment on the nature of forces (e.g. are they energy conserving etc.) obtained with this setup, as
they would be used in MD?
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RESPONSE The authors thank the Reviewer for the positive comment and the suggestions about
discussing the nature of forces obtained from our model set up and their suitability for MD simulations.
In the present set up, we approximated the first-principles potential energy surfaces (PESs), or in
other words, geometry-dependent full-dimensional electronic energies under the Born–Oppenheimer
approximation at T = 0 K, using FBGNN-MBE generated counterparts. We can evaluate all relevant
forces as the gradients of these potential energies [1, 2]. In this way, we expected to replace a
first-principles PES with a FBGNN-MBE-generated PES in ab initio molecular dynamics (AIMD).
We are not high-level experts for MD simulations, so we are not 100% sure what the Reviewer meant
by the nature of forces. However, we will try our best to answer this question. Please forgive us if
any of the terminology below is inexact.

If the Reviewer asked about the underlying rules like energy-conservation for the forces, we believe
that they really depended on the overall set up of the AIMD simulations rather than that of our
FBGNN-MBE-generated PES because our PES can be used in an identical way to the first-principles
PES in AIMD. If the AIMD simulation is set up at constant NV E (microcanonical ensemble), the
energy is definitely conserved. However, if AIMD simulation is set up at constant NV T (canonical
ensemble) or µV T (grand canonical ensemble), the temperature remains a constant through a
computational thermostat but the energy is no longer conserved.

If the Reviewer asked about the types of the forces, we believe that they really depended on the
chemical and physical properties of the system in question. In the present proof-of-concept study,
the systems were simple molecular aggregates, so that the forces within each fragment came from
chemical bonds, and the forces between fragments came from hydrogen bonds and van der Waals
interactions. In our future studies, the forces between fragments may also come from ionic bonds,
covalent bonds, and metallic bonds. We will tailor our FBGNN-MBE models and fragmentation
strategies based on the types of the forces. To improve the capacity of physical interpretation of
FBGNN-MBE, we also plan to implement the idea of energy decomposition analysis (EDA) so as to
fraction the interaction energies further into different types of attractive and repulsive terms, such as
electrostatics, Pauli repulsion, exchange–correlation, and dispersion [3]. By implementing EDA to
our PES and training for all components, we expect to inject physical information to FBGNN-MBE
and enhance the model understanding of the physical behaviors of complex organic systems. In
the camera-ready submission, we have included our discussion about the nature of the forces in the
Sections 5 and A.5

[1] Joseph P. Heindel, Kristina M. Herman, & Sotiris S. Xantheas. “Many-body effects in aqueous
systems: Synergies between interaction analysis techniques and force field development.” Annual
Review of Physical Chemistry 74.1 (2023): 337-360.

[2] Oliver T. Unke, Stefan Chmiela, Huziel E. Sauceda, Michael Gastegger, Igor Poltavsky, Kristof T.
Schütt, Alexandre Tkatchenko, & Klaus-Robert Müller “Machine learning force fields.” Chemical
Reviews 121.16 (2021): 10142-10186.

[3] Lili Zhao, Moritz von Hopffgarten, Diego M. Andrada, & Gernot Frenking. “Energy decomposi-
tion analysis.” WIREs Computational Molecular Science 8.3 (2018), e1345.

8


