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ABSTRACT

This paper presents novel contributions to the field of online optimization, particu-
larly focusing on the adaptation of algorithms from concave optimization to more
challenging classes of functions. Key contributions include the introduction of
uniform wrappers, establishing a vital link between upper-quadratizable functions
and algorithmic conversions. Through this framework, the paper demonstrates su-
perior regret guarantees for various classes of up-concave functions under zeroth-
order feedback. Furthermore, the paper extends zeroth-order online algorithms
to bandit feedback counterparts and offline counterparts, achieving a notable im-
provement in regret/sample complexity compared to existing approaches.

1 INTRODUCTION

The optimization of continuous DR-submodular functions has become increasingly prominent in
recent years. This form of optimization represents an important subset of non-convex optimization
problems at the forefront of machine learning and statistics. These challenges have numerous real-
world applications like revenue maximization, mean-field inference, and recommendation systems,
among others (Bian et al.,|2019; Hassani et al.,|2017; Mitra et al., 2021; |Djolonga & Krause, [2014;
Ito & Fujimakil [2016;|Gu et al., [2023; [Li et al.| [2023).

A natural staring point to for DR-submodular maximization is to start from a convex optimization
algorithm and adapt it to the setting of DR-submodular functions. Online Convex Optimization
(OCO) is extensively utilized across various fields due to its numerous practical applications and
robust theoretical underpinnings. The tools from the area of online convex optimization have been
applied to many online non-concave optimization algorithms, e.g., to converge to stationary points
in online non-concave optimization (Yang et al.l [2018)), or algorithms with approximation guaran-
tees for DR-submodular optimization (Chen et al., 2018} |Niazadeh et al., 2020; Zhang et al.| 2022;
Pedramfar et al., [2023)).

In this paper, we focus on a large class of functions, namely the class of quadratizable functions,
first introduced in (Pedramfar & Aggarwal, 2024a). Quadratizable functions includes special sub-
classes of non-convex/non-concave functions where the offline constrained optimization problem
is NP-hard to solve but we can find an a-approximation of the optimal value in polynomial time.
Indeed, it is shown that this class of online upper quadratizable optimization includes up-concave
optimization (a generalization of DR-submodular and concave optimization) in the following cases:
(i) monotone y-weakly pu-strongly DR-submodular functions with curvature ¢ over general convex
sets, (ii) monotone y-weakly DR-submodular functions over convex sets containing the origin, and
(iii) non-monotone DR-submodular optimization over general convex sets.

Even though the tools from OCO have proven effective in more challenging classes, much of past
work along these lines involve taking inspiration from OCO and manually designing new algorithms
and analyzing them specific to each problem setting. This raises the following question

When and how can we adapt algorithms from the (simpler) setup of online convex
optimization into algorithms for online optimization over more general classes of
functions?
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In this paper, we try to provide partial solutions to this question for adapting OCO algorithms to
algorithms for online quadratizable optimization. The notion of quadratizability is built upon a gen-
eralization of the defining condition f(x) — f(y) > (Vf(y),x —y) of convex functions. This sim-
ilarity with convex functions is a starting point which allows us to define a class of meta-algorithm
called “uniform wrappers”. Uniform wrappers provide a straightforward way to convert OCO al-
gorithms into algorithms that can handle quadratizable functions. We also develop a guideline to
convert the existing proofs for regret bounds of the base algorithms in the convex setting into regret
bounds of the new algorithms over the quadratizable functions.

We note that, for a specific class of algorithms, this question was partly addressed in (Pedramfar &
Aggarwall 2024a). Specifically, as we will discuss in Appendix [B] their result can be formulated as
a special case of ours, where they assume that the starting algorithm is a first order online algorithm
with semi-bandit feedback that obtains sub-linear regret against fully adaptive adversaries. This
condition is too restrictive to allow for adapting many of the ideas in OCO literature. In this paper
we take a step further and can handle broader classes of algorithms, including the more challenging
setting of zeroth order feedback.

As an application of our framework, we propose a variant of a bandit convex optimization algorithm
that was introduced in (Saha & Tewari,2011) as the base algorithm, namely Zeroth Order Follow the
Regularized Leader (ZO-FTRL) and demonstrate how it can be converted using uniform wrappers
(denoted by W) to obtain 3 algorithms for function classes (i)-(iii) mentioned above. See Tables E]
andfor details. Note that ZO-FTRL and W(ZO-FTRL) are zeroth order, but they are not bandit
feedback algorithms. We also extend the results to those with bandit feedback, as well as derive
sample complexity guarantees for the offline algorithm.

The main contributions in this work include:

1. We develop a general framework for converting algorithms and their regret guarantees from on-
line convex concave optimization to online quadratizable optimization. Conversion of the algo-
rithm could be applied to any online optimization algorithm, and the conversion of the proof is
described using a general guideline.

2. Our framework obtains or matches the state of the art algorithm in all online optimization settings
considered. (See Table [I) Note that our framework also recovers all known results for non-
stationary DR-submodular maximization. (See Remark@and Table 3 in (Pedramfar & Aggarwall,
2024a)))

3. Except for deterministic first order feedback and the special case of y-weakly non-monotone
functions with v < 1, our framework obtains or matches the state of the art algorithm in all
online optimization settings considered. (See Table2)

4. We obtain superior regret guarantees for several classes of weakly DR-submodular functions un-
der zeroth order feedback, specifically (i) monotone y-weakly p-strongly DR-submodular func-
tions with curvature c over general convex sets, (ii) monotone y-weakly DR-submodular func-
tions over convex sets containing the origin, and (iii) non-monotone DR-submodular optimization
over general convex sets. (See Table[I]and Theorem [6)

5. Those results can be extended to the bandit setting yielding improved results for bandit feedback.
(See Table[T]and Theorem

6. The results for zeroth order online algorithms can be specialized to offline algorithms, resulting in
three new algorithms with a sample complexity of 1 /€ in different settings, which is significantly
better than the state of art 1/¢*. (See Table [2|and Theorem

To simplify the notation and statements, we define regret for maximization problems and focus on
concave maximization and DR-submodular maximization.

2 BACKGROUND AND NOTATION

For a set D C R, we define its affine hull aff (D) to be the set of ax + (1 —a)y for all x, y in K and
a € R. The relative interior of D is defined as relint(D) := {x € D | Ir > 0,B,.(x) N aff (D) C
D}. All convex functions are continuous on any point in the relative interior of their domains. In
this work, we will only focus on continuous functions. If x € relint(K) and f is convex and is
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Table 1: Online up-concave maximization

F | Set Feedback Reference Appx. # of queries log - (a-regret)

(Zhang et al.||2022) (*) 1—e7 1 1/2

Full Information | stoch. (Pedramfar et al.|2024a) 1—e! T°(0 € 0,1/2]) 2/3-0/3
VF (Pedramfar & Aggarwal]2024a) (*) 1—e 1 1/2
Semi-bandit stoch (Pedramfar et al.|[2024a) 1—e T - 3/4
) (Pedramfar & Aggarwal]2024a} (*) 1—e 7 - 2/3
det. (Pedramfar & Aggarwal![2024a) (*) 1—e " 2 1/2
153 - stoch. { Theorem|6] 1—e ! 1 2/3

w Full Information stoch (Pedramfar et al.||[2024a) 1—e! T7(0 € [0,1/4]) 4/5—-6/5
e | (Pedramfar & Aggarwall[2024a) (*) 1—e” 1 3/4
g F det (Wan et al.]2023) (%) T—e ! B 3/4
'g ) (Zhang et al.|2024) (*) 1—e” - 4/5
S Bandit stoch.f Theorem|[7] 1—e " - 3/4
= stoch (Pedramfar et al.[[2024a) 1—e T - 5/6
A . (Pedramfar & Aggarwall[2024a) (*) 1—e” - 4/5

Full Information | stoch. (Pedramfar et al.||2024a) 1/2 T°(0 €0,1/2]) 2/3-0/3
vF ) ) (Chen et al..[2018} () /(1 ++7) - 1/2
= Semi-bandit stoch. (Pedramfar et al.[|[2024a) 1/2 - 3/4
E (Pedramfar & Aggarwal]2024a} (*) "/2/(1 + c’yz) - 1/2
% det. (Pedramfar & Aggarwal![2024a} (*) [ 77/(1 + ¢7°) 2 1/2

Full Information stoch (Pedramfar et al.|2024a) o 1/2 T7(0 € [0,1/4]) 4/5—-0/5
F S Theorem]o] /(1 + %) 1 2/3
(Pedramfar et al.|2024a) 1/2 - 5/6
Bandit stoch. | (Pedramfar & Aggarwal|2024a} (*) | 7*/(1 + cv%) - 3/4
Theorem([7] /(1 +ey?) - 3/4

