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Abstract

Personalized federated learning algorithms have shown promising results in adapt-
ing models to various distribution shifts. However, most of these methods require
labeled data on testing clients for personalization, which is usually unavailable in
real-world scenarios. In this paper, we introduce a novel setting called test-time per-
sonalized federated learning (TTPFL), where clients locally adapt a global model
in an unsupervised way without relying on any labeled data during test-time. While
traditional test-time adaptation (TTA) can be used in this scenario, most of them
inherently assume training data come from a single domain, while they come from
multiple clients (source domains) with different distributions. Overlooking these
domain interrelationships can result in suboptimal generalization. Moreover, most
TTA algorithms are designed for a specific kind of distribution shift and lack the
flexibility to handle multiple kinds of distribution shifts in FL. In this paper, we find
that this lack of flexibility partially results from their pre-defining which modules
to adapt in the model. To tackle this challenge, we propose a novel algorithm
called ATP to adaptively learns the adaptation rates for each module in the model
from distribution shifts among source domains. Theoretical analysis proves the
strong generalization of ATP. Extensive experiments demonstrate its superiority in
handling various distribution shifts including label shift, image corruptions, and do-
main shift, outperforming existing TTA methods across multiple datasets and model
architectures. Our code is available at https://github.com/baowenxuan/ATP.

1 Introduction

Federated learning (FL) is a distributed learning system where multiple clients collaborate to train
a machine learning model under the orchestration of the central server, while keeping their data
decentralized [31, 18]. However, clients in FL typically exhibit distinct data distributions. For
example, in the context of animal image classification, users tend to capture pictures of various
animals prevalent in their respective regions, introducing label shift [51] to the local image dataset.
Meanwhile, even when capturing images of the same species, the visual appearance can be influenced
by the environment and camera settings, introducing feature shift [34]. It is crucial that each client
can adapt the model to align with its unique data distribution [44]. Previous personalized federated
learning (PFL) works have mainly focused on improving the performance on clients participating in
training [41, 37, 25, 4] or generalization to new clients [8, 7, 6], assuming the availability of labeled
data. However, in many real-world scenarios, clients do not have labeled data for personalization,
which limits the application of PFL algorithms. For example, when employing an animal image
classifier to mobile phones, their users may capture images of various animals, but without any
accompanying labels indicating the species of the animal.
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In this paper, we introduce a novel setting named test-time personalized federated learning (TTPFL).
During the training phase, a global model is trained using source clients. During the testing phase,
each target client downloads the global model and locally personalizes the model with its unlabeled
data during test-time. This setting is particularly well-suited for cross-device FL, especially when
generalizing to a large number of target clients that have not participated in the training phase and
lack labeled data for supervised personalization. Compared to global FL, which trains a shared global
model for all clients, TTPFL enables model adaptation to individual target clients facing complex
distribution shifts. Compared to standard PFL, TTPFL does not necessitate additional labeled data
from target clients for adaptation.

Test-time adaptation (TTA), which adapts a pretrained model from the source domain to an unlabeled
target domain, could be a solution for TTPFL. However, applying current TTA methods to FL poses
two challenges. First, most TTA methods assume training data are sampled from a single domain
[16, 52]. In FL, where source data are distributed across multiple clients, this simplification neglects
interrelationships among source domains, impacting generalization. Furthermore, the current TTA
methods are usually customized for specific distribution shifts and lack the flexibility to address
diverse types of distribution shifts in FL. The inflexibility of existing TTA algorithms largely results
from their predefined selection of modules to adapt (e.g., feature extractor [28, 43], final linear layer
[16, 36], batch normalization layers [38, 45]). However, different modules encode varying semantic
information levels, and adapting specific modules may be effective for certain shifts but not others
[20]. Meanwhile, although the distribution shifts among source and target clients cannot be directly
inspected, the same type of distribution shifts is likely to exist among source clients. We argue that

Which modules to adapt should depend on the type of distribution shifts among
clients, which can be inferred from source clients.

Motivated by this, we propose a new Adaptive Test-time Personalization algorithm called ATP to
learn the adaptation rates from distribution shifts among source clients. During training, each source
client simulates unsupervised adaptation and refine the adaptation rates of each module to maximize
the effect of unsupervised adaptation. The server aggregates local adaptation rates periodically to
improve generalization. During testing, each target client leverages learned adaptation rates to locally
adapt the global model, and cumulatively averages adapted models from previous batches to enhance
the performance for online TTA. Theoretical analysis confirms ATP’s robust generalization due to
its utilization of multiple sources and low-dimensional adaptation rates. Extensive experiments
demonstrate its superiority in addressing various distribution shifts scenarios, including label shift,
image corruptions, and domain shift, consistently outperforming existing TTA methods across
multiple datasets and model architectures. We summarize our contributions as follows.

• We consider TTPFL, a new learning setting in FL, addressing the challenge of generalizing
to new unlabeled clients under complex distribution shifts. (Section 3)

• We introduce ATP, which adaptively learns the adaptation rate for each module, enabling it
to handle different types of distribution shifts. (Section 4)

• We provide theoretical analysis confirming ATP’s robust generalization. (Section 5)
• We empirically evaluate ATP over various distribution shifts scenarios, using a wide range

of datasets and models. (Section 6)

2 Related works

Federated learning (FL) is a distributed learning system where multiple clients collaborate to train a
machine learning model under a central server’s orchestration while keeping data decentralized [18].

Personalized federated learning (PFL) extends this framework by allowing each client to personalize
the model to its own local data. The most straightforward PFL method is fine-tuning the global model
with a few steps of gradient descent [48, 8, 7]. Similarly, another line of works use the global model
as a regularizer [22] during local training. FedTHE [17] focuses on evolving local testing set, and
proposes a test-time adaptation algorithm for FL that adaptively combines global and personalized
models. However, all these methods require labeled data to construct personalized models. Fed-RoD
[6] uses hypernetworks to generate personalized model, relaxing the requirements for labeled data.
But it still requires the label distribution of the client. FedUL [30] trains a global model with only
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unlabeled clients. However, it is limited to label shift where each client shares the label-conditional
feature distribution p(x|y). Our setting is mostly similar to OD-PFL [2], which also focuses on
generalization to new unlabeled client. It uses an unsupervised client encoder and a hypernetwork
[39] to generate personalized model. However, OD-PFL requires re-training a large hypernetwork,
while our TTPFL setting focuses on adapting an existing global model.

Test-time adaptation (TTA) aims to adapt a machine learning model to a testing set with dataset shift
during test-time without re-accessing training data. Most of the TTA methods focus on either feature
shift or label shift. For feature shift (same p(y|x), different p(x)), entropy minimization is frequently
used to adapt the model in the unsupervised fashion. Tent [45] minimizes the average prediction
entropy by adapting the batch normalization layers [15]. MEMO [52] minimizes the marginal entropy
over different augmentations of the sample input image by adjusting all model parameters. SHOT [28]
exploits information maximization and pseudo-labeling to achieve target-specific feature extraction.
Differently, T3A [16] adjusts the final classification layer, but it is also shown to implicitly reduce
the entropy. It is important to notice that all these methods pre-define which modules to be adapted
in the network. For label shift (same p(x|y), different p(y)), most of the previous works focus on
estimating the shifted label distribution. EM [36, 1] iteratively uses model predictions to estimate the
label prior distribution and uses label prior distribution to adjust model predictions. BBSE [29, 3]
constructs a confusion matrix on the validation dataset, and uses the prediction distribution to estimate
the ground-truth label distribution. The estimated label distribution is used for re-training a model
with importance sampling. [49] generalizes these methods to the online dataset shift setting where
the label distribution for testing data is evolving over time. However, all these methods heavily rely
on the assumption of the same p(x|y), which can be violated in real applications.

Comparison with FedTHE [17] Recently, FedTHE also explored TTA in FL. However, FedTHE
focus on the test-time distribution shift for clients that participate in FL training, while we focus on
improving the performance on novel clients. Moreover, FedTHE fuses global head and personalized
head to get robust prediction. It cannot be easily generalized to target clients which does not have
labeled data to train the personalized head.

Our paper is also related to partial fine-tuning and hyperparameter optimization. We discuss these
works in Appendix A.1 in detail.

3 Motivation

In this section, we first introduce the setting of test-time personalized federated learning, and then
show that current TTA methods lack the flexibility to various types of distribution shifts in TTPFL.

3.1 Test-time personalized federated learning

Preliminary We consider a standard setting for cross-device FL [46] and domain generalization [47].
Considering an FL system with N source clients {Si}Ni=1 and M target clients {Tj}Mj=1. Each source
client Si has its own labeled dataset DSi with ni samples {(xSi

1 ,ySi
1 ), · · · , (xSi

ni
,ySi

ni
)} i.i.d. drawn

from its distribution PSi(x,y), where x is the input and y is its corresponding label. Each target
client Tj has its own unlabeled dataset XTj = {xTj

1 , · · · ,xTj
mj} i.i.d. drawn from its distribution

P Tj (x,y), while the corresponding labels {yTj

1 , · · · ,yTj
mj} cannot be accessed. The distributions

for different source/target clients are different, sampled from a meta-distribution Q, i.e., distribution
of distributions. Global federated learning (GFL) aims to find a single global model minimizing the
expected loss over client population [46]:

L(wG) = EP∼QLP (wG), where LP (wG) = E(x,y)∈P ℓ(f(x;wG);y) (1)

where ℓ represents the loss function and f represents model. GFL enforces that each client uses the
same global model for prediction, which does not allow for adaptation to each client’s unique data
distribution. In contrast, personalized federated learning (PFL) personalizes the global model wG

using its labeled data, and uses the personalized model for prediction, replacing the wG in Eq. (1).
However, most of the PFL algorithms [8, 7, 22] require the assumption that the target client also
possesses additional labeled data, which is a stronger assumption compared to GFL.

Test-time personalized federated learning In this paper, we introduce a novel setting named
test-time personalized federated learning (TTPFL), and compare it with the standard GFL and PFL
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Figure 1: Comparison between the testing phase of GFL, PFL, and TTPFL. TTPFL enables model
personalization without requiring labeled data.

in Figure 1. TTPFL focuses on how to adapt a trained global model to each target client’s data
distributions during test-time, with an adaptation rule A only using unlabeled data. The objective
function can be formulated as

L(wG,A) = EP∼QLP (wG,A), where LP (wG,A) = E(x,y)∈P ℓ(f(x;A(wG,X));y) (2)

which can be unbiasedly estimated by the average loss over M target clients unseen during training

L̂(wG,A) =
1

M

M∑
j=1

L̂
P

Tj (wG,A), where L̂
P

Tj (wG,A) =
1

mj

mj∑
r=1

ℓ(f(x
Tj
r ;A(wG,X

Tj
r ));yTj

r ) (3)

The adaptation rule A adapts a the global model with unlabeled samples XTj
r . We consider two

standard settings: test-time batch adaptation (TTBA) and online test-time adaptation (OTTA) [27].
TTBA individually adapts the global model to each batch of unlabeled samples, where XTj

r is the
data batch that xTj

r belongs. OTTA adapts the global model in an online manner, where XTj
r contains

all the data batches arriving before or together with x
Tj
r .

