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REPRODUCIBILITY STATEMENT

We provide references to relevant sections and materials to assist readers and researchers in repli-
cating our results.

Dataset description: All datasets used in our experiments are from open-source benchmarks. A
summary of these datasets is available in Appendix A, with a demonstration example shown in Ap-
pendix B.2. Detailed preprocessing methods are described in Appendix B, including the different
circuit modality generation, sub-circuit generation, and downstream task label collection. The cor-
responding scripts can be found in our open-source repository.

Open access to CircuitFusion code: The source code for CircuitFusion is publicly available
at: https://anonymous.4open.science/r/CircuitFusion-EB45. The repository
includes scripts with step-by-step instructions to replicate the primary results presented in this paper.
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A MORE ON CIRCUIT HDL DATASET

This section provides an overview of the various circuit HDL datasets used in our work, includ-
ing ITC’99, OpenCores, VexRiscv, and Chipyard. These datasets offer diverse designs that span a
range of hardware implementations, enabling comprehensive benchmarking of CircuitFusion across
different circuit design tasks.

A.0.1 ITC’99

The ITC’99 benchmark suite (Corno et al., 2000) is a widely used collection of hardware circuit
designs, primarily designed for logic synthesis and verification. ITC’99 provides diverse designs
ranging from simple combinational logic to more complex sequential circuits. VHDL

A.0.2 OPENCORES

The OpenCores repository (URL, b) offers open-source hardware designs, including a wide variety
of digital systems, such as CPUs, memory controllers, communication protocols, etc. OpenCores
is a rich dataset for benchmarking HDL models because of its diverse collection of designs, which
range from small, simple circuits to large, complex ones. Its open-source nature allows for flexibility
in circuit modification, making it ideal for research and development in hardware design.

A.0.3 VEXRISCV

VexRiscv (VexRiscv, 2022) is an open-source, RISC-V compliant CPU core designed using Spinal-
HDL. This dataset focuses on CPU design and features a highly configurable architecture, allowing
for variations in pipeline stages, instruction sets, and optimizations. The VexRiscv dataset is partic-
ularly useful for testing the scalability and flexibility of models in handling CPU-level design tasks,
making it a valuable resource for benchmarking models like CircuitFusion on processor design tasks.

A.0.4 CHIPYARD

Chipyard (Amid et al., 2020) is a comprehensive framework for building RISC-V-based system-on-
chip (SoC) designs. It includes a collection of CPU cores, accelerators, memory systems, and I/O
components, offering a complete design ecosystem for hardware developers. The Chipyard dataset
enables testing at the SoC level, providing a broad set of circuits with varying complexities and
design objectives.

B MORE ON CIRCUIT DATA PREPROCESSING

B.1 DATASET COLLECTION

In the open-source benchmarks, the HDL code of RTL circuits is provided, where the RTL stage
describes the functional behaviors of the circuit. We then use the EDA tool Synopsys Design
Compiler® to automatically synthesize the RTL circuits into gate-level netlists. The netlists repre-
sent real circuit implementations, consisting of logic gates (e.g., ADD, INV, AND, etc.) and registers
(DFF). We employ the open-source NanGate 45nm technology library (URL, a) for the synthesis
process. The design quality metrics of netlists are obtained through Synopsys Prime Time® after
synthesis, including slack of each register, WNS, TNS, total power, and total area.

B.2 MULTIMODAL AND MULTI-STAGE CIRCUIT: A CASE STUDY

In this subsection, we provide a detailed example demonstrating the three modalities of RTL circuits.

