
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide references to relevant sections and materials to assist readers and researchers in repli-
cating our results.

Dataset description: All datasets used in our experiments are from open-source benchmarks. A
summary of these datasets is available in Appendix A, with a demonstration example shown in Ap-
pendix B.2. Detailed preprocessing methods are described in Appendix B, including the different
circuit modality generation, sub-circuit generation, and downstream task label collection. The cor-
responding scripts can be found in our open-source repository.

Open access to CircuitFusion code: The source code for CircuitFusion is publicly available
at: https://anonymous.4open.science/r/CircuitFusion-EB45. The repository
includes scripts with step-by-step instructions to replicate the primary results presented in this paper.

REFERENCES

NanGate 45nm Open Cell Library. https://si2.org/open-cell-library/, a.

OpenCores: The reference community for Free and Open Source gateware IP cores.
https://opencores.org/, b.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing
Gong. Vatt: Transformers for multimodal self-supervised learning from raw video, audio and
text. Advances in Neural Information Processing Systems, 34:24206–24221, 2021.

Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew,
Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, et al. Chipyard: Integrated design,
simulation, and implementation framework for custom socs. IEEE Micro, 40(4), 2020.

Chen Bai, Jiayi Huang, Xuechao Wei, Yuzhe Ma, Sicheng Li, Hongzhong Zheng, Bei Yu, and Yuan
Xie. Archexplorer: Microarchitecture exploration via bottleneck analysis. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 268–282, 2023.

Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu, Owais Khan Mohammed, Kriti Aggarwal, Sub-
hojit Som, Songhao Piao, and Furu Wei. Vlmo: Unified vision-language pre-training with
mixture-of-modality-experts. Advances in Neural Information Processing Systems, 35:32897–
32912, 2022.

Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool. In
Computer Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings 22, pp. 24–40. Springer, 2010.

Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. Rt-level itc’99 benchmarks and first
atpg results. IEEE Design & Test of computers (ITC), 2000.

Chenhui Deng, Zichao Yue, Cunxi Yu, Gokce Sarar, Ryan Carey, Rajeev Jain, and Zhiru Zhang.
Less is more: Hop-wise graph attention for scalable and generalizable learning on circuits. arXiv
preprint arXiv:2403.01317, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Yufan Du, Zizheng Guo, Xun Jiang, Zhuomin Chai, Yuxiang Zhao, Yibo Lin, Runsheng Wang, and
Ru Huang. Powpredict: Cross-stage power prediction with circuit-transformation-aware learning.
In Proceedings of 2024 ACM/IEEE Design Automation Conference (DAC), pp. 1–6. ACM, 2024.

11

https://anonymous.4open.science/r/CircuitFusion-EB45

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and Zhiyao
Xie. Masterrtl: A pre-synthesis ppa estimation framework for any rtl design. In Proceedings of
2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–9. IEEE,
2023.

Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao Xie. Annotating slack directly on your verilog:
Fine-grained rtl timing evaluation for early optimization. In Proceedings of 2024 ACM/IEEE
Design Automation Conference (DAC), pp. 1–6. ACM, 2024a.

Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and
Zhiyao Xie. Transferable pre-synthesis ppa estimation for rtl designs with data augmentation
techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2024b.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Difei Gao, Ke Li, Ruiping Wang, Shiguang Shan, and Xilin Chen. Multi-modal graph neural net-
work for joint reasoning on vision and scene text. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 12746–12756, 2020.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 594–604, 2022.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694–9705, 2021.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu. Deepgate: Learning
neural representations of logic gates. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 667–672, 2022b.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023b.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–8. IEEE, 2023a.

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder: Outper-
forming gpt-3.5 in design rtl generation with our open-source dataset and lightweight solution.
arXiv preprint arXiv:2312.08617, 2023b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Niklas Muennighoff, Nouamane Tazi, Loı̈c Magne, and Nils Reimers. Mteb: Massive text embed-
ding benchmark. arXiv preprint arXiv:2210.07316, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Zehua Pei, Huiling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: Controlled verilog
generation with discriminative guidance. In Forty-first International Conference on Machine
Learning (ICML), 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu, David Z Pan, Marilyn Wolf, and Jörg Henkel.
Mlcad: A survey of research in machine learning for cad keynote paper. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 41(10):3162–3181, 2021.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu. How good is your verilog rtl code?
a quick answer from machine learning. In Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, pp. 1–9, 2022.