(Pedramfar et al.[2024a] (1—h)/4a [ T7(6 €0,1/2]) 2/3-0/3
Full Information | stoch. (Zhang et al.[|[2024) (%) (1—h)/4 1/2
VF (Pedramfar & Aggarwal![2024a) (*) (1—h)/4 1 1/2
® Semi-bandit stoch (Pedramtar et al.[|[2024a) 1-h)/4 - 3/4
§ h . (Pedramfar & Aggarwall[2024a) (*) (1—h)/4 - 2/3
S| B det. (Pedramfar & Aggarwall[2024a) (F) (1-h)/4 2 1/2
§ g stoch. T Theorem|6| (1—-h)/4 1 2/3

Z | oo Full Information toch (Pedramfar et al.|[2024a) (1—=h)/4 | T°(0€o,1/4]) 4/5-0/5
S F SO | (Pedramfar & Aggarwall2024a) (*) (1—h)/4 1 3/4
det. (Zhang et al.[|2024) (F) (1-h)/4 - 4/5
Bandit stoch. T Theoremm ] (T=h)/4 3/4
stoch. (Pedramfar et al. | 2024a) ] 1-h)/4 - 5/6
(Pedramfar & Aggarwall[2024a) (*) (1—h)/4 - 4/5

This table compares different static regret results for the online up-concave maximization. The logarithmic

terms in regret are ignored. Here h := mingek ||Z||cc. Rows marked with (*) are results in the literature
that are special cases of the results stated here and therefore fit within the framework described in this
paper. The rows describing results with stochastic feedback that are marked with t assume that the random
query oracle is contained with a cone, as detailed in Theorem 6]

differentiable at x, then we have f(y) — f(x) > (Vf(x),y — x), for all y € K. More generally,
given ;1 > 0, we say a vector o € R? is a p-subgradient of f at x if f(y) — f(x) > (o,y —
x) + 5ly — x||2. for all y € K. Given a convex set K, a function f : K — R is u-strongly
convex if and only if it has a u-subgradient at all points x € K. A function F : D — RY is G-
Lipschitz continuous if for all x,y € D, |F(x) — F(y)|| < G||x — y||. A differentiable function
F :D — Rt is L-smooth if forall x,y € D, |[VF(x) —VF(y)| < L|jx—y|. Given a continuous
monotone function f : K — R, its curvature is defined as the smallest number ¢ € [0, 1] such that
fly+z)—f(y) > 1—0o)(f(x+2z)— f(x)),forallx,y € Kandz > O suchthatx+z,y+z € K.
We define the curvature of a function class F as the supremum of the curvature of functions in F.

We say Vf : K — R% is a p-strongly y-weakly up-super-gradient of f if for all x < y in K, we
have y((Vf(y),y = x) + §lly — x[I*) < f(y) = f(x) < S((VF(x),y —x) — §ly — x|]*). Then
we say f is u-strongly y-weakly up-concave if it is continuous and it has a u-strongly ~y-weakly up-
super-gradient. When v = 1 and the above inequality holds for all x,y € K, we say f is u-strongly
concave. A differentiable function f : K — R is called continuous DR-submodular if for all x <y,
we have V f(x) > V f(y). More generally, we say [ is y-weakly continuous DR-submodular if for
all x <y, we have Vf(x) > vV f(y). It follows that any y-weakly continuous DR-submodular
functions is y-weakly up-concave.

3 PROBLEM SETUP

Online optimization problems can be formalized as a repeated game between an agent and an adver-
sary. The game lasts for 7" rounds on a convex domain C where 7" and K are known to both players.
In the ¢-th round, the agent chooses an action x; from an action set L C R, then the adversary
chooses a loss function f; € F and a query oracle for the function f;. Then, for 1 < ¢ < ki, the
agent chooses a points y; ; and receives the output of the query oracle.

To be more precise, an agent consists of a tuple (Q4, A%tn Aduery) where Q4 is a probability
space that captures all the randomness of A. We assume that, before the first action, the agent
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samples w € Q. The next element in the tuple, AU = (fiction ... gaction) jg 3 sequence of

functions such that A, that maps the history Q4 x =1 x Hi;ll (K x O)*s to x; € K where we
use O to denote range of the query oracle. The last element in the tuple, A%, is the query policy.
Foreach 1 < ¢ < Tand 1 <i < ky, AJT™ : QA x Kt x Hi;ll(lc x O)Fs x (K x O)"lisa
function that, given previous actions and observations, either selects a point yi € K, i.e., query, or
signals that the query policy at this time-step is terminated. We may drop w as one of the inputs
of the above functions when there is no ambiguity. We say the agent query function is trivial if
ki =1landy:; = x; forall 1 <t < T. In this case, we simplify the notation and use the notation

A = A*ton — (A, ... Ar) to denote the agent action functions and assume that the domain of
Apis Q4 x (K x 0)t~ 1L

A query oracle is a function that provides the observation to the agent. Formally, a query oracle for a
function f is a map Q defined on K such that for each x € K, the Q(x) is a random variable taking
value in the observation space O. The query oracle is called a stochastic value oracle or stochastic
zeroth order oracle if O = R and f(x) = E[Q(x)]. Similarly, it is called a stochastic up-super-
gradient oracle or stochastic first order oracle if O = R? and E[Q(x)] is a up-super-gradient of f
at x. In all cases, if the random variable takes a single value with probability one, we refer to it as
a deterministic oracle. Note that, given a function, there is at most a single deterministic gradient
oracle, but there may be many deterministic up-super-gradient oracles. We will use V to denote the
deterministic gradient oracle. We say an oracle is bounded by B if its output is always within the
Euclidean ball of radius B centered at the origin. We say the agent takes semi-bandit feedback if
the oracle is first-order and the agent query function is trivial. Similarly, it takes bandit feedback
if the oracle is zeroth-order and the agent query function is triviaﬂ If the agent query function is
non-trivial, then we say the agent requires full-information feedback.

An adversary Adv is a set such that each element 5 € Adv, referred to as a realized adversary,
is a sequence (By, -+, Br) of functions where each B; maps a tuple (x1,--- ,%;) € K to a tuple
(ft, Q) where f; € F and Q, is a query oracle for f;. We say an adversary Adv is oblivious if
for any realization B = (By,--- ,Br), all functions B; are constant, i.e., they are independent of
(x1,---,%¢). In this case, a realized adversary may be simply represented by a sequence of func-
tions (f1,--- , fr) € FT and a sequence of query oracles (Qy, - - - , Qr) for these functions. We say
an adversary is a weakly adaptive adversary if each function B; described above does not depend on
x; and therefore may be represented as a map defined on ‘. In this work we also consider adver-
saries that are fully adaptive, i.e., adversaries with no restriction. Clearly any oblivious adversary is
a weakly adaptive adversary and any weakly adaptive adversary is a fully adaptive adversary. Given
a function class F and i € {0, 1}, we use Adv(F) to denote the set of all possible realized adver-
saries with deterministic ¢-th order oracles. If the oracle is instead stochastic and bounded by B, we
use Advg(F, B) to denote such an adversary. Finally, we use Adv;(F) and Adv;(F, B) to denote
all oblivious realized adversaries with i-th order deterministic and stochastic oracles, respectively.

In order to handle different notions of regret with the same approach, for an agent A, adversary Adv,
compact setU C KT, approximation coefficient 0 < o < land 1 < a < b < T, we define regret as

b b
RA U)la,b] == sup E |« max us) — x|,
aAdv(U)[a, 0] S u:(ul,---,uT)EZ/{;ft< t) ;ft( t)

where the expectation in the definition of the regret is over the randomness of the algorithm and
the query oracle. We use the notation R 5(U)[a,b] := RY yq,(U)[a,b] when Adv = {B} is a
singleton. We may drop o when it is equal to 1. When o < 1, we often assume that the functions
are non-negative. Static adversarial regret or simply adversarial regret correspondstoa = 1,b =T
andUd = KT := {(x,-+,x) | x € K}. Whena = 1, b = T and U contains only a single element
then it is referred to as the dynamic regret (Zinkevich, |2003; [Zhang et al.,[2018)). Adaptive regret, is
defined as max; <q<p<r R) Ay (KT )a, b] (Hazan & Seshadhri, 2009). We drop a, b and U when
the statement is independent of their value or their value is clear from the context.

I'This is a slight generalization of the common use of the term bandit feedback. Usually, bandit feedback
refers to the case where the oracle is a deterministic zeroth-order oracle and the agent query function is trivial.
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4 UNIFORM WRAPPERS

We next introduce a class of meta-algorithms that will be a central element of our proposed frame-
work for adapting algorithms. At a high level, the meta-algorithms we consider wrap around the
base algorithm and translate each action and feedback signal between the base algorithm and the
adversary. The qualifier “uniform” highlights that the translations are one-to-one and independent
of time.

