
A Property Analysis

Here, we provide detailed derivations and property analysis with proofs for Section 3.

In Section 3.2, we have limα→0 Lα-IoU = Llog(IoU), where Lα-IoU = 1−IoUα
α , α > 0 is the α-IoU

loss, and Llog(IoU) = −log(IoU) is the log(IoU) loss.

Proof. From equation (1), and using L’Hôpital’s rule,

lim
α→0
Lα-IoU = lim

α→0

1− IoUα

α
= lim
α→0

d
dα (1− IoU

α)
d
dαα

= lim
α→0
−IoUαlog(IoU) = −log(IoU) = Llog(IoU).

(6)

In Section 3.3, we only listed the properties that contribute the most to the superiority of Lα-IoU over
LIoU. The following properties are the complete list of properties with detailed derivations for Lα-IoU.
Property 1 (Order Preservingness). Lα-IoU preserves the orders of IoU and LIoU: IoU(Bi, B

gt) <
IoU(Bj , B

gt) ⇐⇒ LIoU(Bi, B
gt) > LIoU(Bj , B

gt) ⇐⇒ Lα-IoU(Bi, B
gt) > Lα-IoU(Bj , B

gt).

When IoU(Bi, B
gt) < IoU(Bj , B

gt), we have,

LIoU(Bi, B
gt) = 1− IoU(Bi, B

gt) > 1− IoU(Bj , B
gt) = LIoU(Bj , B

gt),

Lα-IoU(Bi, B
gt) = 1− IoU(Bi, B

gt)α > 1− IoU(Bj , B
gt)α = Lα-IoU(Bj , B

gt).
(7)

Lα-IoU strictly preserves the order of LIoU, thus arg minBLα-IoU(B,B
gt) is identical

to arg maxBIoU(B,Bgt) and arg minBLIoU(B,B
gt), i.e., the optimal solution (i.e.,

arg maxBIoU(B,Bgt)) can be achieved by minimizing either Lα-IoU or LIoU.
Property 2 (Relative Loss Reweighting). Compared with LIoU, Lα-IoU adaptively reweights the
relative loss of all objects bywLr = Lα-IoU/LIoU = 1+(IoU−IoUα)/(1−IoU), withwLr (IoU =
0) = 1, and limIoU→1 wLr = α.

The relative loss weight is,

wLr = Lα-IoU/LIoU = (1− IoUα)/(1− IoU) = 1 + (IoU − IoUα)/(1− IoU). (8)

We will first prove the monotonicity of g(x) = (x− xα)/(1− x), which corresponds to the second
term in wLr . The conclusion is that g(x) = (x− xα)/(1− x), x ∈ [0, 1) monotonically decreases
w.r.t. x when 0 < α < 1 and monotonically increases w.r.t. x when α > 1. Furthermore, we have
g(0) = 0, and,

lim
x→1

g(x) = lim
x→1

x− xα

1− x
= lim
x→1

d
dx (x− x

α)
d
dx (1− x)

= lim
x→1

1− αxα−1

−1
= −1 + α. (9)

Therefore, wLr (IoU = 0) = 1, and limIoU→1 wLr = α. When IoU = 1, Lα-IoU = LIoU = 0.
In other words, when 0 < α < 1, wLr will decay from 1 to α monotonically with the increase of
IoU, and when α > 1, wLr will grow from 1 to α monotonically with the increase of IoU. For the
bbox regression branch of object detection, the localization loss should up-weight the relative loss
for high IoU objects (e.g., positive examples at AP50) as the final performance is usually measured
by mAP50:95, where low IoU objects (negative examples at AP50) are suppressed at evaluation.
It basically means that low IoU objects contribute much less to the final performance evaluation,
although some deviations between the predicted bboxes and their ground truth can be tolerated.

Proof. We have the first derivative of g(x) = (x− xα)/(1− x), x ∈ [0, 1) w.r.t. x as,

dg(x)

dx
=
αxα − αxα−1 − xα + 1

(1− x)2
, (10)

where the denominator (1− x)2 is always positive. We thus can let h(x) be the numerator of the first
derivative function dg(x)

dx as

h(x) = αxα − αxα−1 − xα + 1, (11)
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then we have limx→1 h(x) = 0. Here, the second derivative of g(x)is formulated as,

dh(x)

dx
= α2xα−1 − α(α− 1)xα−2 − αxα−1 = α(α− 1)xα−2(x− 1), (12)

where αxα−2(x − 1) < 0 since α > 0, xα−2 > 0, and x − 1 < 0. When 0 < α < 1, we have
α − 1 < 0. So dh(x)

dx > 0, i.e., h(x) monotonically increases when x ∈ [0, 1), which leads to
h(x) < 0 because h(1) = 0. Therefore, dg(x)

dx < 0 and g(x) monotonically decreases w.r.t. x
when 0 < α < 1. On the other hand, when α > 1, we have α − 1 > 0. So dh(x)

dx < 0, i.e., h(x)
monotonically decreases when x ∈ [0, 1), which leads to h(x) > 0 because h(1) = 0. Therefore,
dg(x)
dx > 0 and g(x) monotonically increases w.r.t. x when α > 1. This completes the proof.