Zhengyuan Shi, Hongyang Pan, Sadaf Khan, Min Li, Yi Liu, Junhua Huang, Hui-Ling Zhen, Mingx-
uan Yuan, Zhufei Chu, and Qiang Xu. Deepgate2: Functionality-aware circuit representation
learning. In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp.
1–9. IEEE, 2023.

Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. Robust gnn-based representa-
tion learning for hls. In 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pp. 1–9. IEEE, 2023.

Shobha Vasudevan, Wenjie Joe Jiang, David Bieber, Rishabh Singh, C Richard Ho, Charles Sut-
ton, et al. Learning semantic representations to verify hardware designs. Advances in Neural
Information Processing Systems, 34:23491–23504, 2021.

VexRiscv. VexRiscv: A FPGA friendly 32 bit RISC-V CPU implementation, 2022. URL https:
//github.com/SpinalHDL/VexRiscv.

Minjie Yu Wang. Deep graph library: Towards efficient and scalable deep learning on graphs. In
ICLR workshop on representation learning on graphs and manifolds, 2019.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv
preprint arXiv:2305.07922, 2023.

Ziyi Wang, Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Bei Yu, and
Yu Huang. Functionality matters in netlist representation learning. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pp. 61–66, 2022.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In Pro-
ceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), volume 97, 2013.

13

https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills. SNS’s not a synthesizer: a deep-learning-based
synthesis predictor. In Proceedings of the 49th Annual International Symposium on Computer
Architecture (ISCA), pp. 847–859, 2022.

Ceyu Xu, Pragya Sharma, Tianshu Wang, and Lisa Wu Wills. Fast, robust and transferable predic-
tion for hardware logic synthesis. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 167–179, 2023.

Shuwen Yang, Zhihao Yang, Dong Li, Yingxueff Zhang, Zhanguang Zhang, Guojie Song, and Jianye
Hao. Versatile multi-stage graph neural network for circuit representation. Advances in Neural
Information Processing Systems, 35:20313–20324, 2022.

Yongjing Yin, Fandong Meng, Jinsong Su, Chulun Zhou, Zhengyuan Yang, Jie Zhou, and Jiebo Luo.
A novel graph-based multi-modal fusion encoder for neural machine translation. arXiv preprint
arXiv:2007.08742, 2020.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without human
knowledge. In Proceedings of the 55th Annual Design Automation Conference, pp. 1–6, 2018.

Dejiao Zhang, Wasi Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma,
and Bing Xiang. Code representation learning at scale. arXiv preprint arXiv:2402.01935, 2024.

Hongyi Zhang. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412,
2017.

Su Zheng, Lancheng Zou, Peng Xu, Siting Liu, Bei Yu, and Martin Wong. Lay-net: Grafting netlist
knowledge on layout-based congestion prediction. In 2023 IEEE/ACM International Conference
on Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2023.

Keren Zhu, Hao Chen, Walker J Turner, George F Kokai, Po-Hsuan Wei, David Z Pan, and Haoxing
Ren. Tag: Learning circuit spatial embedding from layouts. In Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1–9. IEEE, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MORE ON CIRCUIT HDL DATASET

This section provides an overview of the various circuit HDL datasets used in our work, includ-
ing ITC’99, OpenCores, VexRiscv, and Chipyard. These datasets offer diverse designs that span a
range of hardware implementations, enabling comprehensive benchmarking of CircuitFusion across
different circuit design tasks.

A.0.1 ITC’99

The ITC’99 benchmark suite (Corno et al., 2000) is a widely used collection of hardware circuit
designs, primarily designed for logic synthesis and verification. ITC’99 provides diverse designs
ranging from simple combinational logic to more complex sequential circuits. VHDL

A.0.2 OPENCORES

The OpenCores repository (URL, b) offers open-source hardware designs, including a wide variety
of digital systems, such as CPUs, memory controllers, communication protocols, etc. OpenCores
is a rich dataset for benchmarking HDL models because of its diverse collection of designs, which
range from small, simple circuits to large, complex ones. Its open-source nature allows for flexibility
in circuit modification, making it ideal for research and development in hardware design.