Definition 1. Given a function class F' and a family of query oracles Q over F, we say a uniform
wrapper W = (yyaction yyfunction ypquery) g a tuple of maps where Wacton : k0 — fC, yyfunction
F — H for a function class H and for any f € F and any query oracle Q;y € Q , WIY(Qy) is
a query oracle for YWineion( f) ¢ H. Given an adversary Adv choosing functions in F and query
oracles in Q, we define W(Adv) to be the adversary over H where the selected function and query
by the adversary are transformed according to WWtUnetion and YWauery, We say VW = Id if all the maps
in W are identity.

Meta-algorithm 1: Application of a uniform
In Section[7jwe will discuss several examples of ~ wrapper to the base algorithm - W(.A)

uniform wrappers for up-concave optimization. Input : horizon T, algorithm A, uniform wrapper

We drop the superscripts and use W(x), W(f) w

and W(Qy) to denote Wtion (x), Wiunetion( £ gor 4 — 1 2. ... T do

and W'Y (Q ), respectively, when there is no Play W' (x,) where x; is the action chosen
amblgulty by Aaclion

Meta-algorithm [I] details the pseudo-code for T?;ra;iversary selects fi and a query oracle Q;
W(A) for a uniform wrapper W and an on- for i starting from 1, while A™" is not

line optimization algorithm A. Note that, when terminated for this time-step do

W = Id, the meta-algorithm also reduces to Let y:,; be the query chosen by A"
the identity meta-algorithm and we see that Return o; ; = W (Q;)(y+,:) as the
W(A) = A. Note that in the special case where output of the query oracle to A

A is an online algorithm with semi-bandit feed- end

back, Meta-algorithm [T|reduces to Algorithm 1 ~ end
in (Pedramfar & Aggarwall [2024a).

In this paper, we will design uniform wrappers that could convert algorithms for concave opti-
mization into algorithms for more general class of functions that contains many DR-submodular
functions. Specifically, we consider upper-quadratizable/linearizable functions which we will dis-
cuss in the following section.

5 LINEARIZABLE AND QUADRATIZABLE FUNCTIONS CLASSES

We next define an important function class significantly generalizes concavity but preserves enough
structure that will enable us to obtain improved regret bounds for various problems.

Definition 2 ((Pedramfar & Aggarwall, 2024a))). Let K C R be a convex set, F be a function class
over K. We say the function class F is upper quadratizable if there are maps g : F x K — R? and
h : K — K and constants p# > 0,0 < o < 1 and 8 > 0 such that

af )~ F009) < 5 ({a(7xy = x) = Slly = xI?). m

As a special case, when p = 0, we say F is upper linearizable. By setting g(f,x) = Vf(x),
h = Idg and @« = B = 1, we see that the notion of upper linearizability generalizes concavity
and upper quadratizability generalizes strong concavity. It was shown in (Pedramfar & Aggarwal,
2024a)) that several classes of DR-submodular (and up-concave) functions are upper quadratizable.
(see Lemmas [I] [2] and B)) A similar notion of lower-quadratizable/linearizable may be similarly
defined for minimization problems such as convex minimization

2We say F is lower quadratizable if af(y) — f(h(x)) > 8 ((g(f, x),y —x)+ &y - xHQ) . This gen-
eralizes the notion of convexity and strong convexity.
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Definition 3. We say F is upper quadratizable with a uniform wrapper W if W(F) is defined and
differentiable over /C and, for all f € F, we have

af(y) = £OV6x) < 5 (VW Gy —) = Iy = xIP). @

Note that a uniform wrapper is not uniquely determined by % and g in the definition of upper quadra-
tizable functions as it also needs to describe transformations of query oracles. The special case with
a = =1, W = Id reduces to the definition of (strong) concavity. In Section[7} we will construct
uniform wrappers for several classes of upper quadratizable functions.

6 WHEN IS CONCAVE OPTIMIZATION ENOUGH?

As can be seen in Meta-algorithm[I] we may apply a uniform wrapper V to any online optimization
algorithm .A. However, even if the original algorithm has a sublinear regret over concave functions
and F is a function class that is upper quadratizable with W, this does not guarantee that the resulting
algorithm W(.A) has a sublinear regret over F. In this section we discuss how we might convert the
proofs of the regret bound for .4 over concave functions into a proof of a similar regret bound for
W(A) over F. We will refer to algorithms A where the regret bounds could be be converted as
wrappable algorithms.

The core idea for converting proof for concave optimization into proofs for upper-quadratizable
optimization can be informally summarized in a few steps:

(0) Sometimes, if the algorithm A is the result of application of a meta-algorithm to another
algorithm B, e.g. A = SFTT(B) (the meta-algorithm SFTT converts algorithms that
require full-information feedback to ones that work with (semi)-bandit feedback; see Ap-
pendix [J)), we may need to consider the base algorithm instead. For example, in the example
of SFTT, we might want to consider SFTT(W(B)) instead of W(SFTT(B)) = W(A).

(1) Rewrite the parts of proof (after possibly adapting the algorithm) of the original regret
bound without assuming that the function class in concave, in order to isolate the use on
concavity in the proof. In this step, we hope to obtain a result that would only require a
single use of an inequality of the type f(y) — f(x) < (Vf(x),y —x) — §]ly — x||* to
complete the proof for the concave case. See Theorems |1 (as an example of a family of
zeroth order results) and[9] (as an example of a family of first order results) for examples of
this step.

(2) Verify that the results of the previous step could be adapted to upper-quadratizable setting.
See the proof of Theorems [2]and [I0] for examples of this step.

In the following subsection, we discuss a version of Follow The Regularized Leader (FTRL) al-
gorithm for concave optimization and adapt it to fit the guidelines discussed above. As another
application of the guideline, we refer to Appendix [B] for a discussion of applying this guideline to
recover some previous results in the literature, including all the results in Tables |1| and [2| that are
marked with (¥).

6.1 FoOLLOW THE REGULARIZED LEADER

Follow The Regularized Leader is a popular online optimization algorithm. When applied to a
sequence of vectors {g;}7_, in K, FTRL outputs a sequence of points {x;}_,, where

t

x1 = argmin (x), xp41 = argminnZ(—gs,x> + O(x). 3)
xeX xeK

s=1

Here ®(x) is an arbitrary regularizer and 7 is a parameter. In this paper, we use a self-concordant
barrier of K as the regularizer of FTRL. Self-concordant barriers were first proposed in the convex
optimization literature, with (Abernethy et al.| [2008) the first use in bandit feedback setting. We
refer to Appendix [E] for an overview of the main ideas present in FTRL, including the definition of
self-concordant barrier ®, the Minkowski set K, «, , and X-smoothing of function f to obtain f 2
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Here we propose a FTRL variant for zeroth-order feedback, based on (Saha & Tewari, |2011), which
will be a key base algorithm for our framework. See Algorithm [2|for pseudo-code.

The following theorems demonstrate how to ap- Algorithm 2: Zeroth Order Follow The Reg-
ply the guideline described in the beginning 1. 41 eader - ZO-FTRL

of Section E] to the resglts of (Saha & Tewari, Input : Horizon 7', smoothing radius §, learning
2011). The first step is to analyze the proof rate 7, v-self-concordant barrier ®

and modify the base algorithm so that we could y, argmin, . P(x)

obtain a result that is valid for non-convex fort=1,2,...,Tdo

functions and would only require a single use
of an inequality similar to f(y) — f(x) <
(V f(x),y—x) to obtain a regret bound for con-

Play x;
The adversary selects f: and reveals a
zeroth-order query oracle 9, for f;

cave case. By a small modification in the origi-
nal algorithm, we get ZO-FTRL which differs
from the original in that it is no longer a bandit
algorithm. While the agent plays x; it queries
the oracle at x; + 0%;v; # X;. This modifica-
tion allows us to obtain the following result.

Theorem 1. Let F be an M;-Lipschitz My- end
smooth function class that is bounded by M
and let By > My. Also let B € Adv{(F, By) be a realized adversary that returns f1,--- , fr, let

U, € argmax,cy Zthl fe(u) and 0, € argmin, . |lu. — x|| where v = T~L. Then, when
running Algorithm 2] against B, we have

—1/2
D (V2<I>(xt))
Draw v, uniformly from §e-1
Yyt <— a sample of Q: at x; + 0% vy
O < %ytEt_lvt

X¢q1 < argmin ', —n{og, x) + P(x)
xek

SOE ) - fitx)] - 0T) < 3E 777 @) = £ ()]
t=1 t=1
and XT:IE [(fozt (x¢t), O, — Xt>:| <0 (17(5_2T +n7t logT) .

See Appendix [G] for the proof. Note that if f is concave, then we use use Lemma 4] to see that the
right hand side of the first inequality is bounded by the left hand side of the second inequality and
obtain the regret bound for the concave case. See Appendix [H]for the proof.