B.2.1 HDL CODE

As shown in Figure 7a, the HDL code for each sub-circuit is directly used as one of the input
modalities, capturing the functional description of the circuit’s behavior at the RTL stage. In this
Verilog HDL code, a module represents an entire sub-circuit, where input and output specify

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

module coi (clk, rst, shift_cnt, shift_tip, shift_data, wb_adr_i, 
clgen_pos_edge, ctrl, clgen_neg_edge, wb_stb_i, wb_cyc_i, shift_s_out);

input clk, rst, clgen_neg_edge, clgen_pos_edge, ctrl;
input [4:0] wb_adr_i;
input shift_cnt, shift_data, shift_tip, wb_cyc_i,wb_stb_i;
output reg shift_s_out;
wire _008_, _019_, _056_, _088_, _093_, _096_, _097_, _177_;
wire [7:0] _184_, _185_;
wire clgen_last_clk, shift_tx_clk, _179_, _180_, _194_;
wire [7:0] shift_tx_bit_pos;
wire [127:0] _510_ = shift_data;
assign _008_ = wb_cyc_i & wb_stb_i;
assign spi_tx_sel[1] = _008_ & _019_;
assign _019_ = wb_adr_i[4:2] == 32'd1;
assign shift_tx_clk = _194_ && _096_;
assign _088_ = ! shift_tip ;
assign _093_ = ! _177_;
assign clgen_last_clk = ! _179_;
assign _096_ = ! clgen_last_clk ;
assign _097_ = shift_tx_clk || _088_;
assign _177_ = | ctrl[6:0];
assign _179_ = | shift_cnt ;
assign _180_ = _510_[shift_tx_bit_pos[6:0] +: 1];
assign _184_ = { _093_, ctrl[6:0] } - shift_cnt ;
assign _185_ = shift_cnt - 8'h01;
assign _056_ = _097_ ? _180_ : shift_s_out ;
assign shift_tx_bit_pos = ctrl[11] ? _184_ : _185_;
assign _194_ = ctrl[10] ? clgen_neg_edge : clgen_pos_edge ;
always @(posedge clk) begin
 shift_s_out <= _056_;
end

endmodule

(a) Code

Input 

Output

Condition

Concat
Arithmetic Boolean

Sequential Register Combinational Logic

(b) Graph

**Functionality Summary**
The Verilog design, `shift_s_out`, is a combinational circuit that takes multiple inputs and produces a 
single output, `shift_s_out`. The circuit appears to be a part of a larger system, likely a SPI (Serial 
Peripheral Interface) transmitter, and is responsible for shifting data out of a shift register.
The circuit's functionality can be broken down into several key components:
1. **Shift Register Control**: The circuit takes input `shift_cnt` and uses it to control the shift register. 
It also takes input `shift_tip` to determine when to stop shifting.
2. **SPI Transmission**: The circuit generates a clock signal, `shift_tx_clk`, and uses it to shift data out 
of the shift register. It also generates a bit position signal, `shift_tx_bit_pos`, to select the current bit 
being transmitted.
3. **Control Signals**: The circuit takes input `ctrl` and uses it to control the shift register and SPI 
transmission. It also generates several control signals, such as `clgen_pos_edge` and `clgen_neg_edge`, 
which are used to control the clock signal.
4. **Data Shifting**: The circuit takes input `shift_data` and shifts it out of the shift register using the 
`shift_tx_clk` signal.

**Implementation Details**
The Verilog design uses a combination of assignment statements and an always block to implement 
the circuit's functionality.
* Assignment statements are used to define the relationships between the circuit's inputs and 
outputs. For example, `assign _008_ = wb_cyc_i &  wb_stb_i;` defines the value of `_008_` as the 
logical AND of `wb_cyc_i` and `wb_stb_i`.
* The always block is used to update the `shift_s_out` output signal on the rising edge of the `clk` 
signal. The always block contains a single statement, `shift_s_out <= _056_;`, which assigns the value 
of `_056_` to the `shift_s_out` output signal.
* The design uses several intermediate signals, such as `_008_`, `_019_`, and `_180_`, to simplify the 
implementation and improve readability. These signals are used to compute the final output value, 
`shift_s_out`.

Overall, the design is well-structured and easy to follow, with clear and concise assignment statements 
and a simple always block.

(c) Summary
Figure 7: An example for multimodal circuit

the primary signals, wire connects the internal signals, assign represents combinational logic
operations, and the always block triggered by a clock signal defines the behavior of sequential
registers.