A.0.3 VEXRISCV

VexRiscv (VexRiscv, 2022) is an open-source, RISC-V compliant CPU core designed using Spinal-
HDL. This dataset focuses on CPU design and features a highly configurable architecture, allowing
for variations in pipeline stages, instruction sets, and optimizations. The VexRiscv dataset is partic-
ularly useful for testing the scalability and flexibility of models in handling CPU-level design tasks,
making it a valuable resource for benchmarking models like CircuitFusion on processor design tasks.

A.0.4 CHIPYARD

Chipyard (Amid et al., 2020) is a comprehensive framework for building RISC-V-based system-on-
chip (SoC) designs. It includes a collection of CPU cores, accelerators, memory systems, and I/O
components, offering a complete design ecosystem for hardware developers. The Chipyard dataset
enables testing at the SoC level, providing a broad set of circuits with varying complexities and
design objectives.

B MORE ON CIRCUIT DATA PREPROCESSING

B.1 DATASET COLLECTION

In the open-source benchmarks, the HDL code of RTL circuits is provided, where the RTL stage
describes the functional behaviors of the circuit. We then use the EDA tool Synopsys Design
Compiler® to automatically synthesize the RTL circuits into gate-level netlists. The netlists repre-
sent real circuit implementations, consisting of logic gates (e.g., ADD, INV, AND, etc.) and registers
(DFF). We employ the open-source NanGate 45nm technology library (URL, a) for the synthesis
process. The design quality metrics of netlists are obtained through Synopsys Prime Time® after
synthesis, including slack of each register, WNS, TNS, total power, and total area.

B.2 MULTIMODAL AND MULTI-STAGE CIRCUIT: A CASE STUDY

In this subsection, we provide a detailed example demonstrating the three modalities of RTL circuits.

B.2.1 HDL CODE

As shown in Figure 7a, the HDL code for each sub-circuit is directly used as one of the input
modalities, capturing the functional description of the circuit’s behavior at the RTL stage. In this
Verilog HDL code, a module represents an entire sub-circuit, where input and output specify

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

module coi (clk, rst, shift_cnt, shift_tip, shift_data, wb_adr_i,
clgen_pos_edge, ctrl, clgen_neg_edge, wb_stb_i, wb_cyc_i, shift_s_out);

input clk, rst, clgen_neg_edge, clgen_pos_edge, ctrl;
input [4:0] wb_adr_i;
input shift_cnt, shift_data, shift_tip, wb_cyc_i,wb_stb_i;
output reg shift_s_out;
wire _008_, _019_, _056_, _088_, _093_, _096_, _097_, _177_;
wire [7:0] _184_, _185_;
wire clgen_last_clk, shift_tx_clk, _179_, _180_, _194_;
wire [7:0] shift_tx_bit_pos;
wire [127:0] _510_ = shift_data;
assign _008_ = wb_cyc_i & wb_stb_i;
assign spi_tx_sel[1] = _008_ & _019_;
assign _019_ = wb_adr_i[4:2] == 32'd1;
assign shift_tx_clk = _194_ && _096_;
assign _088_ = ! shift_tip ;
assign _093_ = ! _177_;
assign clgen_last_clk = ! _179_;
assign _096_ = ! clgen_last_clk ;
assign _097_ = shift_tx_clk || _088_;
assign _177_ = | ctrl[6:0];
assign _179_ = | shift_cnt ;
assign _180_ = _510_[shift_tx_bit_pos[6:0] +: 1];
assign _184_ = { _093_, ctrl[6:0] } - shift_cnt ;
assign _185_ = shift_cnt - 8'h01;
assign _056_ = _097_ ? _180_ : shift_s_out ;
assign shift_tx_bit_pos = ctrl[11] ? _184_ : _185_;
assign _194_ = ctrl[10] ? clgen_neg_edge : clgen_pos_edge ;
always @(posedge clk) begin
 shift_s_out <= _056_;
end