3.2 Limitation of test-time adaptation

As the precursor to TTPFL, TTA [45, 52, 29] studies how to adapt a trained model to target dataset
under certain types of dataset shifts. Since TTA methods only require unlabeled target data for
adaptation, they can be applied in TTPFL. We test state-of-the-art TTA methods with ResNet-18 on
CIFAR-10 under two types of distribution shifts: label shift and feature shift, with results presented
in Figure 2. As expected, each algorithm can boost the model’s accuracy under the distribution
shift it is designed for. However, most algorithms improve their performance in one scenario while
simultaneously impairing it in another scenario, demonstrating a trade-off in their performance on
feature shift and label shift. Moreover, when facing a more complex hybrid of distribution shifts,
most TTA methods fail to introduce satisfactory performance gain (Table 1). Therefore, TTA methods
are not suitable for TTPFL given the variety of distribution shifts in FL client.

The inflexibility of TTA algorithms largely results from their predefined selection of modules to
adapt, e.g., batch normalization (BN) layers [38, 45], the feature extractor [28, 43], or the last linear
layer [16, 36]. However, which modules to adapt is closely related to the type of distribution shift.
For example, adapting the last linear layer can encode the label shift (Proposition 3.1), while it may
fail when the extracted features are already corrupted due to feature shift. Similarly, adapting the BN
layers can improve the performance under feature shift by distribution alignment (Proposition 3.2),
while distribution alignment can harm the performance under label shift [53].
Proposition 3.1 (Adapting the last layer to handle label shift). Consider two distribution p, q with
p(x|y) = q(x|y) and p(y) ̸= q(y). When a neural network is calibrated on p, i.e., f(x;w) = p(·|x),
it is calibrated on q after adding log q(y)

p(y) to the bias term of the final last layer.

Proposition 3.2 (Adapting the BN layer to handle feature shift [38]). When the feature shift only
causes differences in the first and second order moments of the feature activations z = g(x) where g
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Figure 2: Performance trade-off of existing TTA
methods under two distribution shifts.
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Figure 3: Performance trade-off of entropy min-
imization when adapting different modules.

is the combination of layers before the BN layer, the feature shift can be removed by adapting running
mean and variance of the BN layer.

To verify the connection between distribution shift and the selection of modules for adaptation, we
experiment with adapting different subsets of modules within the network to minimize the entropy
loss [45]. In Figure 3, we observe a similar performance trade-off between feature shift and label
shift: while adapting certain modules can boost the accuracy under one distribution shift, it is less
likely to succeed under the other shift. To break the performance trade-off, it is essential to adaptively
choose which modules to adapt according to the present type of distribution shift. Moreover, while
[20] suggests adapting different blocks in the network, we find it more important to decide (1)
which module type to adapt and (2) what is the adaptation rate (i.e., learning rate for adaptation).
For example, adapting all BN running means significantly outperforming adapting any one block
under feature shift. Meanwhile, employing positive or negative adaptation rates for running means
yields contrasting outcomes, favoring adaptation in the presence of label shift or feature shift while
impairing the other. These observations motivate us to choose which module to adapt (instead of
blocks) while optimizing the adaptation rates for each module.

4 ATP: adaptive test-time personalization

In this section, we propose ATP that automatically learns the adaptation rates for each module. We
introduce the training and testing phase of ATP in subsection 4.1 and 4.2, respectively.

4.1 Training phase: learn to adapt with source clients

In this part, we introduce how ATP learns adaptation rates from source clients without sharing local
data. ATP uses the communication protocol of FedAvg [31] to optimize adaptation rates. In each
communication round, each source client first simulates unsupervised adaptation with the current
adaptation rates, and then refines the adaptation rates to maximize the effect of adaptation. After
local computation, the local adaptation rates are then aggregated on the server to ensure better
generalization to target clients. Algorithm 1 gives the overview of the training phase of ATP. We then
explain each step in detail.

Unsupervised adaptation We consider a neural network model f(·;wG) with global model
parameter wG ∈ RD. Similar to previous works [45, 38], we consider the model processes a data
batch XSi

k = {xSi

k,b}Bb=1 at a time where B is the batch size, i is the client index and k is the batch
index. In the following, we omit the superscript Si for clarity, e.g. XSi

k → Xk, as unsupervised
adaptation and supervised refinement operate identically across all source clients. The network
has d modules, with corresponding parameters w[1], · · · ,w[d]. Typically we have d≪ D. During
unsupervised adaptation, we allow each module w[l] to have a different adaptation rate α[l]. ATP
learns to adapt both trainable parameters and running statistics for batch normalization (BN) [15]
layers. To achieve more precise control of adaptation, the ‘module’ in ATP is slightly more fine-
grained than the ‘layer’. For example, each BN layer has four modules: running mean, running
variance, weight, and bias.
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Update trainable parameters A common strategy for updating trainable parameters is perform-
ing one step of gradient descent to minimize the cross-entropy loss. Since label information
are unavailable for computing cross-entropy, we instead minimize the entropy loss ℓH(Ŷ ) =
1
B

∑B
b=1(−

∑
c ŷb,c log ŷb,c), where Ŷ is the prediction probabilities over the label space of a data

batch. Entropy quantifies the uncertainty of the model prediction, and is frequently used in pre-
vious TTA algorithms [45, 52, 28]. For each trainable parameter module w[l], the corresponding
unsupervised update direction for each client is the negative gradient direction, i.e.,

h
[l]
k = −∇w[l]ℓH(f(Xk;wG)) (4)

Update running statistics The running statistics (mean/variance) in BN layers are not updated by
gradient descent. Instead, they are updated by running average.

w
[l]
k ← (1−m)w

[l]
G +mŵ

[l]
k = w

[l]
G +m(ŵ

[l]
k −w

[l]
G )

where w
[l]
G is the running statistics and ŵ

[l]
k is the statistic for the current batch of inputs. In

previous works, the momentum1 m is usually a fixed hyperparameter in [0, 1]. In ATP, we consider
the momentum for each module as an adaptation rate (α[l] ∈ R) to be learned. We define the
corresponding update direction as

h
[l]
k = ŵ

[l]
k −w

[l]
G (5)

After computing the update direction, each module will be updated along the update direction with
its corresponding adaptation rate, i.e., w[l]

k ← w
[l]
G + α[l]h

[l]
k . Expressed in a compact form,

wk ← wG + (Aα)⊙ hk (6)

where ⊙ is the element-wise product, hk ∈ RD is the concatenation of {h[l]
k }dl=1, α =

[α[1], · · · , α[d]]⊤ and A ∈ RD×d is a 0-1 assignment matrix that maps each adaptation rate α[l] to
the indices of l-th module’s parameters in wG.

Supervised refinement After unsupervised adaptation, we refine the adaptation rates on each source
client with label information to minimize ℓCE(f(Xk,wk),Y k), where ℓCE is the cross-entropy
loss. We use gradient descent to optimize α, i.e.,

α← α− η∇αℓCE(f(Xk;wk),Y k) (7)

where η is the learning rate of adaptation rates. Notice that the gradient of α can be computed as

∇αℓCE(f(Xk;wk),Y k) =
∂ℓCE(f(Xk;wk),Y k)

∂wk

∂wk

∂α
= A⊤(hk ⊙∇wkℓCE(f(Xk;wk),Y k))

To estimate the gradient of α, each training client only needs to adjacently compute the unsupervised
and supervised gradient, and compute their module-wise inner products. Different from many
meta-learning algorithms [9, 26], ATP is computationally very efficient since it requires no second-
order derivatives. In the practical implementation, since each module in the model has significantly
different number of parameters, the raw gradient for each α[l] usually has different scales. Therefore
we normalize the gradient with the square root of the number of parameters in the corresponding
module.

Server aggregation To incorporate adaptation knowledge from multiple source clients and enhance
generalization to the clients’ population, ATP use standard federated aggregation [31] to periodically
aggregates the local adaptation rates. In each communication rounds, after each client locally update
α for a few iterations, the local adaptation rates are uploaded to the server for averaging (as shown
in line 6 of Algorithm 1), and then sent to source clients for the next round of training. With server
aggregation, ATP learn the adaptation rates that enables successful adaptation to all source clients in
average.

Communication cost Notice that ATP only optimizes the adaptation rates α without changing the
global model wG. Therefore, only the adaptation rates are kept transmitted between the server
and each client, while the global model parameter is only broadcasted once at the start of the ATP
training. Such design significantly reduces the communication cost from 2TD (for standard FedAvg)
to D + 2Td.

1Some literatures consider (1−m) as the momentum. Here we follow the definition in PyTorch.
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Algorithm 1 ATP Training

ServerTrain(wG, α0
G = 0)

1: Broadcast wG to all source clients
2: for communication round t = 1 to T do
3: St ← (random set of C source clients)
4: for source client Si ∈ St in parallel do
5: αt

i ← ClientTrain(Si,αt−1
G )

6: αt
G = 1

C

∑
Si∈St α

t
i

7: return αT
G

ClientTrain(Si,α) # Run on source client Si
8: for local epoch e = 1 to E do
9: BSi ← (split DSi into KSi batches of size B)

10: for batch k = 1 to KSi do
11: (XSi

k ,Y Si
k )← (k-th labeled batch in BSi )

12: Estimate update direction hSi
k with unla-

beled XSi
k according to Eq. (4) and (5)

13: wSi
k ← wG + (Aα)⊙ hSi

k

14: α← α− η∇αℓCE(f(X
Si
j ;wSi

k ),Y Si
k )

15: return α

Algorithm 2 ATP Testing
ClientTest(Tj ,wG,α) # Run on target client Tj
1: BTj ← (split XTj into KTj batches of size B)
2: hhistory ← 0 # Cumulative moving average
3: for batch k = 1 to KTj do
4: Estimate update direction h

Tj

k with unlabeled
X

Tj

k according to Eq. (4) and (5)
5: if TTBA then
6: w

Tj

k ← wG + (Aα)⊙ h
Tj

k
7: else if OTTA then
8: hhistory ← k−1

k
hhistory +

1
k
h

Tj

k

9: w
Tj

k ← wG + (Aα)⊙ hhistory

10: Make prediction: Ŷ
Tj

k = f(X
Tj

k ;w
Tj

k )

4.2 Testing phase: exploit adaptation rates on target clients

During testing, each target client downloads both the global model and the adaptation rates. We
propose two versions of ATP: ATP-batch for test-time batch adaptation (TTBA) and ATP-online for
online test-time adaptation (OTTA). We summarize the testing phase in Algorithm 2.