B.2.2 STRUCTURAL GRAPH

Each sub-circuit HDL code is parsed into an abstract syntax tree (AST), which is then used to con-
struct a control data flow graph, following a similar process in Fang et al. (2023). As demonstrated
in Figure 7b, the nodes represent sequential registers and combinational operators (e.g., AND, ADD,
EQUAL, MUX), while the wires connecting elements in the HDL code serve as the edges between
these nodes.

B.2.3 FUNCTIONALITY SUMMARY

We employ GPT-4o (Achiam et al., 2023) from Open-AI to summarize both the functionality and the
implementation details of each sub-circuit HDL code. An example generated summary is illustrated
in Figure 7c. A sub-circuit contains only combinational logic for a single register within a single
clock cycle, making it simpler for the LLM to analyze without dealing with the complex sequential
state transitions of the entire circuit.
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B.2.4 NETLIST GRAPH

We follow a similar widely adopted method (Wang et al., 2022) to convert netlists into the graph
format. Specifically, register flip-flops (FF) and logic gates (e.g., AOI, INV, FA, AND) are treated
as the nodes, and the wires connecting these gates form the edges of the graph.

B.3 SUB-CIRCUIT GENERATION ALGORITHM

We convert the HDL code into sub-circuit code snippets and the circuit graph into corresponding
sub-graphs, using the same sub-circuit generation method for both modalities to ensure functional
alignment. The detailed splitting algorithm is provided in Algorithm 1. Specifically, for each reg-
ister, we apply a breadth-first search starting from that register, backtracking through all connected
combinational logic until reaching the related input/output registers. This process is highly paral-
lelized within a design, ensuring minimal runtime.

Algorithm 1 Sub-circuit generation(s)

1: V ← {s} ▷ Set of visited nodes
2: Q← {s} ▷ Queue with start node
3: R← ∅ ▷ Set to store registers and inputs
4: while Q ̸= ∅ do
5: u← dequeue Q ▷ Current node
6: for all v ∈ u.outgoing do
7: if type(v) ∈ {reg, in} then
8: R← R ∪ {v} ▷ Add register/input to set
9: continue ▷ Skip to next node

10: if v /∈ V then
11: Q← Q ∪ {v} ▷ Add unvisited node to queue
12: V ← V ∪ {v} ▷ Mark node as visited
13: v.setParent(u) ▷ Set parent node
14: return R ▷ Return set of all registers and inputs

C IMPLEMENTATION OF CIRCUITFUSION

C.1 MODEL HYPERPARAMETERS

We first detail the hyperparameters for the proposed unimodal encoders: For the Graph encoder,
we train a 7-layer graph transformer Graphormer (Ying et al., 2021) from scratch to capture the
complex relationships in circuit graph semantics and structure. This encoder uses graph positional
encodings supporting up to 256 in-degrees and out-degrees for centrality encoding, a maximum
distance of 5 for spatial encoding, and an edge dimension of 12. It produces graph embeddings with
a dimension of 768. The node features are represented by one-hot encoding of the node type, and the
edge features are based on one-hot encoding of edge types, determined by the types of connected
nodes. The encoder has a hidden dimension of 256 and utilizes 3 attention heads. For the Code
encoder, we employ a frozen LLM-based general text encoder NV-Embed-V1 (Lee et al., 2024),
which handles a maximum input size of 32K tokens. This model is based on Mistral-7B-v0.1 and
was ranked No. 1 on the Massive Text Embedding Benchmark (MTEB) as of May 24, 2024. It
generates embeddings with a dimension of 4096, which are then linearly projected to 768. As for
the Summary encoder, it is initialized using the first 6 layers of BERTbase (Devlin, 2018), following
the setup in (Li et al., 2021).

For the multimodal fusion encoder, we initialize it with the last 6 layers of BERTbase. The fusion
encoder is equipped with cross-attention mechanisms to enable the effective fusion of embeddings
generated from the three unimodal encoders.

For the auxiliary netlist encoder, since graph transformers struggle with large and bit-blasted netlist
graphs, we instead use a 3-layer GraphSAGE (Hamilton et al., 2017) GNN with a hidden dimension
of 256. It encodes the netlist sub-circuit graphs into embeddings of 768 dimensions.
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Figure 8: Retrival-augmented inference implementation for tasks at different granularities.