endmodule

(a) Code

Input

Output

Condition

Concat
Arithmetic Boolean

Sequential Register Combinational Logic

(b) Graph

Functionality Summary
The Verilog design, `shift_s_out`, is a combinational circuit that takes multiple inputs and produces a
single output, `shift_s_out`. The circuit appears to be a part of a larger system, likely a SPI (Serial
Peripheral Interface) transmitter, and is responsible for shifting data out of a shift register.
The circuit's functionality can be broken down into several key components:
1. **Shift Register Control**: The circuit takes input `shift_cnt` and uses it to control the shift register.
It also takes input `shift_tip` to determine when to stop shifting.
2. **SPI Transmission**: The circuit generates a clock signal, `shift_tx_clk`, and uses it to shift data out
of the shift register. It also generates a bit position signal, `shift_tx_bit_pos`, to select the current bit
being transmitted.
3. **Control Signals**: The circuit takes input `ctrl` and uses it to control the shift register and SPI
transmission. It also generates several control signals, such as `clgen_pos_edge` and `clgen_neg_edge`,
which are used to control the clock signal.
4. **Data Shifting**: The circuit takes input `shift_data` and shifts it out of the shift register using the
`shift_tx_clk` signal.

Implementation Details
The Verilog design uses a combination of assignment statements and an always block to implement
the circuit's functionality.
* Assignment statements are used to define the relationships between the circuit's inputs and
outputs. For example, `assign _008_ = wb_cyc_i & wb_stb_i;` defines the value of `_008_` as the
logical AND of `wb_cyc_i` and `wb_stb_i`.
* The always block is used to update the `shift_s_out` output signal on the rising edge of the `clk`
signal. The always block contains a single statement, `shift_s_out <= _056_;`, which assigns the value
of `_056_` to the `shift_s_out` output signal.
* The design uses several intermediate signals, such as `_008_`, `_019_`, and `_180_`, to simplify the
implementation and improve readability. These signals are used to compute the final output value,
`shift_s_out`.

Overall, the design is well-structured and easy to follow, with clear and concise assignment statements
and a simple always block.

(c) Summary
Figure 7: An example for multimodal circuit

the primary signals, wire connects the internal signals, assign represents combinational logic
operations, and the always block triggered by a clock signal defines the behavior of sequential
registers.

B.2.2 STRUCTURAL GRAPH

Each sub-circuit HDL code is parsed into an abstract syntax tree (AST), which is then used to con-
struct a control data flow graph, following a similar process in Fang et al. (2023). As demonstrated
in Figure 7b, the nodes represent sequential registers and combinational operators (e.g., AND, ADD,
EQUAL, MUX), while the wires connecting elements in the HDL code serve as the edges between
these nodes.

B.2.3 FUNCTIONALITY SUMMARY

We employ GPT-4o (Achiam et al., 2023) from Open-AI to summarize both the functionality and the
implementation details of each sub-circuit HDL code. An example generated summary is illustrated
in Figure 7c. A sub-circuit contains only combinational logic for a single register within a single
clock cycle, making it simpler for the LLM to analyze without dealing with the complex sequential
state transitions of the entire circuit.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.2.4 NETLIST GRAPH

We follow a similar widely adopted method (Wang et al., 2022) to convert netlists into the graph
format. Specifically, register flip-flops (FF) and logic gates (e.g., AOI, INV, FA, AND) are treated
as the nodes, and the wires connecting these gates form the edges of the graph.

B.3 SUB-CIRCUIT GENERATION ALGORITHM

We convert the HDL code into sub-circuit code snippets and the circuit graph into corresponding
sub-graphs, using the same sub-circuit generation method for both modalities to ensure functional
alignment. The detailed splitting algorithm is provided in Algorithm 1. Specifically, for each reg-
ister, we apply a breadth-first search starting from that register, backtracking through all connected
combinational logic until reaching the related input/output registers. This process is highly paral-
lelized within a design, ensuring minimal runtime.