ATP-batch For TTBA, each target client makes independent predictions on each batch. For each
batch of target data, ATP-batch first conducts the unsupervised adaptation identical to source clients,
and then makes prediction.

ATP-online For OTTA, data comes in a stream of batches [XTj

1 ,X
Tj

2 , · · · ]. Previous works [43, 45]
usually keep updating the model batch after batch. However, such accumulative adaptation can
introduce severe batch dependency problem, i.e., each batch is evaluated when the model takes
different number of update steps [54]. For the first few batches, the model has not adapted to the
local distribution well; while for the last few batches, the model may over-minimize the entropy
but increase the cross-entropy loss. To avoid batch dependency, we propose an averaged adaptation
mechanism for online adaptation, whose scale of adaptation is stable during online adaptation.

For each batch X
Tj

k in the data stream, we always compute the update direction h
Tj

k starting with the
fixed global model wG according to Eq. (4) and (5). Subsequently, instead of using only the current
update direction to adapt the model, we average all the stored update direction to update the model,
i.e.,

w
Tj

k ← wG + (Aα)⊙

(
1

k

k∑
s=1

hTj
s

)
(8)

By using the average of previous updates, we simulate updating with larger batch size to utilize
historical data, while controlling the number of update steps to be one. In the practical implementation,
we use cumulative moving average (as shown in line 8 of Algorithm 2), whose space complexity does
not increase with the increment of step k.

5 Theoretical analysis

In this section, we show that ATP enjoys good generalization guarantees because of the low dimension-
ality of adaptation rates. Formal definitions, assumptions and full proofs are provided in Appendix
B.3. We also show in Appendix B.2 that ATP has convergence guarantee similar to FedAvg [31, 46].

Theorem 5.1 (Generalization). Let H = {α : ∥α∥2 ≤ R} be the hypothesis space (space of
adaptation rates), N be the number of source clients, and K be the number of data batches on each
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source client. Assuming (1) L-Lipschitz model, and (2) H-upper-bounded 2-norms for each module’s
update. For any fixed global model wG and any ϵ > 0, we have

Pr( sup
α∈H
|ε(α)− ε̂(α)| ≥ ϵ) ≤

(
12LHR

ϵ

)d

· 4 exp
(
− NKϵ2

2(
√
K + 1)2

)
(9)

where ε̂(α) is the average post-adaptation error rate on source clients, and ε(α) is the expected
post-adaptation error rate on clients’ population.

Theorem 5.1 shows that, although ATP improves the model expressiveness by adapting the model to
each client’s distribution, ATP can still provably generalize well to the clients’ population. Especially,
this generalization benefit from low dimensionality of adaptation rates, since the bound get looser
when d increases. Moreover, this bound shows the importance of learning adaptation rates from
multiple source clients: if we merge all N source domains with K batches into one domain with NK
batches, then the bound will be much looser.

6 Experiments

In this section, we design experiments to answer the following research questions:

• RQ1: Can ATP handle different distribution shift and outperform prior TTA methods?
• RQ2: Does ATP learn adaptation rates specific to distribution shift?

Setup We evaluate ATP on a variety of models, datasets and distribution shifts. We first evaluate on
CIFAR-10(-C) with a standard three-way split [50]: we randomly split the dataset to 300 clients: 240
source clients and 60 target clients. Each source client has 160 training samples and 40 validation
samples, while each target client has 200 unlabeled testing samples. We simulate three kinds of
distribution shifts: feature shift, label shift, and hybrid shift. For feature shift, we follow [12, 17],
randomly apply 15 different kinds of corruptions to the source clients, and 4 new kinds of corruptions
to the target clients to test the generalization of ATP. For label shift, we use the step partition [5],
where each client has 8 minor classes with 5 images per class, and 2 major classes with 80 images
per class. For the hybrid shift, we apply both step partition and feature perturbations. To test ATP
under more challenging domain shifts, we then evaluate ATP on two domain generalization datasets:
Digits-5 [25] and PACS [21]. We adopt the leave-one-domain-out evaluation protocol [10], i.e., one
domain is chosen to construct target clients, and the remaining domains are used to construct source
clients. We follow similar data preprocessing in [25], while additionally applying step partition to
inject label shift. Each domain is divided into 10 clients, leading to 40/10 source/target clients for
Digits-5 and 30/10 source/target clients for PACS. For the experiments above, we use ResNet-18 [11]
as a common choice in FL experiments [42, 14, 33]. We also test ATP with two different architectures:
a five-layer CNN on CIFAR-10(-C) and ResNet-50 on CIFAR-100(-C). Detailed experiment settings
are given in Appendix C.1.

6.1 RQ1: Can ATP handle different distribution shift?

Table 1: Accuracy (mean ± s.d. %) on target clients
under various distribution shifts on CIFAR-10

Method Feature shift Label shift Hybrid shift Avg. Rank

No adaptation 69.42 ± 0.13 72.98 ± 0.24 63.68 ± 0.24 7.7
BN-Adapt 73.52 ± 0.22 54.54 ± 0.10 50.42 ± 0.39 7.0
SHOT 71.76 ± 0.17 48.13 ± 0.18 44.68 ± 0.32 9.3
Tent 71.76 ± 0.09 50.13 ± 0.21 46.05 ± 0.26 8.3
T3A 69.53 ± 0.08 71.70 ± 0.32 62.17 ± 0.17 8.0
MEMO 72.43 ± 0.22 77.30 ± 0.15 68.07 ± 0.28 4.3
EM 65.18 ± 0.12 80.73 ± 0.18 69.85 ± 0.43 5.0
BBSE 63.98 ± 0.17 79.30 ± 0.17 67.96 ± 0.43 6.7
Surgical 69.85 ± 0.22 76.00 ± 0.17 66.94 ± 0.43 6.3
ATP-batch 73.68 ± 0.10 79.90 ± 0.22 73.05 ± 0.35 2.3
ATP-online 74.06 ± 0.18 81.96 ± 0.14 75.37 ± 0.22 1.0

We compare ATP with three kinds of base-
line TTA methods. For feature shift methods,
we compare to BN-Adapt [38] and Tent [45]
which adjusts the batch normalization layers,
SHOT [28] which adjusts the feature extrac-
tor, T3A [16] which adjusts the final classifier,
and MEMO [52] which uses augmentation
to adjust the whole network. For label shift,
we compare to EM [36] which adjusts the
label priori unsupervisedly with expectation-
maximization, and BBSE [29] which uses the
validation data to construct a confusion matrix
to estimate the label priori. Since re-training
a model with different label weights for each
client is not realistic in FL. We use the estimated label distribution to adjust the output of a classifier.
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Table 2: Accuracy (mean ± s.d. %) on target clients under hybrid shift on Digits-5 and PACS

Method Digits-5 PACS

MNIST SVHN USPS SynthDigits MNIST-M Art Cartoon Photo Sketch

No adaptation 95.47 ± 0.22 52.28 ± 1.45 89.62 ± 0.44 79.75 ± 0.69 55.62 ± 0.80 71.57 ± 1.16 74.71 ± 0.70 90.25 ± 0.75 74.20 ± 0.72
BN-Adapt 94.90 ± 0.29 57.57 ± 0.53 89.51 ± 0.39 75.34 ± 0.48 59.68 ± 0.44 73.55 ± 0.51 71.54 ± 0.55 92.07 ± 0.26 70.92 ± 0.53
SHOT 94.69 ± 0.31 57.91 ± 0.23 89.55 ± 0.69 76.43 ± 0.34 60.19 ± 0.69 69.32 ± 0.67 67.77 ± 0.40 86.97 ± 0.60 59.40 ± 0.91
Tent 95.48 ± 0.29 60.67 ± 0.49 91.65 ± 0.61 78.56 ± 0.45 62.49 ± 0.73 71.59 ± 0.71 71.03 ± 0.97 88.06 ± 0.24 63.15 ± 1.10
T3A 94.63 ± 0.61 49.90 ± 1.10 88.46 ± 0.75 75.47 ± 1.14 51.25 ± 1.55 72.15 ± 0.72 75.02 ± 0.78 91.51 ± 0.62 70.14 ± 1.21
MEMO 95.92 ± 0.19 52.85 ± 1.09 89.84 ± 0.44 80.12 ± 0.90 55.48 ± 1.13 71.47 ± 1.29 75.57 ± 0.98 90.65 ± 0.90 76.30 ± 0.65
EM 96.64 ± 0.31 57.21 ± 1.65 92.29 ± 0.32 85.69 ± 0.46 62.08 ± 0.60 73.96 ± 1.85 78.91 ± 0.92 92.30 ± 0.92 80.82 ± 1.52
BBSE 94.47 ± 0.58 57.26 ± 1.47 91.34 ± 0.39 85.54 ± 0.46 61.59 ± 0.91 74.33 ± 1.78 78.69 ± 1.00 91.82 ± 0.68 80.15 ± 1.42
Surgical 97.35 ± 0.13 59.93 ± 2.01 94.19 ± 0.40 86.06 ± 0.44 65.87 ± 0.78 74.59 ± 2.69 77.48 ± 0.64 92.34 ± 0.78 80.90 ± 3.42
ATP-batch 97.81 ± 0.27 62.18 ± 1.71 95.41 ± 0.26 87.91 ± 0.45 69.98 ± 1.96 82.92 ± 0.96 79.64 ± 0.75 95.40 ± 0.41 82.28 ± 1.57
ATP-online 97.81 ± 0.23 62.64 ± 1.92 95.56 ± 0.23 88.33 ± 0.47 70.78 ± 2.36 83.51 ± 0.84 79.46 ± 0.77 95.52 ± 0.40 82.80 ± 1.69

conv.weight

bn.running_mean

bn.running_var

bn.weight
bn.bias

linear.weight

linear.bias

Module type

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Ad
ap

ta
tio

n 
ra

te

Dataset shift
feature
label
hybrid

input co
nv

block1
block2

block3
block4

last li
near

Block

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Ad
ap

ta
tio

n 
ra

te

Dataset shift
feature
label
hybrid

Figure 4: Adaptation rates learned by ATP with different distribution shifts on CIFAR-10

We also compare to Surgical [20] which uses the validation data to decide which blocks to adapt. For
all baselines we use the validation data to select hyperparameters.