Property 3 (Relative Gradient Reweighting). Compared with LIoU, Lα-IoU adaptively reweights the
relative gradient of all objects by w∇r = |∇IoULα-IoU|/|∇IoULIoU| = αIoUα−1, with the turning
point at IoU = α

1
1−α ∈ (0, 1e ) when 0 < α < 1 and IoU = α

1
1−α ∈ ( 1e , 1) when α > 1.

The relative gradient weight is,
w∇r = αIoUα−1, (13)

which is a monotonically decreasing function when 0 < α < 1, and monotonically increasing
when α > 1, with w∇r (IoU = α

1
1−α ) = 1, i.e., |∇IoULα-IoU| = |∇IoULIoU| = 1. We prove that

limα→1 α
1

1−α = 1
e as follows:

lim
α→1

α
1

1−α = lim
α→1

e
logα
1−α = elimα→1

logα
1−α = e

limα→1

d
dα

logα
d
dα

(1−α) = elimα→1

1
α
−1 =

1

e
. (14)

Hence, we can obtain that, when 0 < α < 1,

|∇IoULα-IoU| ≥ |∇IoULIoU| for IoU ∈ [0, α
1

1−α ],

|∇IoULα-IoU| < |∇IoULIoU| for IoU ∈ (α
1

1−α , 1],
(15)

and when α > 1,
|∇IoULα-IoU| ≤ |∇IoULIoU| for IoU ∈ [0, α

1
1−α ],

|∇IoULα-IoU| > |∇IoULIoU| for IoU ∈ (α
1

1−α , 1].
(16)

Therefore, Lα-IoU up-/down-weights the relative gradient of low/high IoU objects when 0 < α < 1.
In contrast, Lα-IoU up-/down-weights the relative gradient of high/low IoU objects when α > 1,
which boosts the late training stage of a detector using high IoU objects. We empirically show
that although |∇IoULα-IoU| ≤ |∇IoULIoU| in IoU ∈ [0, α

1
1−α ] when α > 1, there is no significant

difference between Lα-IoU and LIoU in training a detector at the early training stage (Figure 3).

Apart from the above three properties, here we present two additional absolute properties of Lα-IoU.
Property 4 (Absolute Loss Reweighting). Compared with LIoU, Lα-IoU adaptively reweights the
absolute loss of all objects by wLa = Lα-IoU − LIoU = IoU − IoUα, with the turning point at
IoU = α

1
1−α ∈ (0, 1e ) when 0 < α < 1 and IoU = α

1
1−α ∈ ( 1e , 1) when α > 1.

The absolute loss weight is
wLa = IoU − IoUα, (17)

which is non-positive when 0 < α < 1 and non-negative when α > 1. From the first derivative
of the above equation, we can obtain that the minimum/maximum (i.e., either negative or positive)
absolute loss weight is achieved at IoU = α

1
1−α , which is the same as the IoU value for w∇r (IoU =

α
1

1−α ) = 1 in Property 3. For example, when α = 0.5, wLa,min = wLa(IoU = 0.25) = −0.25.
Another example is when α = 2, wLa,max = wLa(IoU = 0.5) = 0.25. Therefore, Lα-IoU is able to
adjust LIoU to be globally smaller (when 0 < α < 1) or larger (when α > 1) than their original
values by simply modulating the parameter α. When α > 1, this property creates more space for
optimization for all levels of objects than the vanilla IoU.
Property 5 (Absolute Gradient Reweighting). Compared with LIoU, Lα-IoU adaptively reweights the
absolute gradient of all objects by w∇a = |∇IoULα-IoU| − |∇IoULIoU| = αIoUα−1 − 1, with the
turning point at IoU = α

1
1−α ∈ (0, 1e ) when 0 < α < 1 and IoU = α

1
1−α ∈ ( 1e , 1) when α > 1.
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The absolute gradient weight is,
w∇a = αIoUα−1 − 1. (18)

w∇a = 0 is achieved at IoU = α
1

1−α , which is also the same IoU value as that in Property 3 and 4.
Hence, we can also obtain that, when 0 < α < 1,

|∇IoULα-IoU| ≥ |∇IoULIoU| for IoU ∈ [0, α
1

1−α ],

|∇IoULα-IoU| < |∇IoULIoU| for IoU ∈ (α
1

1−α , 1],
(19)

and when α > 1,
|∇IoULα-IoU| ≤ |∇IoULIoU| for IoU ∈ [0, α

1
1−α ],

|∇IoULα-IoU| > |∇IoULIoU| for IoU ∈ (α
1

1−α , 1].
(20)

This also indicates that, compared with LIoU, Lα-IoU with α > 1 up-weights the absolute gradient
in IoU ∈ (α

1
1−α , 1], which is the range of high IoU objects. Therefore, Lα-IoU with α > 1 will

accelerate the learning of high IoU objects.