Algorithm 1 Sub-circuit generation(s)

1: V ← {s} ▷ Set of visited nodes
2: Q← {s} ▷ Queue with start node
3: R← ∅ ▷ Set to store registers and inputs
4: while Q ̸= ∅ do
5: u← dequeue Q ▷ Current node
6: for all v ∈ u.outgoing do
7: if type(v) ∈ {reg, in} then
8: R← R ∪ {v} ▷ Add register/input to set
9: continue ▷ Skip to next node

10: if v /∈ V then
11: Q← Q ∪ {v} ▷ Add unvisited node to queue
12: V ← V ∪ {v} ▷ Mark node as visited
13: v.setParent(u) ▷ Set parent node
14: return R ▷ Return set of all registers and inputs

C IMPLEMENTATION OF CIRCUITFUSION

C.1 MODEL HYPERPARAMETERS

We first detail the hyperparameters for the proposed unimodal encoders: For the Graph encoder,
we train a 7-layer graph transformer Graphormer (Ying et al., 2021) from scratch to capture the
complex relationships in circuit graph semantics and structure. This encoder uses graph positional
encodings supporting up to 256 in-degrees and out-degrees for centrality encoding, a maximum
distance of 5 for spatial encoding, and an edge dimension of 12. It produces graph embeddings with
a dimension of 768. The node features are represented by one-hot encoding of the node type, and the
edge features are based on one-hot encoding of edge types, determined by the types of connected
nodes. The encoder has a hidden dimension of 256 and utilizes 3 attention heads. For the Code
encoder, we employ a frozen LLM-based general text encoder NV-Embed-V1 (Lee et al., 2024),
which handles a maximum input size of 32K tokens. This model is based on Mistral-7B-v0.1 and
was ranked No. 1 on the Massive Text Embedding Benchmark (MTEB) as of May 24, 2024. It
generates embeddings with a dimension of 4096, which are then linearly projected to 768. As for
the Summary encoder, it is initialized using the first 6 layers of BERTbase (Devlin, 2018), following
the setup in (Li et al., 2021).

For the multimodal fusion encoder, we initialize it with the last 6 layers of BERTbase. The fusion
encoder is equipped with cross-attention mechanisms to enable the effective fusion of embeddings
generated from the three unimodal encoders.

For the auxiliary netlist encoder, since graph transformers struggle with large and bit-blasted netlist
graphs, we instead use a 3-layer GraphSAGE (Hamilton et al., 2017) GNN with a hidden dimension
of 256. It encodes the netlist sub-circuit graphs into embeddings of 768 dimensions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Pre-trained
CircuitFusionSi

Retrieved
Quality Metrics

[C]

S1
S2
Si

Retrieved
Quality Metrics

[C] Regression
Model

Circuit Feature

concat

concat

x M
(sum)

x M
(sum)

Regression
Model

Pre-trained
CircuitFusion

(a) Sub-circuit-level inference.

Pre-trained
CircuitFusionSCi

Retrieved
Quality Metrics

[C]

SC1

SC2

SCM

Retrieved
Quality Metrics

[C] Regression
Model

Circuit Feature

concat

concat

x M
(sum)

x M
(sum)

Regression
Model

Pre-trained
CircuitFusion

…

(b) Circuit-level inference.
Figure 8: Retrival-augmented inference implementation for tasks at different granularities.

C.2 SELF-SUPERVISED PRE-TRAINING TASKS IMPLEMENTATION

For masked graph modeling on both RTL and netlist sub-circuit graphs (used in Task #1 and netlist
encoder), we adopt an approach inspired by GraphMAE (Hou et al., 2022). Specifically, 30% of
the nodes in both the RTL and netlist graphs are randomly masked and reconstructed during each
training epoch. A three-layer MLP with a hidden dimension of 256 is used to reconstruct the node
types. Mean Squared Error (MSE) loss is applied to minimize the error between the original node
type vectors and the reconstructed outputs, with the node types represented using one-hot encoding.

For the contrastive learning tasks (i.e., Task #1, #2, and #4), we utilize the InfoNCE loss function
across all contrastive schemes. To balance the contributions of the different contrastive schemes, we
assign an intra-modal weight of 1.0, while the cross-modal and implementation-aware weights are
set to 0.2. The InfoNCE loss is formulated as follow:

NCE(E,E+, E−) = −
[
log

exp (sim(E,E+)/τ)

exp (sim(E,E+)/τ) +
∑

E− exp (sim(E,E−)/τ)

]
, (8)

where τ is the temperature scaling parameter that controls the sharpness of the similarity scores,
E represents the circuit embeddings with positive samples (E+) and negative samples (E−). All
temperature parameters are set to 0.3.

For the multimodal fusion tasks, including masked summary modeling and mixup embedding-
summary matching, we adhere to the widely adopted tasks as described in (Li et al., 2021; 2022a;
2023a).