C.2 SELF-SUPERVISED PRE-TRAINING TASKS IMPLEMENTATION

For masked graph modeling on both RTL and netlist sub-circuit graphs (used in Task #1 and netlist
encoder), we adopt an approach inspired by GraphMAE (Hou et al., 2022). Specifically, 30% of
the nodes in both the RTL and netlist graphs are randomly masked and reconstructed during each
training epoch. A three-layer MLP with a hidden dimension of 256 is used to reconstruct the node
types. Mean Squared Error (MSE) loss is applied to minimize the error between the original node
type vectors and the reconstructed outputs, with the node types represented using one-hot encoding.

For the contrastive learning tasks (i.e., Task #1, #2, and #4), we utilize the InfoNCE loss function
across all contrastive schemes. To balance the contributions of the different contrastive schemes, we
assign an intra-modal weight of 1.0, while the cross-modal and implementation-aware weights are
set to 0.2. The InfoNCE loss is formulated as follow:

NCE(E,E+, E−) = −
[
log

exp (sim(E,E+)/τ)

exp (sim(E,E+)/τ) +
∑

E− exp (sim(E,E−)/τ)

]
, (8)

where τ is the temperature scaling parameter that controls the sharpness of the similarity scores,
E represents the circuit embeddings with positive samples (E+) and negative samples (E−). All
temperature parameters are set to 0.3.

For the multimodal fusion tasks, including masked summary modeling and mixup embedding-
summary matching, we adhere to the widely adopted tasks as described in (Li et al., 2021; 2022a;
2023a).

C.3 TRAINING HYPERPARAMETERS

During the pre-training phase, the four self-supervised tasks are trained simultaneously for 50
epochs, with a total training time of approximately 20 hours. We use GELU as the activation func-
tion and set the batch size to 128. For optimization, we select AdamW, known for its ability to
handle large-scale data effectively. The learning rate is warmed up to 1e−4 during the first 1000
iterations, after which it follows a cosine decay schedule, gradually reducing to 1e−5. This sched-
ule ensures smooth convergence while avoiding abrupt gradient updates that could destabilize the
training process.

In the fine-tuning phase, the pre-trained CircuitFusion model is frozen to preserve the learned rep-
resentations, and lightweight models are applied to adapt to specific downstream tasks. To comple-
ment the learned sub-circuit representations, we integrate design-level features, such as the number
of different operator types, to capture the overall design scale. Specifically, we explore various
lightweight models, including additional MLP layers, GNN layers, and tree-based models like XG-
Boost. XGBoost consistently delivers the best performance due to its capability to efficiently handle
the concatenation of sub-circuit embeddings with design-level features, treating them as tabular data.
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Fine-tuning requires only few computational resources, with each downstream task taking only a
few minutes to complete. This rapid process facilitates quick adaptation to new tasks, ensuring that
CircuitFusion is deployed efficiently across a wide range of design quality prediction applications.

C.4 RETRIEVAL-BASED INFERENCE IMPLEMENTATION

Our proposed retrieval-augmented inference process for CircuitFusion is illustrated in Figure 4. It
is designed for two types of downstream tasks: sub-circuit-level and circuit-level.

Sub-circuit-level inference: For each sub-circuit, the pre-trained CircuitFusion encoder generates
the corresponding multimodal embedding. We employ a retrieval process to fetch the most function-
ally similar sub-circuits from a vectorstore that contains previously seen circuits. These retrieved
sub-circuits provide their design quality metrics, which are directly concatenated with the embed-
ding generated by CircuitFusion. The concatenated feature vector is then fed into a regression model
to predict the final design quality metric for the sub-circuit.

Circuit-level inference: At the circuit-level, the entire design is composed of multiple sub-circuits.
Each sub-circuit is individually encoded by the CircuitFusion encoder, producing embeddings. Sim-
ilar to the sub-circuit-level inference, we retrieve quality metrics for each sub-circuit from the vec-
torstore. The embeddings and retrieved quality metrics for all sub-circuits are added to generate a
comprehensive circuit-level feature vector. We also concatenate this with design-level features (e.g.,
operator counts) to reflect the overall scale of the design. The combined feature vector is then fed
into a regression model to predict circuit-level design quality metrics.