ATP can handle different types of distribution shifts Table 1 shows the results on CIFAR-10.
Under feature and label shifts, most TTA methods suffer from performance trade-off as they improve
the performance on one distribution shift while harm the other. The only exception is MEMO, which
utilizes data augmentation to robustify the model prediction. However, it also introduces significant
computational cost during inference. As an adaptive framework simpler than ours, Surgical also
introduces accuracy gain across all distribution shifts. However, its coarse-grained adaptation rule
prevents further improvement on the accuracy. ATP reaches great performance comparable to the
strongest baseline TTA method under both feature and label shifted. Under the more complex hybrid
shift, ATP achieves the highest performance gain with a significant margin. Meanwhile, ATP-online
can further improve the performance of ATP-batch by using information from previous batches.

ATP can handle more challenging domain shifts Table 2 shows the results on two domain
generalization datasets with a hybrid of domain and label shifts. Compared to baselines, ATP
consistently achieves higher accuracy across all domains.

ATP is compatible to multiple model architectures Finally, we evaluate ATP on more model
architectures: Shallow-CNN as smaller model and ResNet-50 as larger model. As shown in Table 5
in Appendix C.2, ATP has uniformly good performance on two new models.

6.2 RQ2: Does ATP learn adaptation rates specific to distribution shift?

Besides ATP’s good performance, we are also interested in whether ATP successfully learns adaptation
rates specific to the type distribution shift. To explore this, we group the adaptation rates by their
corresponding block and module type under three kinds of distribution shifts. As shown in Figure 4,
ATP learns significantly different adaptation rates under different distribution shifts. In Figure 4 (left),
ATP learns to adapt the last linear layer under label shift, while mainly adapt the former layers under
feature shift. More interestingly, we notice in Figure 4 (right) that the adaptation rates for batch norm
running statistics are positive under feature shift, but negative under label shift. Negative adaptation
rate is usually counter-intuitive, since it disaligns the training and testing distributions. However, it
benefits the model under label shifts because it explicitly adapts the label prior distribution towards

9



15 30 60 120 240
Cohort size C

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Ac
cu

ra
cy

algorithm
ATP-batch
ATP-online

5 10 20 40 80 160
Batch size B

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Ac
cu

ra
cy

algorithm
No adaptation
ATP-batch
ATP-online

Figure 5: Effect of cohort size and batch size

the prediction distribution. We use a toy example in Appendix C.5 to show why negative adaptation
rate can improve the model performance under label distribution.

Table 3: Train and test adaptation rates
with different distribution shifts, accu-
racy (mean ± s.d. %)

Train
Test

Feature shift Label shift Hybrid shift

No adaptation 69.42 ± 0.13 72.98 ± 0.24 63.68 ± 0.24
Feature shift 73.68 ± 0.10 65.05 ± 1.82 60.64 ± 1.43
Label shift 67.99 ± 0.28 79.90 ± 0.22 69.50 ± 0.52
Hybrid shift 72.69 ± 0.14 78.92 ± 0.34 73.05 ± 0.35

Moreover, we examine whether the learn adaptation rates
are specific to the type of distribution shift by training on
one distribution shift, but testing on another. We observe
in Table 3 that, ATP performs the best when trained and
tested with the same type of distribution shifts. However,
the adaptation rates trained on feature/label shift fails to
boost the performance on the other distribution shift. The
adaptation rates trained on hybrid shift can generalize
to feature shift and label shift, but still worse than the
adaptation rates trained with the same type of distribution
shifts. These results show that the learn adaptation rates
are specific to the type of distribution shift.

6.3 Further discussion

Table 4: Ablation study, accuracy (mean
± s.d. %)

Method Feature shift Label shift Hybrid shift

No adaptation 69.42 ± 0.13 72.98 ± 0.24 63.68 ± 0.24
ATP-params 69.23 ± 0.27 78.29 ± 0.14 68.05 ± 0.54
ATP-stats 71.27 ± 0.17 74.03 ± 0.18 64.78 ± 0.27
ATP-batch 73.71 ± 0.14 79.90 ± 0.22 73.05 ± 0.35

Ablation study We present two variants of ATP to study
how trainable parameters and running statistics contribute
to the adaptability of ATP. ATP-params only learns to adapt
the trainable parameters, while ATP-stats focuses solely
on adapting the running statistics. As shown in Table 4,
adapting trainable parameters and running statistics both
play critical roles in achieving successful adaptation. More
specifically, ATP-params primarily facilitate adaptation to
label shift, whereas ATP-stats essentially aid in adapting
to feature shift.

Hyperparameter sensitivity Figure 5 shows the effects of cohort size and batch size with CIFAR-
10 under the hybrid shift, where cohort size refers to the number of clients sampled at each round.
ATP demonstrates remarkable consistency in accuracy across different cohort sizes, indicating its
robustness. For batch size, we optimize the adaptation rates with B = 20 and subsequently evaluate
the algorithm with different batch sizes. We find that ATP consistently improves the model’s accuracy
across different batch sizes, with larger batch sizes yielding greater benefits for the model. ATP-online
is more robust to batch size than ATP-batch since it can utilizes information from previous batches.

7 Conclusion

In this paper, we propose ATP that unsupervisedly learns the adaptation rate for each module to handle
various types of distribution shifts encountered in test-time personalized federated learning. As a
potential future direction, incorporating the training of the global model could offer advantages in
terms of facilitating easier and better personalization.
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A More discussions

A.1 More related works

Partial fine-tuning, i.e., updating a subset of modules of a pretrained network on a new dataset, has
been studied in supervised settings [26, 35, 40]. In FL, PartialFed [42] adaptively decides whether
each parameter is shared or personalized. However, it cannot generalize to testing clients that do not
participate in the training. Recently, surgical fine-tuning [20] selectively fine-tunes a subset of blocks
with a similar intuition that the type of distribution shift influences which part of the network to be
adapted. Different from their method, we focus on the unsupervised setting and propose to refine the
adaptation rate for each module.

Hyperparameter optimization is also related to our algorithm if considering adaptation rates as
a set of hyperparameters. [19] first investigates the problem of federated hyperparameter tuning
and proposed FedEX that leverages weight-sharing from neural architecture search to efficiently
tune hyperparameters. [55] introduces FloRA that addresses use cases of tabular data and enables
single-shot federated hyperparameter tuning. While these methods focus on improving the efficiency
of hyperparameter optimization, our paper focuses on finding the optimal adaptation rates that benefit
test-time personalization.

A.2 Broader impacts and limitations

Broader impacts We are not aware of any potential negative societal impacts regarding our work
to the best of our knowledge. For all the used data sets, there is no private personally identifiable
information or offensive content.

Limitations One possible limitation is that we consider a fix global model for lower communication
cost and better generalization, while it might be beneficial to also train a global model for easier
personalization, which could be a promising future direction.
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B Theoretical analysis

In this section, we give theoretical proofs of convergence, and generalization of ATP.

B.1 Approximation analysis

In this subsection, we give detailed proofs of Proposition 3.1 and 3.2 in Section 3 of the main text.
These propositions show why certain types of distribution shifts can be handled by adapting certain
layers in a neural network.

B.1.1 Proof of Proposition 3.1

Proposition 3.1 (Adapting the last layer to handle label shift). Consider two distribution p, q with
p(x|y) = q(x|y) and p(y) ̸= q(y). When a neural network is calibrated on p, i.e., f(x;w) = p(·|x),
it is calibrated on q after adding log q(y)

p(y) to the bias term of the final last layer.

Proof. W.l.o.g., assuming the last layer of the neural network is a linear layer. Denoting g(x;wg)
as the input of the last layer, where x is the input and wg is the model parameters for the feature
extractor (i.e., all layers except for the last classification layer). Denote w1, · · · ,wK as the weights
of the last layer and b1, · · · , bK as the bias terms of the last layer, assuming K classes. Then we have

f(x;w)c =
exp(w⊤

c g(x;wg) + bc)∑K
c′=1 exp(w

⊤
c′g(x;wg) + bc′)

Since the neural network is calibrated on p, for all class index c = 1, · · · ,K, we have

f(x,w)c = p(y = ec|x)

where ec is an one-hot vector with its c-th element as one. For distribution q with the same conditional
distribution and different priori, by Bayes’ theorem, ∀x,y

q(y|x) = q(x|y)q(y)∑
y q(x|y)q(y)

=
p(x|y)q(y)∑
y p(x|y)q(y)

=
p(y|x) · q(y)p(y)∑
y p(y|x) · q(y)p(y)

Therefore, we can calibrate the neural network on distribution q simply by adding log q(y)
p(y) to the bias

terms, i.e.,

fcal(x;wcal)c =
exp(w⊤

c g(x;wg) + bc + log q(ec)
p(ec)

)∑K
c′=1 exp(w

⊤
c′g(x;wg) + bc′ + log q(ec′ )

p(ec′ )
)

=
exp(w⊤

c g(x;wg) + bc) · q(ec)
p(ec)∑K

c′=1 exp(w
⊤
c′g(x;wg) + bc′) · q(ec′ )

p(ec′ )

=
p(ec|x) · q(ec)

p(ec)∑K
c′=1 p(ec′ |x) ·

q(ec′ )
p(ec′ )

= q(y = ec|x)
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B.1.2 Proof of Proposition 3.2

Proposition 3.2 (Adapting the BN layer to handle feature shift [38]). When the feature shift only
causes differences in the first and second order moments of the feature activations z = g(x) where g
is the combination of layers before the BN layer, assuming independent activations, the feature shift
can be removed by adapting running mean and variance of the BN layer.

Proof. Denote the source and target feature (marginal) distributions to be p(x) and q(x). Given
independent, activations, we only need to test the marginal distribution of each z ∈ z = g(x). For
each z, since the feature shift only introduces differences in the first and second order moments, there
exists ∆ and r > 0, s.t., ∀zt ∈ R

Pr
x∼q

(z ≥ zt) = Pr
x∼p

(
z ≥ zt −∆

r

)
which indicates that the distribution of z is first shifted by ∆ and then scaled by r. Such distribution
shift in the feature activation can be removed by adapting the running mean µp and variance σ2

p

µq = r · µp +∆

σq = σp · r

As a result, for all t ∈ R

Pr
x∼q

(
z − µq

σq
≥ t

)
= Pr

x∼q
(z ≥ µq + σq · t)

= Pr
x∼p

(z ≥ µq + σq · t−∆

r
)

= Pr
x∼p

(z ≥ µp + σp · t)

= Pr
x∼p

(
z − µp

σp
≥ t

)
which indicates that the feature shift is removed after normalization with running statistics µq, σq .
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B.2 Convergence analysis

In this part, we show that ATP has the same convergence guarantee as FedAvg [31]. We first show
in Lemma B.5 and B.10 that ATP preserves convexity and smoothness, which are two important
conditions in the analysis of convergence. Then we formally prove the convergence of ATP in
Theorem B.11.