Theorem 2. Let F be an M;-Lipschitz My-smooth function class over K that is upper-linearizable
with0 < a < 1, B > 0 and a zeroth-order uniform wrapper W. Also assume that yyaction o \f 1-
Lipschitz and M}-smooth. If Adv is a zeroth order oblivious adversary over F such that for for any
f € F and any query oracle Q; returned by Adv, W(Qy) is a stochastic zeroth order query oracle
Jfor W(f) that is bounded by By, then

RIS =0 (52T + 97 og T + 8°T ),

In particular, by setting 1 = T~2/% and § = T~"/5, we see that RZY&ZdQ'FTRL) = O(T2/3).

7 UNIFORM WRAPPERS FOR UP-CONCAVE OPTIMIZATION

In this section, we study three classes of up-concave functions and show that they are upper-
quadratizable with appropriate uniform wrappers. By identifying appropriate uniform wrappers,
Theoremimmediately implies O(T2/3) a-regret using UNIFORMWRAPPER with ZO-FTRL as a
base algorithm along with the respective uniform wrapper.

7.1 MONOTONE p-STRONGLY 7y-WEAKLY UP-CONCAVE FUNCTIONS WITH BOUNDED
CURVATURE (FM)

For differentiable DR-submodular functions, the following lemma is proved for the case v = 1
in (Fazel & Sadeghil 2023)) and for the case ;1 = 0 in (Hassani et al.l|[2017). The general form we
use here is proved in Lemma 1 in (Pedramfar & Aggarwall [2024a).
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Lemma 1. Let f : [0,1]Y — R be a non-negative monotone yi-strongly ~y-weakly up-concave
function with curvature bounded by c. Then, for all x,y € [0, 1]%, we have

2

Y
14 cy?

) = 169 = 775 (V69 =) = Glly = xP),

where NV f is an up-super-gradient for f.

Lemmal ] together with Definition [T) of uniform wrappers, immediately imply the following.

Theorem 3. Let FM be the class of functions over IC where every f € FM may be extended to a non-
negative differentiable monotone p-strongly y-weakly up-concave function with curvature bounded
by c defined over [0, 1]%. Then FM is upper-quadratizable with uniform wrapper WM = 1d.

If A is a wrappable algorithm for online optimization with sublinear regret bound of O(7"?) for
some 3 < 1 over concave functions, then the above theorem shows that by directly applying A to
monotone DR-submodular functions, we get o -regret bound of O(T?). As a special case, when

A is one of the wrappable algorithm descrlbed m Theorem [10} using the above theorem recovers
Theorem 2 in (Pedramfar & Aggarwal,[2024a) which itself is a generalization of Theorem 2 in (Chen
et al.| 2018) and Theorem 3 in (Fazel & Sadeghil 2023)).

7.2 MONOTONE y-WEAKLY UP-CONCAVE FUNCTIONS OVER CONVEX SETS CONTAINING
THE ORIGIN (FM0)

For differentiable monotone DR-submodular functions, the following lemma is proved in (Zhang
et al.,[2022). The general form here is proved in Lemma 2 in (Pedramfar & Aggarwal, 2024a)).

Lemma 2. Let f : [0,1]¢ — R be a non-negative monotone 7 weakly up-concave differentiable

function andlet F : [0,1]¢ — R be the function defined by F(x fo ﬂizw)z f(zxx)—£(0))dz.
Then F is differentiable and

1—e™7
v
Let the random variable ZM° € [0,1] be defined by the law ¥z € [0,1], P(ZM? < 2) =
IN 17" 1. Then we have E,zvo [z71(f(z*x) — f(O ))] ( ). Moreover fori > 1, if

0 1l—e—7
is i times differentiable then we also have E . zvo [271V? (z % x) V’F
z~Z

(1—e)fly) - f(x) <

(VE(x),y —%).

Definition 4. Let K C [0, l]d be a convex set containing the origin and, for any ¢ > 0, let F%VIO be the
class of functions over K that are max{i, 1} times differentiable and where every f € FM° may be
extended to a non-negative monotone y-weakly up-concave function defined over [0, 1]%. We also as-
sume that £(0) = 0 for all f € F}O. We define WMO := ((yWMO)action ' ()4)M0)function " 7))M0')query)
to be the uniform wrapper with (i) (WMO0)acton .— [d-; (ii) for any f € FMO,

(Wfdo)f“““i"“(f) =x—E,_zmo [z_l(f(z *X) — f(O))] : K — R; and

(iii) for any f € FMO and any i-th order query oracle Q; for f, we have (WMO)aer(Q,)(x) =
2171 % Q (2 x x), where z is sampled according to P(ZM0 < 2).

Theorem 4. For any i > 0, the function class FMO defined above is upper-linearizable with the
uniform wrapper WMO.

Remark 1. The meta-algorithm A — OMBQ(.A, BQMO, Id), described in (Pedramfar & Aggarwal,
2024a), is identical to A — WMO(A). In other words, the results of Theorem 3 in (Pedramfar &

Aggarwall 2024a) are about the first order uniform wrapper WM. Here we consider a more general
case where we are not necessarily limited to first order.

7.3 NON-MONOTONE UP-CONCAVE FUNCTIONS OVER GENERAL CONVEX SETS (FNM)

For differentiable monotone DR-submodular functions, the following lemma is proved in (Zhang
et al.,[2024)). The general form we use is proven in Lemma 3 in (Pedramfar & Aggarwall 2024a).
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Lemma 3. Let f : [0,1]% — R be a non-negative continuous up concave differentiable function
and let x € K. Define F : [0,1]¢ — R as the function F(x fo 32(1_ s (f(G*(x—x) +x) -
f(x))dz, then F is differentiable and we have

1 —||x||oo X+ x 3
ey - (25F) < Bvreoy - x.
Let the random variable Z"M € [0, 1] be defined by the law Vz € [0,1], P(Z™™ < 2) =
I 3a _u)3d11, Then we have B, zxu[(5) 7« (f(5 * (x —x) + x) — f(x))] = F(x). Moreover,

ifi > 1 and f is i times differentiable, then E,zxu [(5) 1« V' f(2 % (x — x) + x)] = V' F(x).

Definition 5. Let £ C [0, ] be a convex set and, for any ¢ > 0, let FFM be the class of func-
tions over K where every f € FNM may be extended to a non-negative up-concave function
defined over [0,1]¢. We also assume that FI*™ is max{i, 1} times differentiable for all i > 0
and, for some known constant ¢ > 0 and all f € FYM, f(x) = c¢. Fori > 0, we define
WNM ((WWNM)yaction (WNM)f“nc“on (WRM)query) o be the uniform wrapper with

(1) (WiNM)aCtiOU — x*gx . IC N ]C, (ll) f()r any f c Fi\TM,

(WhM)function( £) . — x 3 E_ _ zxumt [(%)71 *(f(E%(x—x)+x)— f(x))]: K — R;and
(iii) for any f € F™ and any i-th order query oracle Qj for f,

(5) ' *Qr (55 (x—x) +x) ifi>1

(5) 7 (@ Gr(x—x+x) —¢) ifi=0

where 2 is sampled according to P(ZNM < 2).

(WIM)er (Qp) (x) ==

Theorem 5. For any i > 0, the function class FX™M defined above is upper-linearizable with the
uniform wrapper YWNM.,

Remark 2. The meta-algorithm A — OMBQ(A, BQN,x %*), described in (Pedramfar &

Aggarwall 2024a), is identical to A — WNM(A). In other words, the results of Theorem 4 in (Pe-
dramfar & Aggarwall [2024a) are about the first order uniform wrapper WM. Here we consider a
more general case where we are not necessarily limited to first order.

8 APPLICATIONS

We next discuss some specific online and offline non-convex/non-concave optimization problems
for which we can use our new framework to derive improved regret and sample complexity bounds
respectively by applying uniform wrappers proposed in Section[7]to the zeroth order feedback OCO
base algorithm ZO-FTRL (Algorithm [2). We note that we can also apply our framework to other
base algorithms to recover many existing results in the literature. (See Appendix [B]for more details).

We start with a definition. For x € K and C' > 0, we say a zeroth order query oracle Q¢ is
contained in a (x, C') cone if we have |Qf(z) — f(x)| < C||z — x| for all z € K. In other words,
the randomness of the query oracle approaches to zero at least linearly as we approach the point
x. We use the notation Adv((F, Cone(x, C)) to denote the oblivious adversary over F with query
oracles that are contained within this cone. Note that Q; € Advg(F, Cone(x, C')) is equivalent to

M (Q f) being bounded. See condition (iii) of Deﬁnitionfor details. If Q does not belong to a

cone as described above, we can see that the term (%) ~! causes WM (Qy) to blow up. Similarly,
in the special case when z = 0 and f(0) = 0, it is also equivalent to W}1°(Q ) being bounded.