D EXPERIMENTAL SETTINGS

Our CircuitEncoder is implemented in Python, utilizing Pytorch and DGL (Wang, 2019) for self-
supervised pre-training and model implementation. Experiments are conducted on a server equipped
with a 2.9 GHz Intel Xeon(R) Platinum 8375C CPU and 512 GB RAM, with four NVIDIA A4000
GPUs for model pre-training.

E MORE EXPERIMENTAL RESULTS

E.1 BASELINE MODELS (EXTENDED)

We summarize the baseline model size compared with CircuitFusion in Table 4.

Table 4: Pre-trained baseline model statistics.

Model Model Size Embedding Dim. Max Token Training Data Source
NV-embed-V1 7B 4096 32768 Various text

UnixCoder 125M 768 1024 Software code
Code T5+ Encoder 110M 768 1024 Software code

CodeSage 1.3B 768 1024 Software code
CircuitFusion 500M (+7B frozen) 768 32768 Hardware circuit

E.2 ZERO-SHOT AND FEW-SHOT INFERENCE (EXTENDED)

Tables 5 to 9 illustrate the performance of CircuitFusion compared to SOTA baselines for zero-
shot and few-shot learning on five design quality prediction tasks. The baseline method is selected
as the top-performing model from all baselines in Table 2. The x-axis represents the fraction of
training data used, ranging from zero-shot (0%) to full-shot (100%), while the y-axis shows the
MAPE. These results demonstrate CircuitFusion’s effectiveness in both zero-shot and few-shot set-
tings, making it a versatile and reliable model for early-stage design quality prediction tasks, where
access to large datasets is often restricted.

Zero-shot. Only CircuitFusion supports this zero-shot capability due to our innovative retrieval-
augmented method. While the baselines do not provide predictions in the zero-shot setting, Circuit-
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Fusion achieves reasonable prediction accuracy without any training data, demonstrating its unique
advantage.

Few-shot. CircuitFusion is particularly effective when training data is limited, which is crucial
given the data availability challenges in hardware circuit design. As more training data is introduced
(from 1/8 to full-shot), CircuitFusion consistently outperforms the baselines across all tasks, show-
ing steeper performance improvements. It achieves lower MAPEs in nearly all cases, highlighting
its superior ability to generalize and learn with minimal data.

Table 5: Few-shot results (MAPE) on slack prediction (Sub-Circuit-level).

Task: Slack 100% 50% 25% 13% 0%
SOTA (RTL-Timer) 15% 16% 19% 30% N/A%

CircuitFusion 12% 14% 16% 19% 21%

Table 6: Few-shot results (MAPE) on WNS prediction (Circuit-level).

Task: WNS 100% 50% 25% 13% 0%
SOTA (RTL-Timer) 16% 29% 36% 43% N/A

CircuitFusion 11% 17% 18% 25% 27%

Table 7: Few-shot results (MAPE) on TNS prediction (Circuit-level).

Task: TNS 100% 50% 25% 13% 0%
SOTA (RTL-Timer) 25% 35% 49% 74% N/A

CircuitFusion 15% 24% 41% 52% 59%

Table 8: Few-shot results (MAPE) on Power prediction (Circuit-level).

Task: Power 100% 50% 25% 13% 0%
SOTA (MasterRTL) 26% 37% 46% 55% N/A

CircuitFusion 13% 34% 43% 54% 62%

Table 9: Few-shot results (MAPE) on Area prediction (Circuit-level).