B.2.1 Definitions: local and global objective

For clarity, we first formally define the data generation process, and local/global objectives for
optimization.

𝒬

𝑃𝒮! 𝑃𝒮"

			𝑋"
𝒮! , 𝑌"

𝒮! 			𝑋#
𝒮! , 𝑌#

𝒮!... 				𝑋"
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𝒮" , 𝑌#

𝒮"...

...

Meta-distribution
(distribution of distributions)

Data distribution
(each one is a client)

Data batches

Figure 6: Data generation process

Data generation We consider a two-stage sampling process as illustrated in Figure 6.

• There are N source clients’ distributions PS1 , PS2 , · · · , PSN and M target clients’ distri-
bution P T 1, P T2 , · · · , P TM i.i.d. drawn from a meta-distribution Q.

• For each source client i’s distribution PSi , there are K data batches (XSi
1 ,Y Si

1 ),
(XSi

2 ,Y Si
2 ), · · · , (XSi

K ,Y Si

K ) drawn i.i.d. from PSi .

• Each batch consists of B samples, (XSi

k ,Y Si

k ) = {(xSi

k,b,y
Si

k,b)}Bb=1 where B is the batch
size.

• For simplicity, we assume that all source client has the same number of batches K and batch
size B.

Definition B.1 (Batch objective). Define the batch objective of the k-th batch on client Si to be

Fik(α) =
1

B

B∑
b=1

ℓCE(f(x
Si

k,b,w
Si

k ,ySi

k,b)

where wSi

k = wG + (Aα)⊙ hSi

k and hSi

k is the update direction computed with XSi

k = {xSi

k,b}Bb=1

with Eq. (4) and (5).
Definition B.2 (Local objective). Define the local objective of client i to be

Fi(α) =
1

K

K∑
k=1

Fik(α)

Definition B.3 (Global objective). Define the global objective to be

F (α) =
1

N

N∑
i=1

Fi(α)
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B.2.2 ATP preserves convexity and smoothness

In this part, we show that ATP preserves convexity and smoothness, which are two important
conditions in the analysis of convergence.
Definition B.4 (Convexity). A function f : RD → R is convex if for all x1,x2 ∈ RD and λ ∈ [0, 1]

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Lemma B.5 (Convexity preserving). If ℓCE(f(x;w),y) is convex w.r.t. w given any data sample
(x,y), then Fi(α) is convex w.r.t. α.

Proof. Noticing that wSi

k = wG + (Aα) ⊙ hSi

k is linear to α, linear transformation preserves
convexity. For any update direction hSi

k and data sample (xSi

k,b,y
Si

k,b), we find that

ℓCE(f(x
Si

k,b;wG + (A(λα1 + (1− λ)α2))⊙ hSi

k ,ySi

k,b)

= ℓCE(f(x
Si

k,b;λ
[
wG + (Aα1)⊙ hSi

k

]
+ (1− λ)

[
wG + (Aα2)⊙ hSi

k

]
,ySi

k,b)

≤ λℓCE(f(x
Si

k,b;wG + (Aα1)⊙ hSi

k ,ySi

k,b) + (1− λ)ℓCE(f(x
Si

k,b;wG + (Aα2)⊙ hSi

k ,ySi

k,b)

i.e., ℓCE(f(x
Si

k,b;wG + (Aα)⊙ hSi

k ),ySi

k,b) is convex w.r.t. α.

Finally, since

Fi(α) =
1

KB

K∑
k=1

B∑
b=1

ℓCE(f(x
Si

k,b;wG + (Aα)⊙ hSi

k ),ySi

k,b)

which is the average of KB convex functions, we have that Fi(α) is also convex to α.

Definition B.6 (β-smoothness). A function f : RD → R is L-smoothness with β > 0 if for all
x1,x2 ∈ RD,

∥∇f(x1)−∇f(x2)∥2 ≤ β∥x1 − x2∥2
Definition B.7 (H-module-wise-bounded update direction). The update direction is H-module-wise-
bounded for a data batch XSi

k if

∥(hSi

k )[l]∥2 ≤ H, ∀l = 1, · · · , d

where (hSi

k )[l] is the update direction corresonding to the l-th module and d is the number of modules
in the neural network.
Lemma B.8 (Lipschitz parameter). If the update direction is H-module-wise-bounded for a data
batch XSi

k . Given two adaptation rates α1,α2 and the global model wG, we have

∥wSi

k (α1)−wSi

k (α2)∥2 ≤ H · ∥α1 −α2∥2
where wSi

k (α1) = wG +(Aα1)⊙hSi

k is the personalized model updated with α1 as the adaptation
rate.

Proof.

∥wSi

k (α1)−wSi

k (α2)∥2 = ∥(wG + (Aα1)⊙ hSi

k )− (wG + (Aα2)⊙ hSi

k )∥2
= ∥(A(α1 −α2))⊙ hSi

k ∥2
= ∥hSi

k ⊙ (A(α1 −α2))∥2

=

√√√√ d∑
l=1

∥∥∥(hSi

k )[l]
∥∥∥2
2

(
α
[l]
1 − α

[l]
2

)2

≤

√√√√ d∑
l=1

H2
(
α
[l]
1 − α

[l]
2

)2
= H · ∥α1 −α2∥2
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Remark B.9. Lemma B.8 indicates that when the adaptation rate is perturbed by a little, the personal-
ized model parameter wSi

k is also only perturbed by a little.
Lemma B.10 (Smoothness preserving). If (1) ℓCE(f(x;w),y) is β-smooth w.r.t. w given any data
sample (x,y), and (2) the update direction hSi

k is H-module-wise-bounded for all data batches XSi

k ,
then Fi(α) is (H2β)-smoothness w.r.t. α.

Proof. We first give an upper bound of ∥A⊤diag(hSi

k )∥2 when hSi

k is H-module-wise-bounded. The
update direction hSi

k ∈ RD is the concatenation of update directions for each module {(hSi

k )[l]}dl=1,
i.e., (

hSi

k

)⊤
=

[(
(hSi

k )[1]
)⊤

, · · · ,
(
(hSi

k )[d]
)⊤]

where (hSi

k )[l] is a column vector representing the update direction of the l-th module in the model.
Similarly, any other vector v ∈ RD can be correspondingly expressed as

v⊤ =

[(
v[1]
)⊤

, · · · ,
(
v[d]
)⊤]

Then,

∥A⊤diag(hSi

k )∥2 = sup
v∈RD

∥A⊤diag(hSi

k )v∥2
∥v∥2

= sup
v∈RD

∥A⊤(hSi

k ⊙ v)∥2
∥v∥2

= sup
v∈RD

√√√√√√∑d
l=1

[(
(hSi

k )[l]
)⊤

v[l]

]2
∑d

l=1

∥∥v[l]
∥∥2
2

≤ sup
v∈RD

√√√√√∑d
l=1

[∥∥∥(hSi

k )[l]
∥∥∥
2
·
∥∥v[l]

∥∥
2

]2
∑d

l=1

∥∥v[l]
∥∥2
2

≤ sup
v∈RD

√√√√∑d
l=1

[
H ·

∥∥v[l]
∥∥
2

]2∑d
l=1

∥∥v[l]
∥∥2
2

(Definition B.7)

= H

We then prove that for any H-module-wise-bounded update direction hSi

k and data sample
(xSi

k,b,y
Si

k,b), we have ℓCE(f(x
Si

k,b;w
Si

k (α)),ySi

k,b) is H2β-smoothness w.r.t. α.

∥∇α1ℓCE(f(x
Si

k,b;w
Si

k (α1)),y
Si

k,b)−∇α2ℓCE(f(x
Si

k,b;w
Si

k (α2)),y
Si

k,b)∥2
= ∥A⊤(hSi

k ⊙∇w
Si
k (α1)

ℓCE(f(x
Si

k,b;w
Si

k (α1)),y
Si

k,b)−A⊤(hSi

k ⊙∇w
Si
k (α2)

ℓCE(f(x
Si

k,b;w
Si

k (α2)),y
Si

k,b)∥2

≤ ∥A⊤diag(hSi

k )∥2 · ∥∇w
Si
k (α1)

ℓCE(f(x
Si

k,b;w
Si

k (α1)),y
Si

k,b)−∇w
Si
k (α2)

ℓCE(f(x
Si

k,b;w
Si

k (α2)),y
Si

k,b)∥2

≤ ∥A⊤diag(hSi

k )∥2 · β · ∥wSi

k (α1)−wSi

k (α2)∥2 (Definition B.6)

≤ ∥A⊤diag(hSi

k )∥2 · β ·H · ∥α1 −α2∥2 (Lemma B.8)

≤ H2 · β · ∥α1 −α2∥2
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B.2.3 Convergence of ATP under FedAvg framework

Finally, we show that with preservation of convexity and smoothness, ATP shares the same conver-
gence guarantee as FedAvg [31]. We apply the proof in [46].
Theorem B.11 (Convergence of ATP). Assume that

1. At any round t, each client takes τ SGD steps with learning rate η.

2. Full participation, i.e., each source client participates every round

3. ℓCE(f(x;w),y) is convex and β-smooth w.r.t. w given any data sample (x,y).

4. The update direction hSi

k is H-module-wise-bounded for all i, j

5. Bounded inner variance: for any α and client i,

Ej∇αFij(α) = ∇αFi(α), Ej∥∇αFij(α)−∇αFi(α)∥22 ≤ σ2

6. Bounded outer variance: for any α and client i,

∥∇αFi(α)−∇αF (α)∥22 ≤ ζ2

If the client learning rate satisfies η ≥ 1
4H2β , then one has

E

[
1

τT

T−1∑
t=0

τ∑
k=1

F (ᾱt,k)− F (α∗)

]
≤ ∥α

0
G −α∗∥22
2ητT

+
ησ2

N
+ 4τη2H2βσ2 + 18τ2η2H2βζ2

where α∗ = argminα F (α) and ᾱt,k = 1
N

∑N
i=1 α

t,k
i . αt,k

i is the local adaptation rates after t
communication rounds and k local epochs.