We begin by showing O(TQ/ 3) a-regret bounds for online optimization problems for the three func-
tion classes discussed in Section [7]under zeroth order feedback. See Appendix [[|for the proof.

Theorem 6. Let FM, FM0 and FYM denote the function classes described in Lemmas |] I E] and |3} I
respectively and let o™ 0 and aNM be the values of . If the function classes are M -Lipschitz
and Msy-smooth, thenfor any C' > 0 and By > My = maxyex f(x), the following are O(T?/3):

Rwy (ZO-FTRL) W0 (Z20-FTRL) W{™ (ZO-FTRL)
aM,Adv‘(’)(Fg/I,BO)’ onO,Adv‘(’)(Fg/Io,Cone(O,C))7 cxNM,Adv’(‘)(FONM,0011e(§,C))'
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Remark 3. For each function class, the SOTA for noisy zeroth order feedback achieved O(T3/ 4
a-regret bounds while we achieve O(T2/3). For the special case of exact zeroth order feedback, the
SOTA is O(v/T). All the SOTA algorithms mentioned are special cases of our framework.

We next show O(T3/ 4) a-regret bounds for online optimization problems for the three function
classes discussed in Section [7]under bandit feedback. For full information zeroth order algorithms,
the query location may differ from the action taken. Here we convert them into bandit algorithms
using the meta-algorithm Stochastic Full-information To Trivial query (SETT) from (Pedramfar &
Aggarwal, [2024a)) (see Appendix [J]for details). The proof is in Appendix [K]

Theorem 7. Under the assumptions of Theorem @ the following are O(T3/ 4):

RSFTT(W&“(ZO-FTRL)) RSFTT(W(I)\{O(ZO-FTRL)) RSFTT(W(IJ\IM(ZO-FTRL))
aM Advy (FM,Bo) ) aM0 Advy (F}0,Cone(0,C))’ aNM Adve (FYM,Cone(x,C))’

where SFTT is Algorithm 4 in (Pedramfar & Aggarwal, 2024a) with L = T'/*.
Remark 4. Note that Algorithm 3 in (Wan et al.| 2023) is in fact SFTT(W}'°(ZO-FTRL)). How-
ever, our analysis simplifies the proof and generalizes the result to allow for stochastic feedback.

Remark 5. For the class F'M of non-monotone up-concave functions over general convex sets,
our O(T/*) bound beats the SOTA O(T"*/5) bounds for exact and for noisy bandit feedback. For
the class FM? of monotone v-weakly up-concave functions over convex sets containing the origin,
our O(T3/*) bound beats the SOTA O(T*/®) bound for noisy bandit feedback and matches the
bound for exact bandit feedback. For the third class FM of monotone ji-strongly ~-weakly up-
concave functions with bounded curvature, our results match the SOTA. All of the SOTA algorithms
mentioned here are special cases of our framework.

Conversions of online algorithms to offline are referred to online-to-batch techniques and are well-
known in the literature (See (Shalev-Shwartz, [2012)). A simple approach is to simply run the online
algorithm and if the actions chosen by the algorithm are x;,--- ,xp, return x; for 1 < ¢t < T
with probability 1/7. We use OTB to denote the meta-algorithm that uses this approach to convert
online algorithms to offline algorithms.

We next show that using OTB conversion (on top of W(ZO-FTRL)), we obtain O(1/¢?) sample
complexity for finding an a-approximate solution in each function class under a noisy value oracle

model, beating the SOTA O(1/¢*) sample complexity. The proof is in Appendix
Theorem 8. Under the assumptions of Theoreml6] the following is true.

(i) If the stochastic query oracle is bounded by By, then the sample complexity of the offline
algorithm OTB(W}(ZO-FTRL)) over Flis O(e~3).

(ii) If the stochastic query oracle is contained in the cone Cone(0, C), the~n the sample com-
plexity of the offline algorithm OTB(W}1?(ZO-FTRL)) over F0 is O(e~3).

(iii) If the stochastic query oracle is contained in the cone Cone(x, C), then the sample com-
plexity of the offline algorithm OTB(WYM(ZO-FTRL)) over FXM is O(e~3).

10
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Table 2: Offline up-concave maximization

F | Set Feedback Reference Appx. Complexity
(Mokhtari et al.|[2020 1—e7 O(1/€%)
(Hassani et al.|[2020] (%) 1—e O(1/¢?)
VI | stoch. (Zhang et al.||2022} (*) 1—e 0(1/&)
© (Pedramfar & Agearwal|2024a) (*) 1—e7 ()(1/5 )
U det (Pedramfar et al.||2024b] 1—e7 O(1/€%)
=Y | (Pedramfar & Aggarwal||2024a) (*) 1—e¢7 O(l/c )
2 F [ stoch. Theorem|8| 1—e7 O(1/é%)
E stoch (Pedramfar et al.|2024b] T—e¢ 7 O(1/e)
g | (Pedramfar & Aggarwall[2024a) (*) 1—e7 O(1/e*)
= (Hassani et al.||2017} () YT ++7) Oo(1/e )
_ | VF | stoch. (Pedramfar et al.||2024b) /(1477 O(1/¢%)
E (Pedramfar & Agearwal||2024a) (*) /(14 ey?) o(1/e)
g det (Pedramfar et al.||2023] Y /(1+~7) O(1/€3)
= : (Pedramfar & Aggarwal||2024a) (*) /(14 ey?) o(1/e?)
F (Pedramfar et al.||2023) /(1 + 'yz) O(1/¢%)
stoch. | (Pedramfar & Aggarwall|2024a) (*) /(1 +e?) ()(1/5 )
Thwrcmn /(14 ey?) O(1/¢%)
2 {Pedramfar et al.|[2024b) I f') (2 - f) 0(1/é%)
g | V| stoch (Zhang ct al| 20241 %) —h)/4 0(1/¢)
£ g (Pedramfar & Agearwal|2024a) (*) (1 —h)/4 O(1/€%)
2{: g, det. (Pedramfar et al.||2024b) N‘()lfjf') (% - % O(1/e%)
2 F (Pedramfar & Aggarwal||2024a) (*) (1—h)/4 O(1/€%)
stoch. Theorem|3| —h)/4 O(1/e%)

(—9h) (1 1

stoch, (Pedramfar et al.|[2024b) ook (5 _ T) 0(1/€%)
(Pedramfar & Aggarwal]|2024a) (*) (1-h)/4 O(1/eh)

This table compares the different results for the number of oracle calls (complexity) within the constraint set for
up-concave maximization. We refer to (Pedramfar et al.| |2024b)) for a more comprehensive table that includes
results for deterministic first order feedback. Here h := mingex ||Z||oo and 4’ := y+1/~. Rows marked with
(*) are results in the literature that fit within the framework described in this paper. The rows describing
results with stochastic feedback that are marked with T assume that the random query oracle is contained with
a cone, as detailed in Theorem 6}

A ADDITIONAL RELATED WORKS

DR-submodular maximization Two of the main methods for continuous DR-submodular maxi-
mization are Frank-Wolfe type methods and Boosting based methods. This division is based on how
the approximation coefficient appears in the proof.

In Frank-Wolfe type algorithms, the approximation coefficient appears by specific choices of the
Frank-Wolfe update rules. (See Lemma 8 in (Pedramfar et al., 2024a)) The specific choices of the
update rules for different settings have been proposed in (Bian et al.,[2017bfa; Mualem & Feldman,
2023} [Pedramfar et al, [2023; |Chen et al,, [2023). The momentum technique of (Mokhtari et al.,
2020) has been used to convert algorithms designed for deterministic feedback to stochastic feedback
setting. (Hassani et al.| |2020) proposed a Frank-Wolfe variant with access to a stochastic gradient
oracle with known distribution. Frank-Wolfe type algorithms been adapted to the online setting using
Meta-Frank-Wolfe (Chen et al., 2018; 2019) or using Blackwell approachablity (Niazadeh et al.,
2023)). Later (Zhang et al.,[2019) used a Meta-Frank-Wolfe with random permutation technique to
obtain full-information results that only require a single query per function and also bandit results.
This was extended to another settings by (Zhang et al., 2023) and generalized to many different
settings with improved regret bounds by (Pedramfar et al.| 2024a).

Some techniques construct an alternative function such that maximization of this function results
in approximate maximization of the original function. Given this definition, we may consider the
result of (Hassani et al.,[2017; |Chen et al 2018}, [Fazel & Sadeghil 2023)) as the first boosting based
results. However, in the case of monotone DR-submodular functions over general convex sets,
the alternative function is identical to the original function. The term boosting in this context was
first used in (Zhang et al.l [2022), based on ideas presented in (Filmus & Ward, 2012} Mitra et al.,
2021), for monotone functions over convex sets containing the origin. This idea has been used
later in (Wan et al., 2023} |Liao et al., 2023) in bandit and projection-free full-information settings.
Finally, in (Zhang et al.,|2024)) a boosting based method was introduced for non-monotone functions
over general convex sets.