B Additional Experiments

B.1 Detailed Training Setup

Here are the implementation details of all models used in this paper. We train YOLOv5, Faster
R-CNN, and DETR using NVIDIA V100 GPUs.

YOLOv5. We train YOLOv5s and YOLOv5x with different losses following the original code’s
training protocol at https://github.com/ultralytics/yolov5 with the released version be-
ing v4.0. We train both models from scratch using the same hyperparaemter in the file named
"hyp.scratch.yaml". The configuration is set following the file "yolov5s.yaml" for YOLOv5s and
"yolov5x.yaml" for YOLOv5x, respectively. The batch size is 64, the initial learning rate is 0.01, and
the number of training epochs is 300 in all experiments. The file "voc.yaml" is set for models trained
on PASCAL VOC while the file "coco.yaml" is set for those trained on MS COCO.

Faster R-CNN. We train Faster R-CNN with different losses following the original code’s train-
ing protocol at https://github.com/open-mmlab/mmdetection/tree/master/configs/
faster_rcnn. The configuration is set following the file "faster_rcnn_r50_fpn.py" for Faster R-CNN
with the backbone being ResNet-50-FPN. The file "schedule_1x.py" is set for models trained with 1x
schedule and single scale. The checkpoint and logging configuration is set in "default_runtime.py".
The batch size is 16, the initial learning rate is 0.02, and the number of training epochs is 12 in all
experiments. The file "coco_detection.py" is set for models trained on MS COCO. We do not train
Faster R-CNN on PASCAL VOC.

DETR. We train DETR with different losses following the original code’s training protocol at https:
//github.com/open-mmlab/mmdetection/tree/master/configs/detr. The configuration
is set following the file "detr_r50_8x2_150e_coco.py" for DETR with the backbone being ResNet-50.
"8x2" stands for using 8 GPUs (we use NVIDIA V100 GPUs) in parallel with 2 images trained
on every GPU (i.e., batch size is 16). The number of training epochs is 150. The initial learning
rate is 1e−4 for the first 100 epochs and 1e−5 for the rest 50 epochs. The checkpoint and logging
configuration is set in "default_runtime.py". The file "coco_detection.py" is set for models trained on
MS COCO. We also modify it for models trained on PASCAL VOC.
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B.2 More Results

We provide more experimental results here, including the sensitivity of Lα-IoU to the second power
parameter α2 for the penalty term, robustness of the detectors to small datasets trained by Lα-IoU,
some failure cases, and visualizations of the synthesized noisy bboxes.

B.2.1 Sensitivity to α2

In Section 3.2, we stated that Lα-IoU is not sensitive to α2, and we reduced the two power parameters
to a single parameter α by setting α1 = α2. Here, we empirically show the trivial difference among
different α2 selections. 3-0.5, 3-1, 3-3 are used to denote α1 = 3 and α2 = 0.5, 1, 3 in equation (3),
respectively. From Table 4, one can find that α-IoU losses with different α2 values yield very close
performances. Based on this observation, we choose to simply maintain α1 = α2 = 3 in all of our
experiments.

Table 4: The performance of YOLOv5s trained using α-IoU losses with different α values for the
two loss terms. Results are obtained on the test set of PASCAL VOC 2007. mAP denotes mAP50:95;
mAP75:95 denotes the mean AP over AP75,AP80, · · · ,AP95.

Loss AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 mAP mAP75:95

Lα-GIoU 3-0.5 78.44 76.19 73.49 70.03 65.38 59.31 50.74 38.54 21.45 3.93 53.75 34.79
Lα-GIoU 3-1 77.94 75.83 73.19 69.80 65.21 58.25 49.84 37.68 21.54 3.68 53.29 34.20
Lα-GIoU 3-3 78.19 76.25 73.50 69.91 64.90 58.55 49.47 38.29 21.79 3.59 53.44 34.34

Lα-DIoU 3-0.5 77.33 75.68 73.21 69.57 65.27 58.42 49.75 38.42 21.23 3.74 53.26 34.31
Lα-DIoU 3-1 77.74 75.62 73.19 69.52 65.04 58.57 50.27 37.71 21.92 3.50 53.31 34.39
Lα-DIoU 3-3 78.42 76.13 73.57 70.16 65.83 59.14 50.20 38.31 21.71 3.50 53.70 34.57