Proof. The optimization process of ATP is similar as FedAvg [31], where the difference is that ATP
adapts the adaptation rates instead of model parameter. Lemma B.5 and B.10 that ATP preserves
convexity and smoothness, i.e., for each client i, Fi(α) is convex and (H2β)-smoothness. Therefore,
we can apply Theorem 1 in [46] to complete the proof.

Remark B.12. The convergence rate of ATP is O( 1
τT ).
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B.3 Generalization analysis

In this part, we studied how an adaptation rate α learned by ATP that performs well on source
clients can generalize to target clients. More specifically, we are interested in how many different
source clients are required to ensure a certain generalization error. Similar to most of the other
generalization analysis, we (1) derive generalization bound for any fixed hypothesis (α), and (2)
quantify the size of hypothesis space.

B.3.1 Definitions: data generation and error rates

We first formally define the error rates.

Definition B.13 (Error rate for one data sample). Let f(·;wSi

k ) : X → ∆|Y|−1 be the neural network
with model parameters wSi

k that takes one data sample xSi

k,b as input and outputs a probability
distribution over the label space, i.e., f(xSi

k,b;w
Si

k ) ≥ 0 and 1⊤f(xSi

k,b;w
Si

k ) = 1. Given adapted
model parameters wSi

k , define the error rate on one data sample (xSi

k,b,y
Si

k,b) to be

êikb(w
Si

k ) := 1− (ySi

k,b)
⊤f(xSi

k,b;w
Si

k )

Remark B.14. Definition B.13 is equivalent to the expected misclassification rate if when making
random decision based on the output probability f(xSi

k,b;w
Si

k ).

Definition B.15 (Error rate for one data batch). Given global model parameter wG, adaptation rate
α, and a batch of data XSi

k = {xSi

k,b}Bb=1,Y
Si

k = {ySi

k,b}Bb=1, define the error rate for one data batch

ε̂ik(α) := êik(w
Si

k ) :=
1

B

B∑
b=1

êikb(w
Si

k )

where

wSi

k = wG + (Aα)⊙ hSi

k

and hSi

k is the update direction computed with XSi

k .
Definition B.16 (Error rates for one client). Given global model parameter wG, adaptation rate α,
and a source client Si with K data batches {(XSi

k ,Y Si

k )}Kk=1, define the empirical error rate for
source client Si

ε̂i(α) :=
1

K

K∑
k=1

ε̂ik(α)

Also, define the expected error rate for source client Si
εi(α) := E

(X
Si
k ,Y

Si
k )∼PSi

[ε̂ik(α) ]

Remark B.17. ε̂i(α) quantifies the error rate on client Si’s finite dataset DSi = {(XSi

k ,Y Si

k )}Kk=1.
εi(α) quantifies the expected error rate on a new data batch from client Si. Notice that the same
definition applies to target clients.
Definition B.18 (Source error rate and expected target error rate). Given global model parameter wG,
adaptation rate α, and N source client S1, · · · ,SN , each with K data batches {(XSi

k ,Y Si

k )}Kk=1,
define the training error rate

ε̂(α) :=
1

K

N∑
i=1

ε̂i(α)

Also, define the expected testing error rate

ε(α) := EPSi∼Q
[
εi(α) | PSi

]
= EPSi∼QE(X

Si
k ,Y

Si
k )∼PSi

[ε̂ik(α)]

Remark B.19. ε̂(α) quantifies the averaged error rate across source clients’ finite samples. ε(α)
quantifies the expected error rate on a new data batch from a new client (target client). Noting that
both error rates are defined with respect to the personalized model after adaptation.
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B.3.2 Generalization bound for one hypothesis

Next, we derive generalization bounds for one fixed adaptation rate α. Since we consider fixed α,
for clarity, we denote

Zik := ε̂ik(α)

Z̄i· :=
1

K

K∑
k=1

Zik = ε̂i(α)

µi := E
(X

Si
k ,Y

Si
k )∼PSi

[Zik] = εi(α)

Z̄·· :=
1

N

N∑
i=1

Z̄i· = ϵ̂(α)

µ̄· :=
1

N

N∑
i=1

µi

µ := EPSi∼Qµi = ϵ(α)

Intuitively, with enough number of source clients and number of batches, we have Z̄·· ≈ µ̄· ≈ µ.

Lemma B.20 (Hoeffding’s inequality). Let X1, · · · , Xn be independent random variables such that
ai ≤ Xi ≤ bi almost surely. Consider the sum of these random variables Sn = X1 + · · ·+Xn. For
all ϵ > 0,

Pr(Sn − E[Sn] ≥ ϵ) ≤ exp

(
− 2ϵ2∑n

i=1(bi − ai)2

)
Proof. Please refer to [13]

Lemma B.21 (Concentration of averaged client expected error rates). For any ϵ > 0, we have

Pr(µ̄· − µ ≥ ϵ) ≤ exp(−2Nϵ2)

Proof. Notice that µ1, · · · , µN are independent given Q. For all i = 1, · · · , N , Eµi = µ and
0 ≤ µi ≤ 1. Therefore,

Pr(µ̄· − µ ≥ ϵ) = Pr

(
N∑
i=1

µi −Nµ ≥ Nϵ

)

= Pr

(
N∑
i=1

µi − E

[
N∑
i=1

µi

]
≥ Nϵ

)

≤ exp

(
− 2 · (Nϵ)2

N · (1− 0)2

)
(Hoeffding’s inequality)

= exp(−2Nϵ2)

Lemma B.22 (Concentration of client empirical error rate). For any ϵ > 0,

Pr
(
Z̄·· − µ̄· ≥ ϵ

)
≤ exp(−2NKϵ2)

Proof. Given distributions PS1 , · · · , PSN , we have Z11, · · · , Z1K , Z21, · · · , ZNK are independent.
For any i = 1, · · · , N and k = 1, · · · ,K, we have E

(X
Si
k ,Y

Si
k )∼PSi

Zik = µi and 0 ≤ Zik ≤ 1.
Therefore,

Pr
(
Z̄·· − µ̄· ≥ ϵ | PS1 , · · · , PSN

)
= Pr

(
N∑
i=1

K∑
k=1

Zik −
N∑
i=1

Kµi ≥ NKϵ

∣∣∣∣∣ PS1 , · · · , PSN

)
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= Pr

(
N∑
i=1

K∑
k=1

Zik − E

[
N∑
i=1

K∑
k=1

Zik

]
≥ NKϵ

∣∣∣∣∣ PS1 , · · · , PSN

)

≤ exp

(
− 2 · (NKϵ)2

NK · (1− 0)2

)
(Hoeffding’s inequality)

= exp(−2NKϵ2)

Then, we use the tower property,

Pr(Z̄·· − µ̄· ≥ ϵ) = E
PS1 ,··· ,PSN

i.i.d.∼Q
Pr(Z̄·· − µ̄· ≥ ϵ | PS1 , · · · , PSN )

≤ sup
PS1 ,··· ,PSN

Pr(Z̄·· − µ̄· ≥ ϵ | PS1 , · · · , PSN )

≤ exp(−2NKϵ2)

Proposition B.23 (Generalization for one hypothesis). For any fixed global model wG and adaptation
rate α, for any ϵ > 0, we have

Pr (|ε̂(α)− ε(α)| ≥ ϵ) ≤ 4 exp

(
− 2NKϵ2

(
√
K + 1)2

)
Proof. For any ϵ > 0, we have

Pr(Z̄·· − µ ≥ ϵ) = Pr((Z̄·· − µ̄·) + (µ̄· − µ) ≥ ϵ)

≤ inf
ϵ′

[
Pr((Z̄·· − µ̄· ≥ ϵ′) ∨ (µ̄· − µ ≥ ϵ− ϵ′))

]
≤ inf

ϵ′

[
Pr(Z̄·· − µ̄· ≥ ϵ′) + Pr(µ̄· − µ ≥ ϵ− ϵ′)

]
≤ inf

ϵ′
[exp(−2NK(ϵ′)2) + exp(−2N(ϵ− ϵ′)2)] (Lemma B.21 and B.22)

To make the bound clear (although not optimal), we choose ϵ′ = 1√
K+1

ϵ and thus ϵ− ϵ′ =
√
K√

K+1
ϵ.

Then the bound becomes,

Pr(Z̄·· − µ ≥ ϵ) ≤ 2 exp

(
− 2NKϵ2

(
√
K + 1)2

)
Similarly we can show that

Pr(Z̄·· − µ ≤ −ϵ) ≤ 2 exp

(
− 2NKϵ2

(
√
K + 1)2

)
Therefore,

Pr (|ε̂(α)− ε(α)| ≥ ϵ) = Pr(
∣∣Z̄·· − µ

∣∣ ≥ ϵ) ≤ 4 exp

(
− 2NKϵ2

(
√
K + 1)2

)

Remark B.24. The RHS is function of both (1) N , the number of source clients and (2) K, the
number of data batches on each client.

• When N → ∞, given any fixed K ≥ 1, the RHS → 0, indicating that ϵ̂(α)
p→ ϵ(α)

(convergence in probability).

• However, given a fixed finite N , when K →∞, the RHS does not limit to zero. Intuitively,
sampling more batches on finite source clients only help the algorithm learn finite distribution
PS1 , · · · , PSN . However, more data batches on existing clients does not help further
exploration of the meta-distribution Q and generalization to novel target clients. Actually,
given a fixed finite N , when K →∞, ϵ̂(α)

p→ 1
N

∑N
i=1 ϵi(α) ̸= ϵ(α).

• If we put data from N sources (each with K batches) together as one source with NK
batches. The generalization bound is looser.
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B.3.3 Generalization bound for hypothesis space (proof of Theorem 5.1)

Finally, we derive the generalization bound for the hypothesis space. We first show in Lemma B.27
that ε̂ij(α) is (LH)-Lipschitz to α, then we apply standard generalization analysis in Theorem 5.1
based on covering number [32].
Definition B.25 (L-Lipschitz). The neural network f(x;w) is L-Lipschitz w.r.t. w, if ∀x and
w1,w2.