Up-concave maximization Not all continuous DR-submodular functions are concave and not all
concave functions are continuous DR-submodular. (Mitra et al., [2021) considers functions that are
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the sum of a concave and a continuous DR-submodular function. It is well-known that continuous
DR-submodular functions are concave along positive directions (Calinescu et al.,|2011; [Bian et al.}
2017b). Based on this idea, (Wilder, [2018)) defined an up-concave function as a function that is
concave along positive directions. Up-concave maximization has been considered in the offline
setting before, e.g. in (Lee et al.,2023) and (Pedramfar & Aggarwal,2024a)). In this work, we focus
on up-concave maximization which is a generalization of DR-submodular maximization.

B RECOVERING PREVIOUS RESULTS IN THE LITERATURE

As mentioned in Remark Algorithm 3 in (Wan et al., 2023) is in fact SFTT(W})'°(ZO-FTRL))
and therefore their result fits within our framework. The way the remaining results in the tables that
are marked with (¥) is discussed in the following.

We demonstrate how to apply the guideline described in the beginning of Section [6] to Theorem 2
in (Pedramfar & Aggarwal, 2024b). This allows us to obtain a generalized version of Theorems 1
in (Pedramfar & Aggarwall [2024a)). As we will discuss below, this will allow us to recover all the
remaining results in Tables [I] and [2] that are marked with (*) and all the results of (Pedramfar &
Aggarwal| 2024a)). Note that the results of (Pedramfar & Aggarwall [2024a) in non-stationary setting
are not discussed in this paper, but they are also recovered.

We start with some definitions. Given a function class F, we use the notation F,, ¢ to denote the
class of functions ¢(y) := (g(f, %),y —x) = 5[y —x[* : £ = R, forall f € F and x € K. This
is the class of quadratic (or linear, when p = 0) functions that form the upper bound in Equation [1]
Similarly, for any B; > 0, we use the notation Q,,[B1] to denote the class of functions ¢(y) :=
(0,y —x) — £lly — x| : K — R, forall x € K and o € Bp, (0). In the following theorems, we
will obtain results that allow us to reduce the problem of online optimization over F to the problem
of online optimization over the quadratic (or linear) function class F', .

Theorem 9. Let A be algorithm for online optimization with semi-bandit feedback. Also let F be a
differentiable function class over K and 1 > 0.Then the following are true.

* If query oracles in Adv are deterministic gradient oracles, then we have

b

; —x)) — P, = A
BZIX%VE max <<Vft(xt)aut xe) — 5l thl) S R aav (®, o)

t=a
* On the other hand, if F is My -Lipschitz and query oracles in Adv are stochastic gradient
oracles that are bounded by By > M, then we have

b

H A
- — Sy — < .
s, g Z<<Vft<Xt>vUt x) = gl Xt”) < R @iz

t=a

See Appendix [C| for proof. Note that if f; are u-strongly concave, then this result reduces to The-
orem 2 in (Pedramfar & Aggarwall 2024b). Next, we follow step (2) in the guideline to obtain the
following result.

Theorem 10. Let F be function class over K that is upper-quadratizable with n > 0, 0 < a < 1
and 8 > 0 and a first-order uniform wrapper V.

o IfW(V) =V, i.e., it maps deterministic gradient oracles into deterministic gradient ora-

W(A) A
cles, then we have Ra,Advfl(F) < ﬁRl,Adv’i(Fu,v)'

o If, for any f € F and any query oracle Qy bounded by By, W(Qy) is a stochastic query

. / W(A) A

oracle for W(f) that is bounded by BY, then we have Ra,Adv‘l’(F7Bl) < BRl,AdVﬁ(Qu[Bi])'

See Appendix [D|for proof. In this theorem, by using the uniform wrappers described in Section[7} in

the special case of ¢ = 1, we recover Theorems 2, 3 and 4 in (Pedramfar & Aggarwall 2024a)). (See

Remarks|T]and2)) In other words, we recover all meta-algorithms in (Pedramfar & Aggarwal, [2024a))
that are used to convert concave optimization algorithms into up-concave optimization algorithms.
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Remark 6. By applying these uniform wrappers to base algorithms SO-OGA ((Garber & Kretzul,
2022)) or TA ((Zhang et al., [2018)), we recover all the results of (Pedramfar & Aggarwall, 2024a).
In particular, we also recover the results for non-stationary regret described in Table 3 in (Pedramfar
& Aggarwall, 2024a)).

C PROOF OF THEOREM[9]

Proof.

Deterministic oracle:

For any realization B = (By,---,Br) € Adv C Adv!(F), we define B;(x,,--- ,x;) to be the
tuple (g¢, V) where

B;(le"' Xt) = qp =y = (Vi(xe),y — x¢) — g”y - Xt||2a

and B’ = (B}, --, B). Note that each B; is a deterministic function of x1, - - - , x; and therefore
B e Advf1 (F,,v). Since the algorithm uses semi-bandit feedback, the sequence of random vectors
X1, -+ ,X7) chosen by A is identical between the game with 13 and B’. Hence

b
o 2
E S (v —x;) = By -
Bselg)iv I'?ggf{t:a << fr(xe), ur — x¢) 2||ut Xt|>

b b
= sup E [max th(ut)*th(xt)
t=a t=a

BeAdv ueld

- A = A
< sup Rip = Rl,Adv‘i(Fu.v)'
B'eAdv (F,,v) ’

Stochastic oracle:

Let Q9 = ng X oo X Q% capture all sources of randomness in the query oracles of Adv](F, By),
i.e., for any choice of § € 02, the query oracle is deterministic. Hence for any § € Q< and realized

adversary B € Adv C Advg(F7 Bj1), we may consider By as an object similar to an adversary
with a deterministic oracle. However, note that By does not satisfy the unbiasedness condition of
the oracle, i.e., the returned value of the oracle is not necessarily the gradient of the function at that

point. Recall that B; maps a tuple (x1,--- ,X¢) to a tuple of f; and a stochastic query oracle for
ft- We will use Ego to denote the expectation with respect to the randomness of query oracle and
Eﬂtg [[] := Eqel|ft,%:] to denote the expectation conditioned on the action of the agent and the

adversary. Similarly, let Eg.a denote the expectation with respect to the randomness of the agent.
Let o; be the random variable denoting the output of Q at time-step ¢ and let

0y 1= ]E[Ot | ft,Xt] = EQ? [Ot] = Vft(xt).

Similar to the deterministic case, for any realization B = (By,--- ,Br) € Adv and any 6 € 0e,
we define By ,(x1,- -+ , %) to be the pair (g, V) where

"
gt =y = (04, y — X¢) — §||y—XtH2~

We also define B := (B}, ;,--- ,Bj ). Note that a specific choice of 6 is necessary to make sure
that the function returned by /3; , is a deterministic function of x4, - - - , x; and not a random variable

and therefore 58 belongs to Adv' (F,[Bi]).

Since the algorithm uses (semi-)bandit feedback, given a specific value of 6, the sequence of random
vectors (x1,--- ,Xr) chosen by A is identical between the game with By and Bj,. Therefore, for
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any u € U, we have

b

530 (600w = Gl )

M-

- <<]E [0¢ | frsxie] sy —x¢) — gHut - xt||2>

t

I
e

=K (E |:<0taut_xt>_g|ut_xt||2 | ftﬂ%})

t

=

I
e

=E (IE [q¢(ur) — g (%) | fhxt])

a

=

~
Il

=K (Qt(ut) - Qt(Xt))

t

=

a

Hence we have

b b

e |3 (0w =0 = =il )| = ma | 3 (o) - ()

t=a t=a

b

<E max Z (Qt(ut) — Gt (Xt))

u=(ug, - ,ur)eU P

_ pA
= RE U)la, b
where the inequality follows from Jensen’s inequality. Therefore

b

sup max[E Z ((Vft(xt),ut —Xt) — %Hut - xt||)

U
BeAdv u€ i—a

< sup R“é,
BeAdv,0eQ 0

< sup R“é,
B'€AdvE (F,[Bi])

A
= Rixavt (®,.(B1))

D PROOF OF THEOREM

Proof.
@):
‘We have
b
W(A) _ _
R o At () = BGEEE(F)E u:(ufﬂ?ﬁﬂeu; (afe(u) = fi(W(x4)))

b
< sup max E Zﬁ ((VW(ft)(xt), u; — X)) — H”ut _ Xt|>
BeAdv (F) u=(ur, - ur)edd |1 9

— A
- BRl,Advfl(HH,v)'
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(ii):
Since Adyv is oblivious, the sequence of functions (f1,- - , fr) is not random and we have
\ -
W(A
Ra,/(\d\)/‘i(F,Bl) = sup E max Z (Oéft(ut) - ft(W(Xt)))

BEAAV(F,B;) |u=(ui,ur)eld 7—

b

= sup max E afi(u) — fi(W(x
BeAdv (F,B;) u=(ur,- ur)eld ;( ) = fiOU t)))
- )
< sup max E 5(VWf X)), Wy — Xg) — = ||lug — x >
BEAQVS (F,B,) u=(ur,ur) €U ; W G), e =) = Gl =

_ A
= PR aavt(QulBy)-

E FoLLoOw THE REGULARIZED LEADER

We start by defining the notion of self-concordant barrier.