Lα-CIoU 3-0.5 77.78 75.70 72.97 69.55 65.02 58.41 49.87 38.51 21.51 3.52 53.28 34.36
Lα-CIoU 3-1 78.02 75.85 73.18 69.78 65.28 58.34 50.11 37.85 21.68 3.66 53.37 34.33
Lα-CIoU 3-3 78.03 76.04 73.66 70.10 65.18 58.71 49.55 37.71 21.70 3.76 53.44 34.29

B.2.2 Robustness to Small Datasets

This set of experiments simulate the real-world scenarios where the training data for a given task
is very limited, e.g., only a few thousands of images. From the PASCAL VOC benchmark, we
randomly select 50% (containing 8, 276 images) and 25% (containing 4, 138 images) trainval set
2007+2012, while maintaining the test set 2007 (containing 4, 952 images). As shown in Figure 7,
α-IoU is consistently more robust to different scales of the training set than the baseline losses. This
superiority indicates that α-IoU losses could be applied to practical application scenarios, where it is
challenging to collect large amounts of data or annotations. In Table 5, we further observe that the
relative improvement increases as the level of bbox regression accuracy rises across all losses and
scales of the training set.

Table 5: Comparison results of YOLOv5s trained on small PASCAL VOC. Results are obtained on
the test set of PASCAL VOC 2007. mAP denotes mAP50:95; mAP75:95 denotes the mean AP over
AP75,AP80, · · · ,AP95. "rela. improv." stands for the relative improvement. α = 3 is used for all
α-IoU losses in all experiments.

Loss 50% PASCAL VOC 25% PASCAL VOC

AP50 AP75 AP85 AP95 mAP mAP75:95 AP50 AP75 AP85 AP95 mAP mAP75:95

LIoU 71.14 46.61 22.63 0.89 43.58 23.13 60.17 35.03 14.45 0.38 34.38 16.13
Lα-IoU 71.01 47.88 27.48 1.24 44.81 25.62 59.96 36.02 17.02 0.60 34.93 17.57

rela. improv. -0.18% 2.72% 21.43% 39.33% 2.82% 10.76% -0.35% 2.83% 17.79% 57.89% 1.60% 8.91%

LDIoU 71.29 46.95 23.79 0.9 44.02 23.52 59.92 34.54 14.06 0.25 33.95 15.71
Lα-DIoU 70.93 48.09 27.41 1.56 44.83 25.76 59.68 35.90 16.72 0.51 34.69 17.42

rela. improv. -0.50% 2.43% 15.22% 73.33% 1.84% 9.52% -0.40% 3.94% 18.92% 104% 2.18% 10.89%

LGIoU 70.93 47.14 24.57 0.80 43.89 23.95 59.75 33.88 13.90 0.38 33.8 15.56
Lα-GIoU 71.19 48.37 26.92 1.67 45.10 25.82 59.58 35.74 16.96 0.59 34.88 17.23

rela. improv. 0.37% 2.61% 9.56% 109% 2.76% 7.82% -0.28% 5.49% 22.01% 55.26% 3.20% 10.75%
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Figure 7: Comparison of the performance of YOLOv5s trained using different losses on different
scales of datasets. Results are obtained on the test set of PASCAL VOC 2007. mAP denotes
mAP50:95; mAP75:95 denotes the mean AP over AP75,AP80, · · · ,AP95. α = 3 is used for all α-IoU
losses in all experiments.

Figure 8: Example results on both the test set of PASCAL VOC 2007 (image 1 to 4) and the val set
of MS COCO 2017 (image 5 to 8) using YOLOv5s trained by LIoU (top row) and Lα-IoU with α = 3
(bottom row). Lα-IoU may perform not as well as LIoU in some cases.

B.3 Failure Cases

We also find cases where Lα-IoU performs not as well as LIoU on both datasets (Figure 8). It is possible
that Lα-IoU classifies true positive objects with lower probability (image 1, 2, 5, 6) since it focuses
more on the localization branch than the classification branch by up-weighting the localization loss
compared with the classification loss. However, the confidence threshold for classification (which is
different from the IoU threshold for localization) is usually low. For example, 0.25 is set for YOLOv5
at the inference stage, where we could still successfully detect most of these objects. Note that Lα-IoU
may misclassify objects (image 3) or fail to detect them (image 4, 7, 8) in images as well, although
Lα-IoU outperforms LIoU in more cases generally.

18



B.4 Examples of Noisy Bounding Boxes

Figure 9 visualizes some examples of the noisy bboxes synthesized in Section 4.3 under various noise
rates η. Different colors represent different categories of objects.

Figure 9: Examples of synthesized noisy bboxes on PASCAL VOC (η = 0 in the first row, η = 0.3
in the second row) and MS COCO (η = 0 in the third row, η = 0.3 in the fourth row).
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