∥f(x;w1)− f(x;w2)∥2 ≤ L · ∥w1 −w2∥2
Definition B.26 (H-module-wise-bounded update direction). The update direction is H-module-
wise-bounded for a data batch XSi

k if

∥(hSi

k )[l]∥2 ≤ H, ∀l = 1, · · · , d

where (hSi

k )[l] is the update direction corresonding to the l-th module and d is the number of modules
in the neural network.
Lemma B.27 (Lipschitz error rate). Given a data batch (XSi

k ,Y Si

k ), if the update direction is
H-module-wise-bounded, given any two adaptation rates α1,α2 and the global model wG, we have

|ε̂ij(α1)− ε̂ij(α2)| ≤ LH · ∥α1 −α2∥2

Proof.

|ε̂ij(α1)− ε̂ij(α2)|

=

∣∣∣∣∣
(

1

B

B∑
b=1

(
1− (ySi

k,b)
⊤f(xSi

k,b;w
Si

k (α1))
))
−

(
1

B

B∑
b=1

(
1− (ySi

k,b)
⊤f(xSi

k,b;w
Si

k (α2))
))∣∣∣∣∣

=

∣∣∣∣∣ 1B
B∑

b=1

(ySi

k,b)
⊤
(
f(xSi

k,b;w
Si

k (α1))− f(xSi

k,b;w
Si

k (α2))
)∣∣∣∣∣

≤ 1

B

B∑
b=1

∥ySi

k,b∥2 ·
∥∥∥f(xSi

k,b;w
Si

k (α1))− f(xSi

k,b;w
Si

k (α2))
∥∥∥
2

≤ 1

B

B∑
b=1

∥ySi

k,b∥2 · L ·
∥∥∥wSi

k (α1)−wSi

k (α2)
∥∥∥
2

(L-Lipschitz model)

≤ 1

B

B∑
b=1

∥ySi

k,b∥2 · L ·H · ∥α1 −α2∥2 (Lemma B.8)

= LH · ∥α1 −α2∥2

Remark B.28. Intuitively, Lemma B.27 shows that small change in α will result in bounded change
on ε̂ij(α).
Corollary B.29. ϵ̂(α) and ϵ(α) are (LH)-Lipschitz w.r.t. α.

Proof. ϵ̂(α) and ϵ(α) are expectations of ε̂ij(α) given the empirical and expected distribution of
(XSi

k ,Y Si

k ). Lipschitz property is preserved.

Theorem 5.1 (Generalization for hypothesis space). LetH = {α : ∥α∥2 ≤ R} be the hypothesis
space (space of adaptation rates), N be the number of source clients, and K be the number of data
batches on each source client. Assuming (1) L-Lipschitz model, and (2) H-module-wise-bounded
update direction. For any fixed global model wG and any ϵ > 0, we have

Pr( sup
α∈H
|ε(α)− ε̂(α)| ≥ ϵ) ≤

(
12LHR

ϵ

)d

· 4 exp
(
− NKϵ2

2(
√
K + 1)2

)
(10)

where ε̂(α) is the average post-adaptation error rate on source clients, and ε(α) is the expected
post-adaptation error rate on clients’ population.
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Proof. We use covering number to derive the generalization bound [32]. Define estimation error

∆ϵ(α) = ε(α)− ε̂(α)

Then,

|∆ϵ(α1)−∆ϵ(α2)| = |[ε(α1)− ε̂(α1)]− [ε(α2)− ε̂(α2)]|
≤ |ε(α1)− ε(α2)|+ |ε̂(α1)− ε̂(α2)|
≤ 2LH · ∥α1 −α2∥2 (Corollary B.29)

A = {α : ∥α∥2 ≤ R,α ∈ Rd} can be covered by K = N2(R, r) L2 balls with radius r = ϵ
4LH .

Lemma 6.27 in [32] shows that

S = N2 (R, r) ≤
(
3R

r

)d

=

(
12LHR

ϵ

)d

Denote these L2 balls to be B1, · · · , BS ,

Pr

(
sup
α∈A
|ε(α)− ε̂(α)| ≥ ϵ

)
≤

S∑
s=1

Pr

(
sup
α∈Bs

|ε(α)− ε̂(α)| ≥ ϵ

)
For each ball Bs, s = 1, · · · , S, denote the center to be αs. For any α ∈ Bs, we have ∥α−αs∥ ≤

ϵ
4LH , therefore

|∆ϵ(αs)−∆ϵ(α)| ≤ 2LH · ∥α−αs∥ ≤
ϵ

2

Intuitively, every α ∈ Bs has similar error rate. Therefore, the error rate for the whole ball is upper
bounded, as long as the center αs has a small error rate

Pr

(
sup
α∈Bs

|ε(α)− ε̂(α)| ≥ ϵ

)
= Pr

(
sup
α∈Bs

|∆ϵ(α)| ≥ ϵ

)
≤ Pr

(
sup
α∈Bs

[|∆ϵ(αs)|+ |∆ϵ(αs)−∆ϵ(α)|] ≥ ϵ

)
≤ Pr

(
sup
α∈Bs

|∆ϵ(αs)|+
ϵ

2
≥ ϵ

)
= Pr

(
|ε(αs)− ε̂(αs)| ≥

ϵ

2

)
Finally, by Proposition B.23, for each αs

Pr
(
|ε(αs)− ε̂(αs)| ≥

ϵ

2

)
≤ 4 exp

(
− NKϵ2

2(
√
K + 1)2

)
Put all together

Pr

(
sup
α∈A
|ε(α)− ε̂(α)| ≥ ϵ

)
≤
(
12LHR

ϵ

)d

· 4 exp
(
− NKϵ2

2(
√
K + 1)2

)
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C Additional experiments

C.1 Detailed experiment settings

C.1.1 CIFAR-10 experiments

Data preparation We use a benchmarking three-way split [50]: we randomly split the dataset
to 300 clients, 240 of them are source clients and 60 are target clients. Each source client has 160
training samples and 40 validation samples, while each target client has 200 testing samples. We
simulate three kinds of distribution shifts: feature shift, label shift, and hybrid shift. For feature shift,
we follow [12, 17], randomly apply 15 different kinds of corruptions to the source clients (Figure
7a), and 4 new kinds of corruptions to the target clients (Figure 7b) to test the generalization of ATP.
The corruption severity is randomly selected from {1, 2, 3, 4, 5}. For label shift, we use the step
partition [5], where each client has 8 minor classes with 5 images per class, and 2 major classes with
80 images per class. For the hybrid shift, we apply both step partition and feature corruptions.

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

(a) 15 corruptions for training clients

Speckle Noise Gaussian Blur Spatter Saturate

(b) 4 corruptions for testing clients

Figure 7: 15 + 4 different corruptions we use to construct feature shift

Global model training We first train a global model with FedAvg [31] over the training sets of
source clients.

• ResNet-18: The global model is ResNet-18 with ImageNet pretrained parameter (provided
by torchvision). We train the global model for T = 200 communication rounds with full
participation (cohort size C = 240), local epochs E = 1, learning rate η = 0.01 and batch
size B = 20.

• Shallow CNN: The global model is a randomly initialized 5-layer CNN. We train the global
model for T = 200 communication rounds with full participation (cohort size C = 240),
local epochs E = 1, learning rate η = 0.1 and batch size B = 20.

ATP training We initialize the adaptation rates as a all-zero vector, and optimize it over the validation
sets of source clients. We optimize the adaptation rates for T = 200 (for ResNet-18) or 400 (for
Shallow CNN) communication rounds with partial participation (cohort size C = 60), learning rate
η = 0.1 and batch size B = 20.

ATP testing We test the optimized adaptation rates on each target client. We use batch size B = 20
by default, and test different batch size in Subsection 6.3.

C.1.2 CIFAR-100 experiments

Data preparation The data preparation is similar to CIFAR-10 experiments. The only difference is
for label shift, each client has 98 minor classes with 1 image per class, and 2 major classes with 51
images per class. Same partition is applied to hybrid shift.

Global model training We first train a global model with FedAvg [31] over the training sets of
source clients. The global model is ResNet-18 with ImageNet pretrained parameter (provided by
torchvision). We train the global model for T = 200 communication rounds with full participation
(cohort size C = 240), local epochs E = 1, learning rate η = 0.01 and batch size B = 20.
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ATP training We initialize the adaptation rates as a all-zero vector, and optimize it over the validation
sets of source clients. We optimize the adaptation rates for T = 200 communication rounds with
partial participation (cohort size C = 60), learning rate η = 0.1 and batch size B = 20.

ATP testing We test the optimized adaptation rates on each target client. We use batch size B = 20.

C.1.3 Digits-5 experiments

Data preparation Digits-5 dataset contains five domains: MNIST, SVHN, USPS, SynthDigits, and
MNIST-M. We adopt the leave-one-domain-out evaluation protocol [10], i.e., one domain is chosen
as the held-out testing domain, and the remaining domains are regarded as source training domains.
We follow the data preprocessing in [25], while additionally applying step partition to inject label
shift. Each domain is divided into 10 clients, leading to a total of 40 source clients and 10 target
clients. Consequently, each client ends up with approximately 743 images spread across 10 classes.
Each source client has 80% of its samples as training set and the remained 20% as testing set. Each
client has 2 major classes and 8 minor class, where the ratio of images per class is approximately
16 : 1 (the same as our CIFAR-10 experiments). Since there is already domain shift, we do not add
corruptions.

Global model training We first train a global model with FedAvg [31] over the training sets of
source clients. The global model is ResNet-18 with ImageNet pretrained parameter (provided by
torchvision). We train the global model for T = 200 communication rounds with full participation
(cohort size C = 50), local epochs E = 1, learning rate η = 0.01 and batch size B = 20.

ATP training We initialize the adaptation rates as a all-zero vector, and optimize it over the validation
sets of source clients. We optimize the adaptation rates for T = 200 communication rounds with
partial participation (cohort size C = 10), learning rate η = 0.5 and batch size B = 200.

ATP testing We test the optimized adaptation rates on each target client. We use batch size B = 200.

C.1.4 PACS experiments

Data preparation PACS dataset contains four domains: art, cartoon, photo, and sketch. We adopt
the leave-one-domain-out evaluation protocol [10], i.e., one domain is chosen as the held-out testing
domain, and the remaining domains are regarded as source training domains. We follow the data
preprocessing in [10], while additionally applying step partition to inject label shift. Each domain is
divided into 7 clients, leading to a total of 21 source clients and 7 target clients. Each source client
has 80% of its samples as training set and the remained 20% as testing set. Each client has 2 major
classes and 5 minor class, where the ratio of images per class is approximately 16 : 1 (the same as
our CIFAR-10 experiments). Since there is already domain shift, we do not add corruptions.

Global model training We first train a global model with FedAvg [31] over the training sets of
source clients. The global model is ResNet-18 with ImageNet pretrained parameter (provided by
torchvision). We train the global model for T = 200 communication rounds with full participation
(cohort size C = 21), local epochs E = 1, learning rate η = 0.05 and batch size B = 20.