C.3 TRAINING HYPERPARAMETERS

During the pre-training phase, the four self-supervised tasks are trained simultaneously for 50
epochs, with a total training time of approximately 20 hours. We use GELU as the activation func-
tion and set the batch size to 128. For optimization, we select AdamW, known for its ability to
handle large-scale data effectively. The learning rate is warmed up to 1e−4 during the first 1000
iterations, after which it follows a cosine decay schedule, gradually reducing to 1e−5. This sched-
ule ensures smooth convergence while avoiding abrupt gradient updates that could destabilize the
training process.

In the fine-tuning phase, the pre-trained CircuitFusion model is frozen to preserve the learned rep-
resentations, and lightweight models are applied to adapt to specific downstream tasks. To comple-
ment the learned sub-circuit representations, we integrate design-level features, such as the number
of different operator types, to capture the overall design scale. Specifically, we explore various
lightweight models, including additional MLP layers, GNN layers, and tree-based models like XG-
Boost. XGBoost consistently delivers the best performance due to its capability to efficiently handle
the concatenation of sub-circuit embeddings with design-level features, treating them as tabular data.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Fine-tuning requires only few computational resources, with each downstream task taking only a
few minutes to complete. This rapid process facilitates quick adaptation to new tasks, ensuring that
CircuitFusion is deployed efficiently across a wide range of design quality prediction applications.

C.4 RETRIEVAL-BASED INFERENCE IMPLEMENTATION

Our proposed retrieval-augmented inference process for CircuitFusion is illustrated in Figure 4. It
is designed for two types of downstream tasks: sub-circuit-level and circuit-level.

Sub-circuit-level inference: For each sub-circuit, the pre-trained CircuitFusion encoder generates
the corresponding multimodal embedding. We employ a retrieval process to fetch the most function-
ally similar sub-circuits from a vectorstore that contains previously seen circuits. These retrieved
sub-circuits provide their design quality metrics, which are directly concatenated with the embed-
ding generated by CircuitFusion. The concatenated feature vector is then fed into a regression model
to predict the final design quality metric for the sub-circuit.

Circuit-level inference: At the circuit-level, the entire design is composed of multiple sub-circuits.
Each sub-circuit is individually encoded by the CircuitFusion encoder, producing embeddings. Sim-
ilar to the sub-circuit-level inference, we retrieve quality metrics for each sub-circuit from the vec-
torstore. The embeddings and retrieved quality metrics for all sub-circuits are added to generate a
comprehensive circuit-level feature vector. We also concatenate this with design-level features (e.g.,
operator counts) to reflect the overall scale of the design. The combined feature vector is then fed
into a regression model to predict circuit-level design quality metrics.

D EXPERIMENTAL SETTINGS

Our CircuitEncoder is implemented in Python, utilizing Pytorch and DGL (Wang, 2019) for self-
supervised pre-training and model implementation. Experiments are conducted on a server equipped
with a 2.9 GHz Intel Xeon(R) Platinum 8375C CPU and 512 GB RAM, with four NVIDIA A4000
GPUs for model pre-training.

E MORE EXPERIMENTAL RESULTS

E.1 BASELINE MODELS (EXTENDED)

We summarize the baseline model size compared with CircuitFusion in Table 4.

Table 4: Pre-trained baseline model statistics.

Model Model Size Embedding Dim. Max Token Training Data Source
NV-embed-V1 7B 4096 32768 Various text

UnixCoder 125M 768 1024 Software code
Code T5+ Encoder 110M 768 1024 Software code

CodeSage 1.3B 768 1024 Software code
CircuitFusion 500M (+7B frozen) 768 32768 Hardware circuit

E.2 ZERO-SHOT AND FEW-SHOT INFERENCE (EXTENDED)

Tables 5 to 9 illustrate the performance of CircuitFusion compared to SOTA baselines for zero-
shot and few-shot learning on five design quality prediction tasks. The baseline method is selected
as the top-performing model from all baselines in Table 2. The x-axis represents the fraction of
training data used, ranging from zero-shot (0%) to full-shot (100%), while the y-axis shows the
MAPE. These results demonstrate CircuitFusion’s effectiveness in both zero-shot and few-shot set-
tings, making it a versatile and reliable model for early-stage design quality prediction tasks, where
access to large datasets is often restricted.