Definition 6 ((Hazan et al., 2016)). Let K € R? be a convex set with non empty interior int(K).
We call a function @ : int(XC) — R a v-self-concordant barrier of K if:

(i) @ is three-times continuously differentiable, convex, and tends to infinity along any se-
quence of points approaching the boundary of C;

(i) Forevery h € R? and x € int(K), we have:
V3@ (x)[h, b, h]| < 2(V?®(x)[h, h])*?,  |V&(z)h]| < »'/*(V?®(x)[h, h])'/?

where the third-order differential is defined as V3®(x)[h, h, h] :
tQh + t3h)|t1:t2:t3:()-

— [oMd
= ronon (@ +hh +

Next we define the notion of local norm and dual norm with respect to a self-concordant barrier.

Definition 7. For every x € int(K), the Hessian of the self-concordant barrier induces a local norm,
denoted as || - ||¢,, and a dual norm, denoted as || - || x«, where for any v € R,

ox =/ VIV2®(x)v, [V]ex =1/ vI(V20(x))"v.

An important result for FTRL is the following theorem which was proved in (Abernethy et al.,
2008)). It shows that if we set the regularizer to be a self-concordant barrier of K and the algorithm
can access the unbiased estimator of g, then the regret of the generated solution sequence {z;}7_,
can be bounded in terms of the local norm of the estimator.

Theorem 11 ((Abernethy et al., 2008)). Let K C RY be a convex set, ®(x) be a self-concordant
barrier on K, {g;}1_, be a sequence of random vectors in R%. Then running FTRL (described
in Equation 3) on a vector sequence {g;}_; in R? with ®(z) as the regularizer will produce a
sequence of point {x;}1_, in K where

[v]

T T
P(y) — P(x3
S ey —x) <13 llgila, + 2 =200,

t=1 t=1 n

foranyy € K.

The ellipsoid gradient estimator was Bfoposed in (Abernethy et al.| 2008), where the authors use it

along with Theorem |1 1{to design an O(+/T') regret algorithm for bandit linear optimization. For a
continuous function but possibly non-smooth f : R? — R and an invertible matrix ¥ € R¥*<, we
define the ¥-smoothed version of f.
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Definition 8. For function f(x) : R? — R and invertible matrix ¥ € R?*4, we call f¥(x) a
Y-smoothed version of f(x), where f*(x) = E,.pa [f(x + Xv)] . Here v ~ B¢ means that v is
sampled from the unit ball B¢ uniformly at random.

There is a surprising fact that there is an unbiased estimator of V *(x) for any x, and the estimator
uses only a single query to the value oracle of f.

Lemma 4 ((Abernethy et al., 2008)). Let > € RY*? be an invertible matrix, f(x) : R? — R be an
arbitrary function. Then V f*(x) = dE,, gi1 [f(x + Zv)E’lv] . Here v ~ S ! means that v
is sampled from the (d — 1)-dimensional unit sphere S*= uniformly at random.

If f is a linear function, f*(x) = f(x), so Lemma provides a one-sample unbiased estimator of
the gradient of the linear function. The ellipsoid gradient estimator is usually used along with FTRL
with a self-concordant regularizer ® of /C. When the invertible matrix ¥ is set to be (V2®(x)) /2
and x € int(K), the sampled action x 4+ Xv is located in the surface of a so-called Dikin ellipsoid
centered at x, i.e. {x’ | ||x" — x||o x < 1}. The fact that Dikin ellipsoid is entirely contained in X
allows us to define f* at x.

We finish this section with quick overview of the concept of the Minkowski function, the Minkowski
set and some of their useful properties.

Definition 9. Let /C be a compact convex set, the Minkowski function 7y : I — R parameterized
by a pole x € int(K) is defined as 7y (y) := inf{t > 0| 2+t '(y — ) € K}. Given § € R and
X1 € int(K), we define the Minkowski set

Ko = {x € K| me,(x) < (147) 7'}

Lemma 5 ((Abernethy et al.l[2008)). Let KC be a compact convex set, x € int(K) with diameter D,
u. € K and u, := argmin,c ||z — u.|| be the projection of u. onto the Minkowski set I x,
then

Ju. —d.] <7D

The following lemma provides an upper bound of the difference between the function value of a
self-concordant barrier at two different points.

Lemma 6 ((Nesterov & Nemirovskii, [1994)). Let ® be a v-self-concordant barrier over a compact
convex set K, then for all X,y € int(K):

1

P(y) — @(x) < vlog TGy

F TECHNICAL LEMMAS

This section provides some technical lemmas that will be used in the proofs later.

Lemma 7. Let K be a compact set and let f : K — R? be an My-smooth function. Then f may be
extended to an My-smooth function f : RY — R.

Proof. The function VF' is an Ms-Lipschitz function defined on K. Therefore, according to
Kirszbraun theorem (Kirszbraun, 1934) it may be extended to a function g : R — R? that is M-
Lipschitz. Now the result follows directly from Whitney’s extension theorem (Whitney, [1934). [

Parts (i)-(iii) of the following lemma are well-known in the literature. (See Lemma A.5 in (Wan
et al.,[2023)) for a proof). Here we provide a proof for part (iv).

Lemma 8. Following properties hold for 3-smoothed version of a function f(x) for an invertible
matrix 3.

(i) If f(x) is a monotone function, then so is f*(x).
(ii) If f(x) is My-Lipschitz, then so is f*(x).
(iii) If f(x) is Mo-smooth, then so is f*(x).
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(iv) If f is upper-quadratizable with a uniform wrapper W and «, 3 and p, then we have
af*w) = (1o W0 < 5 ((TVNP60.y - x) - Gy = x1*)
Proof. We have
af*(y) = (f o W)*(x) = Eynpe [af (y + Zv) = fW(x + 2v))]

= [B (W6t 5y =)= v - x||2)]

=5 ((Bumss [TWx+ 0]y = x) = By - x1?)

=5 ((VEomss WU+ 0]y = x) — By - x1?)

1

=5 ({TOVU 0y = x) = Sy = x?) =
Lemma 9. If f : K — R is M;-Lipschitz and My-smooth and g : K — K is M-Lipschitz
and MJ5-smooth, then f o g is M{'-Lipschitz and MY -smooth where My’ := My M| and M} =
My M}, + MyM!>.

Proof. We have
ID(f o g)x)|| = IDf(9(x)) - Dg(x)|| < My M,

and therefore for all x,y € K, we have

[D(f o g)(x) = D(fog)y)ll =Df(g9(x)) - Dg(x) — Df(g(y)) - Dg(y)ll
<|[|Df(9(x)) - Dg(x) — Df(g(x)) - Dg(y)ll
+ 1D f(g(x)) - Dg(y) — Df(g(y)) - Dg(y)ll

= [1DF(g(x))[[[Dg(x) = Dg(y)ll
+IDf(9(x)) = Df gy Dg(y)l
< MiMj|[x = y|| + M2 Millg(x) — g(y)ll

< (M1M2/+M2M{2)||X—YH~ O
G PROOF OF THEOREM

Proof of Theorem[I] We have

ZE [fe(u) = fi(xe)]

i E A% 0 = 7% )| 4 DB £ (w) - 7 ()
= - )
(A)

DI [fele) = 70|+ 3R (177 ) = S

t=1

(B) (C)

Note that, for the terms above to be well-defined, we need to be able to define f; 9%t over K which
requires computing f; over a set that is slightly larger than K. Using Lemma([7] we assume that all
functions f; are well-defined and M5-smooth over RY.
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Bounding (A): Since f;(x) is M;-Lipschitz continuous, f> is also M;-Lipschitz continuous by
Lemmal(8] Since ||t — u, || <D by Lemmal[j]

ZE[ FPP ) = fP )| <

<

[| FEP () = £ ()]
4)

™= \TMH

&~
I
-

Bounding (B): Since fi(x) is My-smooth, by Lemrna f3% is My-smooth. Thus,

fe(us) — fzt =Eypa [fi(we) — fi U*+5Etv)]

< ]EVNIBd Vft u* §Ztv> + 7”5215 ||2:|
= ]EVNBL{ [ Vft ll* 5Etv>] +]EVNIBLi |:||5E V||2:|

A

M562D?
<5

Note that in the last inequality, we used the fact that the Dikin ellipsoid centered at x; is contained
in K which implies that x; + ;v € K and therefore ||X,v|| < D. It follows that,

212
ZE i) = 7 (@) < %. ©)

Bounding (C): Similarly,

P (%) — fo(xe) = Eypa [fe(xe + 0%5v) — fr(xt)]

M. M562D?
S ]EVNIBd’ |:— <Vft(Xt)762tV> + TQHCSZtV”Q S QT
Therefore,
M,62D?T
ZE |17 a) = fio)] < =5 @
Putting 5[6][7]in ] we see that

T T

SOE [fulw) — filx)] < DB [F7 (@) - 77 (x0)]

t=1 t=1

Mpd? DT M3° DT

M~vDT
+ alMyy + 5 5 ,

which completes the proof of the first claim.