Task: Area 100% 50% 25% 13% 0%
SOTA (MasterRTL) 16% 33% 46% 56% N/A

CircuitFusion 11% 30% 45% 51% 58%

E.3 ABLATION STUDY

Effectiveness of proposed strategies. Figure 9 shows our ablation study by removing key com-
ponents employed in CircuitFusion strategies. Removing the sub-circuit generation severely limits
CircuitFusion’s ability to handle large-scale circuits, leading to the most significant error increases
across all tasks. Without this splitting, the model struggles to capture fine-grained circuit details,
which is essential for tasks like slack prediction that require sub-circuit-level embeddings. We fur-
ther assess the impact of each pre-training objective by selectively removing them. In every case,
this leads to a clear rise in MAPE, indicating the importance of each pre-training task in enhancing
both structural and semantic circuit understanding. Excluding retrieval-augmented inference results
in a substantial increase in MAPE across all tasks. This highlights the significant role retrieval plays
in enhancing fine-tuning performance by utilizing functionally similar existing circuits as references.

Impact of circuit modality. In addition to the ablation study that evaluates the use of each modality
individually in Figure 1, we also conduct an extended study on the selective removal of each modal-
ity. This study aims to further quantify the contribution of each modality (i.e., code, graph, and
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Figure 9: Ablation study on the effectiveness of proposed strategies.

summary) to the model’s overall performance. Specifically, when either the hardware code or graph
modality is removed, there is a significant rise in prediction error across all tasks, highlighting their
critical role in capturing both the structural and functional details of circuits. The graph modality,
in particular, contributes more, as it contains rich structural information essential for circuit repre-
sentation. These results demonstrate the necessity of leveraging modality fusion to fully capture the
diverse characteristics of circuits.

12 11
15 13 11

22 24 22

15 17
14 13 15 16 1516

28

19
16 1415

26 27

20
1718

39

18 19
14

0

20

40

Slack WNS TNS Power Area

M
AP

E 
(%

)

CircuitFusion w/o graph modality w/o code modality

only graph only code only summary

Figure 10: Ablation study on the impact of circuit modalities.

E.4 APPLYING PROPOSED STRATEGIES TO BASELINE ENCODERS

As shown in Table 10, applying the sub-circuit generation (S1) and retrieval-augmented inference
(S4) strategies to other pre-trained baseline encoders significantly boosts their performance across
all tasks. By encoding sub-circuits instead of the entire circuit, all baseline methods are now able to
handle the fine-grained slack prediction task, which they originally could not support.

For example, the LLM-based encoder NV-Embed-v1, despite its ability to process 32k tokens, strug-
gles to encode entire circuit code sequences. When enhanced with S1 and S4, it achieves a notable
reduction in MAPE for WNS (from 26% to 17%), TNS (from 55% to 27%), power (from 44% to
20%), and area (from 24% to 17%). Similarly, other software code encoders, such as CodeSage,
CodeT5+ Encoder, and UnixCoder, also benefit significantly from these strategies. This shows that
S1 and S4 not only improve fine-tuning accuracy but also enhance generalization across various
design quality prediction tasks. Despite these improvements, CircuitFusion still outperforms all
baselines, underscoring the effectiveness of its hardware-specific pre-training strategies.
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Table 10: Evaluation results when applying strategy S1 and S4 to other pre-trained encoders.

Method Slack WNS TNS Power Area
R MAPE R MAPE R MAPE R MAPE R MAPE

NV-Embed-v1 ori N/A 0.49 26% 0.97 55% 0.85 44% 0.86 24%
w/ S1&4 0.85 15% 0.81 17% 0.95 27% 0.99 20% 0.97 17%

CodeSage ori N/A 0.23 21% 0.86 45% 0.8 38% 0.77 41%
w/ S1&4 0.84 14% 0.9 25% 0.95 24% 0.96 18% 0.96 17%

CodeT5+ Encoder ori N/A 0.55 30% 0.63 43% 0.49 46% 0.45 39%
w/ S1&4 0.83 14% 0.8 21% 0.94 24% 0.95 19% 0.93 21%

UnixCoder ori N/A 0.46 21% 0.95 44% 0.83 29% 0.85 26%
w/ S1&4 0.84 14% 0.83 20% 0.96 22% 0.96 18% 0.96 16%

CircuitFusion 0.87 12% 0.91 11% 0.99 15% 0.99 13% 0.99 11%
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