Zero-shot. Only CircuitFusion supports this zero-shot capability due to our innovative retrieval-
augmented method. While the baselines do not provide predictions in the zero-shot setting, Circuit-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Fusion achieves reasonable prediction accuracy without any training data, demonstrating its unique
advantage.

Few-shot. CircuitFusion is particularly effective when training data is limited, which is crucial
given the data availability challenges in hardware circuit design. As more training data is introduced
(from 1/8 to full-shot), CircuitFusion consistently outperforms the baselines across all tasks, show-
ing steeper performance improvements. It achieves lower MAPEs in nearly all cases, highlighting
its superior ability to generalize and learn with minimal data.

Table 5: Few-shot results (MAPE) on slack prediction (Sub-Circuit-level).

Task: Slack 100% 50% 25% 13% 0%
SOTA (RTL-Timer) 15% 16% 19% 30% N/A%

CircuitFusion 12% 14% 16% 19% 21%

Table 6: Few-shot results (MAPE) on WNS prediction (Circuit-level).

Task: WNS 100% 50% 25% 13% 0%
SOTA (RTL-Timer) 16% 29% 36% 43% N/A

CircuitFusion 11% 17% 18% 25% 27%

Table 7: Few-shot results (MAPE) on TNS prediction (Circuit-level).

Task: TNS 100% 50% 25% 13% 0%
SOTA (RTL-Timer) 25% 35% 49% 74% N/A

CircuitFusion 15% 24% 41% 52% 59%

Table 8: Few-shot results (MAPE) on Power prediction (Circuit-level).

Task: Power 100% 50% 25% 13% 0%
SOTA (MasterRTL) 26% 37% 46% 55% N/A

CircuitFusion 13% 34% 43% 54% 62%

Table 9: Few-shot results (MAPE) on Area prediction (Circuit-level).

Task: Area 100% 50% 25% 13% 0%
SOTA (MasterRTL) 16% 33% 46% 56% N/A

CircuitFusion 11% 30% 45% 51% 58%

E.3 ABLATION STUDY

Effectiveness of proposed strategies. Figure 9 shows our ablation study by removing key com-
ponents employed in CircuitFusion strategies. Removing the sub-circuit generation severely limits
CircuitFusion’s ability to handle large-scale circuits, leading to the most significant error increases
across all tasks. Without this splitting, the model struggles to capture fine-grained circuit details,
which is essential for tasks like slack prediction that require sub-circuit-level embeddings. We fur-
ther assess the impact of each pre-training objective by selectively removing them. In every case,
this leads to a clear rise in MAPE, indicating the importance of each pre-training task in enhancing
both structural and semantic circuit understanding. Excluding retrieval-augmented inference results
in a substantial increase in MAPE across all tasks. This highlights the significant role retrieval plays
in enhancing fine-tuning performance by utilizing functionally similar existing circuits as references.

Impact of circuit modality. In addition to the ablation study that evaluates the use of each modality
individually in Figure 1, we also conduct an extended study on the selective removal of each modal-
ity. This study aims to further quantify the contribution of each modality (i.e., code, graph, and

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

13 11

29

1615
1817

21

15 1515 1618
22

18 17
20

1415 16

0

20

40

Power Area

M
AP

E
(%

)

12 11
1517

23

16
19

24

1818

30

1514 16 16
19

24
20

15
19 19

14

23 23

14 15 16

0

20

40

Slack WNS TNS

M
AP

E
(%

)

w/o cross-modal align (S2 ℒ!"#$)
w/o retrieval (S4)

w/o intra-modal contrastive (S2 ℒ!"#%)
w/o implementation-aware (S3 ℒ!"#&)

w/o MGM (S2 ℒ'('#%)

w/o matching (S2 ℒ)*+,-#.)

w/o splitting (S1)

w/o MSM (S2 ℒ'/'#.)w/o modality mixup (S2 #3)

N/A

Figure 9: Ablation study on the effectiveness of proposed strategies.

summary) to the model’s overall performance. Specifically, when either the hardware code or graph
modality is removed, there is a significant rise in prediction error across all tasks, highlighting their
critical role in capturing both the structural and functional details of circuits. The graph modality,
in particular, contributes more, as it contains rich structural information essential for circuit repre-
sentation. These results demonstrate the necessity of leveraging modality fusion to fully capture the
diverse characteristics of circuits.