To prove the second claim, we first use Lemma I with 3 = 0%, to see that E [ot | xt} =
Vf 52*( +). On the other hand, since Q; is bounded by By, we have

4B}

-1
s (V) u v < S B <

d2
52 |yt

d 2
Ny =
6yt ! ' X,k

o, . = \
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Hence, using Theorem[T1| with g; = o; and y = 1, we see that

T T
$ . .
SRV )t = x| = DUE[(E [or | %], 0. - x)]
t=1 t=1
T
-3 E {]E [(0r, 1, — 1) | xtﬂ
t=1
[T
=E Z (of, 0y —
| t=1
O(h,) — P(x1)
<E nz 06113 x, . + E—
ET: @By | B(i) — B(x)
=1 n
nd?BET  v1og(s—risy=r)
< + )
02 n
where we used Lemma [6]in the last inequality. O
H PROOF OF THEOREM 2]
Proof. Let B € Adv be arealized adversary and let fi, - - - , f7 be the sequence of functions selected

by B. Also let u. € argmax, ¢y ZtT:1 ft(u) and 0, € argmin, i |Ju. — x| where v = T1
We have

RW(ZO-FTRL) _

MH

E [ofi(uy) = f:(WV(x4))]

a,B
:iE[ (@) ~ (fro W) xt}mzuz[ () - ()]
. (4)
radE [fiw) = 77 ()] + SE [(F 0 W)™ () = Fo(W(x2))]
- (B) - (@)

As in the proof of Theorem E], we use Lemmato extend all functions f; to M>-smooth functions
212
over R? and we bound the terms (A) and (B) by M,y DT and %, respectively. To bound (C),

we first use Lemma@to see that f, o W is M/-smooth, where Mj = M; M} + M,M]?. Hence,
we see that

(fto W)ézt (x¢) = frW(x¢)) = Eypa [ft(W(xt +0%4v)) — ft(W(xt))]

M// M//62D2
S EVNBd |:_ <Vft(W(Xt))> 22 ||5EtV”2 < 2T
Therefore,
o M§2D2T
SE | (o W) (x0) = iW(x)| £ 25—
t=1
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Putting the bounds for (A), (B) and (C) together, we see that

,RW(ZO -FTRL) ZE aft u* ft(W(Xt))]

(aMy + M52 DT
2

IA
Mﬂi

E [aff™ (@) = (fr o W)™ (x,)| + aMyyDT +

o~
Il

1
(aMy + MY)§2D?T
2 )
(8)

M=

E [B(VOV(£)™ (x1), & = x)| + a1y DT +

~~
Il

1

where the second inequality follows from Lemma [§]

To bound the remaining term, we use an argument similar to the one used in the proof of Theorem ]
again. Using Lemma [ with ¥ = 0%, and the fact that y; is an unbiased sample of W(f;) at
x¢ + 6¢vy, we see that E [0, | x;] = V(W(f;))°**(x;). On the other hand, since W(Q;) is
bounded by By, we have |y;| < By, which implies that

d? d*B2
SBAIvE < S50

d2 _ _
57|yt|2vfzt1(v2¢’(xt)) X Vt 52

d B 2
fouk . = |G| =
X ,%

Hence, using Theorem [ 1| with g, = o, and y = 1., we see that

ZE{ W(f)* (), @ —xt} BZE[ [oe [x:] _Xt>}
zﬁzE [E [(0r, t — %) |XtH

t=1

[T
= pE g O, Uy — X¢)
| t=1

n

d(0,) — P(x
< BE 772 ||OtH31>,xt,* + M
t=1

2 2 i) — ®(x;
<ﬁnZdB 20 = 20

Bnd?B2T Brlog(i—risy=r)
< + ,
< 52 7
where we used Lemma E] in the last inequality. Plugging this into Equation 8| and using Mj =
My M}, + MyM{? and v = T—1, we see that
1
w(zo-FrL) _ Bnd*BET ﬂVIOg(k(Hw)*l)
RIS < +
a, 52 n
(aM2 + MM, + MQM{Q) §2D2T
2
-0 <n5_2T tllogT + 52T) . O

+ OéMl’)/DT +

I PROOF OF THEOREM [6]

Proof. Note that in all three cases, /2" is 1-Lipschitz and 0-smooth. Now the result for the first
case follows immediately from the fact that WM = Id. Also note that for any zeroth order query
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oracle @ for a function f € FM%and any y € K

IWM(Qp) ()| =271 Qs (2 xy) < 271 - Cllzxy| = Iyl < D.
Thus the query oracle WW(Qj) is bounded by D and the assumptions of Theorem are satisfied. The
proof of boundedness of WNM(Q¢) for any f € FNM is similar.

J STOCHASTIC FULL-INFORMATION TO TRIVIAL QUERY - SFTT

In this section, we discuss the SF'T'T meta-algorithm (Algorithm 4 in (Pedramfar & Aggarwal,
2024al)) which converts algorithms that require full-information feedback into algorithms that have
a trivial query oracle. In particular, it converts algorithms require zeroth-order full-information
feedback into bandit algorithms.

We say a function class F is closed under convex combination if for any fi,--- , fx € F and any
d1,--+,0, > 0with ). 6; =1, wehave ), 0;f; € F.

Theorem 12 (Theorem 7 and Remark 1 and Corollary 6 in (Pedramfar & Aggarwall [2024a))). Ler A
be an online optimization algorithm with full-information feedback and with K queries at each time-
step where A" does not depend on the observations in the current round and A’ = SFTT(A).
Then, for any M, -Lipschitz function class F that is closed under convex combination and any By >
M,0<a<landl <a<b<Tletd =|(a—1)/L]+1,b = [b/L], D = diam(K) and
let {T'} and {T'/ L} denote the horizon of the adversary. If we also have ’Rf‘/Adv,{(F’B) (K [a,b] =

O(BT"), K = O(1) and L = O(T*), then

Rﬁ,Advg(F,B)(KI)[aa b =0 (BTZT") :

More generally, the above result holds even if the query oracles are not bounded. Specifically, what
we require is that the set of query oracles to be closed under convex combinations.

Algorithm 3: Stochastic Full-information To Trivial query - SFTT(.A)

Input : base algorithm A, horizon T, block size L > K.
forq=1,2,...,7/Ldo
Let %, be the action chosen by 4"
Let (§:)/<, be the queries selected by A%
Let (tq,1,---,tq,z) be arandom permutation of {(¢ — 1)L+ 1,...,qL}
fort=(¢—1)L+1,...,qLdo
ift =tq,i for some 1 < i < K then
Play the action x; = y;
Return the observation to the query oracle as the response to the i-th query
else
| Play the action x; = X4
end
end

end

K PROOF OF THEOREM (7]
Proof. All three class of functions considered are closed under convex combination. Therefore we
may directly apply Theorems|[6]and[T2]to obtain this result for the first case.

For any sequence of functions f1, - - - , fi and query oracles Qy, - - - , Q. for these functions that are
contained within a cone Cone(0, C') and non-negative numbers d1, - - - , d such that ), 6; = 0, the

query oracle @ that uses Q; with probability §; is trivially a query oracle for >, 6; f; that is also
contained within this cone. Therefore, we may apply Theorem[I2]to obtain this result for the second
case as well. The proof of the last case is similar. O

L PROOF OF THEOREM [§]

First we state the following simple result about OTB.
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Theorem 13 (Theorem 8 in (Pedramfar & Aggarwall 2024a))). If A is an online algorithm that
queries no more than K = T? times per time-step and obtains an a-regret bound of O(T?®), then

the sample complexity of OTB(A) is Q(e_% ).

Proof of Theorem[S] This is an immediate corollary of Theorem [6]and the guarantees for the OTB
meta-algorithm stated in Theorem O
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