12 11
15 13 11

22 24 22

15 17
14 13 15 16 1516

28

19
16 1415

26 27

20
1718

39

18 19
14

0

20

40

Slack WNS TNS Power Area

M
AP

E
(%

)

CircuitFusion w/o graph modality w/o code modality

only graph only code only summary

Figure 10: Ablation study on the impact of circuit modalities.

E.4 APPLYING PROPOSED STRATEGIES TO BASELINE ENCODERS

As shown in Table 10, applying the sub-circuit generation (S1) and retrieval-augmented inference
(S4) strategies to other pre-trained baseline encoders significantly boosts their performance across
all tasks. By encoding sub-circuits instead of the entire circuit, all baseline methods are now able to
handle the fine-grained slack prediction task, which they originally could not support.

For example, the LLM-based encoder NV-Embed-v1, despite its ability to process 32k tokens, strug-
gles to encode entire circuit code sequences. When enhanced with S1 and S4, it achieves a notable
reduction in MAPE for WNS (from 26% to 17%), TNS (from 55% to 27%), power (from 44% to
20%), and area (from 24% to 17%). Similarly, other software code encoders, such as CodeSage,
CodeT5+ Encoder, and UnixCoder, also benefit significantly from these strategies. This shows that
S1 and S4 not only improve fine-tuning accuracy but also enhance generalization across various
design quality prediction tasks. Despite these improvements, CircuitFusion still outperforms all
baselines, underscoring the effectiveness of its hardware-specific pre-training strategies.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 10: Evaluation results when applying strategy S1 and S4 to other pre-trained encoders.

Method Slack WNS TNS Power Area
R MAPE R MAPE R MAPE R MAPE R MAPE

NV-Embed-v1 ori N/A 0.49 26% 0.97 55% 0.85 44% 0.86 24%
w/ S1&4 0.85 15% 0.81 17% 0.95 27% 0.99 20% 0.97 17%

CodeSage ori N/A 0.23 21% 0.86 45% 0.8 38% 0.77 41%
w/ S1&4 0.84 14% 0.9 25% 0.95 24% 0.96 18% 0.96 17%

CodeT5+ Encoder ori N/A 0.55 30% 0.63 43% 0.49 46% 0.45 39%
w/ S1&4 0.83 14% 0.8 21% 0.94 24% 0.95 19% 0.93 21%

UnixCoder ori N/A 0.46 21% 0.95 44% 0.83 29% 0.85 26%
w/ S1&4 0.84 14% 0.83 20% 0.96 22% 0.96 18% 0.96 16%

CircuitFusion 0.87 12% 0.91 11% 0.99 15% 0.99 13% 0.99 11%

22

	Introduction
	Related works
	Proposed Method: CircuitFusion
	Preprocessing: Multimodal and Multi-stage Circuit Data
	CircuitFusion Model Architecture
	Pre-Training within CircuitFusion: Multimodal Fusion
	Pre-Training beyond CircuitFusion: Implementation-Aware Alignment
	Application: Retrieval-Augmented Inference for Downstream tasks

	Experiments
	Visualization of Circuit Multimodal Fusion
	Design Quality Prediction Tasks and Baseline Methods
	Supervised Fine-Tuning for Design Quality Tasks
	Zero-Shot Retrieval and Regression
	Downstream Performance Scaling with Model Size and Data Size

	Conclusion and Future Work
	More on Circuit HDL Dataset
	ITC'99
	OpenCores
	VexRiscv
	Chipyard

	More on Circuit Data Preprocessing
	Dataset Collection
	Multimodal and Multi-stage Circuit: A Case Study
	HDL Code
	Structural Graph
	Functionality Summary
	Netlist Graph

	Sub-Circuit Generation Algorithm

	Implementation of CircuitFusion
	Model Hyperparameters
	Self-Supervised Pre-Training Tasks Implementation
	Training Hyperparameters
	Retrieval-based Inference Implementation

	Experimental Settings
	More Experimental Results
	Baseline Models (Extended)
	Zero-shot and Few-shot Inference (Extended)
	Ablation Study
	Applying Proposed Strategies to Baseline Encoders