ATP training We initialize the adaptation rates as a all-zero vector, and optimize it over the validation
sets of source clients. We optimize the adaptation rates for T = 500 communication rounds with full
participation (cohort size C = 21), learning rate η = 0.5 and batch size B = 200.

ATP testing We test the optimized adaptation rates on each target client. We use batch size B = 200.

C.1.5 Algorithm details

Assignment matrix A In the main test, we mentioned that A ∈ RD×d is a 0 − 1 assignment
matrix that maps each adaptation rate α[l] to the indices of the l-th module’s parameters in w.
Mathematically,

Akl =

{
1, if the k-th parameter in w belongs to the l-th module
0, otherwise
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If there are d = 3 modules, each with 1, 2, and 3 parameters, so D = 1+2+3 = 6, the corresponding
assignment matrix will be

A =


1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1


Computation

We did our experiments with single NVIDIA Tesla V100 GPU. However, our experiment should only
require less than 2GB of GPU memory.
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C.2 Compatibility to model architecture (RQ1)

In this part, we evaluate ATP with two more model architectures: a 5-layer Shallow CNN as a smaller
model and ResNet-50 as a larger model.

Table 5: ATP with different model architectures, accuracy (mean ± s.d. %) on target clients

Method Shallow CNN on CIFAR-10 ResNet-50 on CIFAR-100

Feature shift Label shift Hybrid shift Avg. Rank Feature shift Label shift Hybrid shift Avg. Rank

No adaptation 64.39 ± 0.18 69.33 ± 0.37 61.99 ± 0.47 7.3 45.31 ± 0.30 51.63 ± 0.15 40.01 ± 0.17 7.3
BN-Adapt 66.46 ± 0.22 54.99 ± 0.38 50.40 ± 0.43 7.0 47.75 ± 0.29 34.85 ± 0.26 30.31 ± 0.09 7.3
SHOT 65.60 ± 0.18 49.98 ± 0.29 45.95 ± 0.47 9.0 45.42 ± 0.30 31.06 ± 0.32 27.44 ± 0.14 9.3
Tent 65.61 ± 0.24 50.12 ± 0.25 45.91 ± 0.49 8.7 45.91 ± 0.46 31.34 ± 0.11 27.93 ± 0.31 8.3
T3A 64.31 ± 0.27 66.96 ± 0.43 59.65 ± 0.58 8.3 45.31 ± 0.30 51.42 ± 0.15 39.89 ± 0.20 7.7
MEMO 65.89 ± 0.31 71.95 ± 0.25 64.17 ± 0.47 5.3 48.42 ± 0.14 55.19 ± 0.28 42.53 ± 0.20 3.7
EM 61.74 ± 0.25 76.28 ± 0.29 67.54 ± 0.41 5.0 43.00 ± 0.31 59.34 ± 0.15 44.82 ± 0.27 5.0
BBSE 56.92 ± 0.53 75.99 ± 0.44 66.64 ± 0.53 6.3 37.26 ± 0.64 56.97 ± 0.20 40.09 ± 0.51 7.0
Surgical 64.45 ± 0.12 73.75 ± 0.42 65.67 ± 0.44 5.7 45.18 ± 0.38 54.83 ± 0.26 42.50 ± 0.33 6.7
ATP-batch 66.90 ± 0.05 76.23 ± 0.32 68.88 ± 0.35 2.3 48.35 ± 0.45 58.06 ± 0.53 46.82 ± 0.32 2.7
ATP-online 67.13 ± 0.17 78.56 ± 0.32 71.52 ± 0.51 1.0 49.08 ± 0.26 61.86 ± 0.25 49.51 ± 0.23 1.0

From Table 5, we observe that under the new model architecture (and the new dataset), the perfor-
mance of ATP is highly similar to the results of the ResNet-18 + CIFAR10 experiment in Table 1 in
Subsection 6.1. ATP, in all three scenarios, can handle various types of distribution shifts and surpass
baseline methods. This suggests that ATP is compatible with multiple model architectures.
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C.3 Robustness to global model

In this subsection, we design experiments to answer the following question: is ATP robust to the
choice of global model? Specifically, we have three sub-questions:

• Is ATP robust to the parameter of global model? (C.3.1)
• Is ATP robust to the algorithm to train global model? (C.3.2)

C.3.1 Robustness to the parameter of global model (online updated global model)

In the main text, we primarily focused on the scenario where the global model remains fixed. However,
in practical FL systems, the global model may also undergo continuous online updates. Therefore,
after obtaining the adaptation rates through ATP training, the global model might have been further
updated for several rounds. This raises a question: Are the “outdated” adaptation rates still effective
after several rounds of updates to the global model?

Table 6: Accuracy (%), ATP can learn adaptation rates that generalize to global models with different
numbers of communication rounds under hybrid shift on CIFAR-10

Method 200 + 0 Rounds +10 Rounds +20 Rounds +50 Rounds +100 Rounds

No adaptation 63.68 ± 0.24 63.88 ± 0.20 64.03 ± 0.13 64.30 ± 0.08 64.56 ± 0.11
ATP-batch 73.05 ± 0.35 73.20 ± 0.40 73.25 ± 0.37 73.47 ± 0.48 73.61 ± 0.28
ATP-online 75.37 ± 0.22 75.61 ± 0.23 75.69 ± 0.20 75.80 ± 0.15 75.83 ± 0.28

We design experiment to apply the “outdated” adaptation rates to the global model that has undergone
additional updates for several rounds, to see if they can still improve the test-time accuracy of the
global model. Specifically, we optimize the adaptation rates α with wT

G where T = 200, but test the
adaptation rates with wT+∆T

G with ∆T = 10, 20, 50, 100 rounds. We use the same setting of hybrid
shift on CIFAR-10 experiments. As shown in Table 6, while further optimizing the global model
can marginally improve the accuracy, both ATP-batch and ATP-online can effectively enhance the
test-time accuracy through personalization, even when α is trained using an outdated version of the
global model.

C.3.2 Robustness to the algorithm to train global model

In the main text, we used FedAvg [31] to train the global model. However, in real-world FL systems,
other FL algorithms may be employed for training the global model, considering stability optimization
or fairness. Therefore, we aim to investigate whether ATP can also be applied to other commonly
used FL algorithms.

Table 7: Accuracy (%), ATP enhances different global models under hybrid shift on CIFAR-10

Method FedAvg FedProx (µ = 0.01) q-FFL (q = 1)

No adaptation 63.68 ± 0.24 63.77 ± 0.25 63.87 ± 0.23
ATP-batch 73.05 ± 0.35 72.95 ± 0.33 73.15 ± 0.21
ATP-online 75.37 ± 0.22 75.51 ± 0.19 75.79 ± 0.15

In particular, we use FedProx [23], an FL algorithm designed to handle heterogeneous setting, and
q-FFL [24], an FL algorithm enhancing performance fairness among participating clients. For all
global model, we use the same setting of hybrid shift on CIFAR-10 experiments. As shown in Table
7, both ATP-batch and ATP-online can consistently improve the test-time accuracy across different FL
algorithms to train global models.
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C.4 Convergence and generalization

In Section 5, Appendix B.2 and B.3, we theoretically show that ATP has good convergence and
generalization guarantees. In this section, we visualize the training and testing loss curves to verify
the fast convergence and superior generalization of ATP under different cohort size C. The results are
shown in Figure 8.

0 25 50 75 100 125 150 175 200
Round

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Lo
ss

train
test

(a) C = 240

0 25 50 75 100 125 150 175 200
Round

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Lo
ss

train
test

(b) C = 120

0 25 50 75 100 125 150 175 200
Round

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Lo
ss

train
test

(c) C = 60

0 25 50 75 100 125 150 175 200
Round

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Lo
ss

train
test

(d) C = 30

0 25 50 75 100 125 150 175 200
Round

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Lo
ss

train
test

(e) C = 15

Figure 8: Loss curves of ATP under different cohort size C

Convergence Under full participation (C = 240), both the training and testing loss converge stably
and fast, indicating the reliable convergence of ATP. With partial participation, as the cohort size
decreases (C = 120, 60, 30, 15), the training loss curve exhibits greater fluctuations, primarily due to
sampling different subsets of clients in each communication round. However, the testing loss curve
still converge stably with similar speed, indicating that ATP is robust to partial participation.

Generalization Under full participation (C = 240), the training and testing loss curves decrease
synchronously without any overfitting. This implies that our algorithm exhibits excellent generaliza-
tion. Similar observations can be made for partial participation (C = 120, 60, 30, 15). Additionally,
it is worth noting that the test loss is lower than the train loss, which may seem counterintuitive.
This is primarily due to the use of different corruptions between the testing and source clients. The
accuracy of clients varies significantly under different corruptions, as evidenced by the fluctuations in
the training curve when C = 15. However, we can still analyze the generalization performance by
comparing the trends of the two curves.
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C.5 Toy example for negative adaptation rate (RQ2)

In Section 6.2, we notice that ATP learns negative adaptation rates for running means and variance
under label shift. In this subsection, we use a toy example to show why negative adaptation rate can
improve the model performance under label distribution shift.

We consider a binary classification problem with input x ∈ R and binary output y ∈ {−1,+1},
where −1 is the negative class and +1 is the positive class. Let the feature for negative samples
(x|y = −1) ∼ N (−1, 0.82) and for positive samples (x|y = +1) ∼ N (+1, 0.82). Let the label
distribution Pr(y = 1) = 1

2 for training set, and Pr(y = 1) = 5
6 for testing set. Therefore, for the

training distribution, we have

Ex = Pr(y = −1)E(x|y = −1) + Pr(y = +1)E(x|y = +1) = 0

V ar(x) = E[V ar(x|y)] + V ar(E[x|y]) = 1.64

We consider a simple network with only one BN layer, with both normalization and affine transfor-
mation (as a linear classifier). There are four modules, each is a scalar: running mean µ, running
variance σ2, weight γ, bias β.
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(b) α = 1, Acc=0.73
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(c) α = 0.5, Acc=0.83
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(d) α = 0, Acc=0.89
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(e) α = −0.5, Acc=0.92

Figure 9: Adapting batch norm running statistics under label shift.

Training During training, given enough training data, we have µtrain = Ex = 0 and σ2
train = 1.64.

Figure 9a shows the histogram of z = x−µ
σ , i.e., the intermediate feature after normalization before the

transformation. By comparing the histograms of z of two classes, we notice that the optimal decision
boundary is z = 0, which indicate that βtrain = 0 and γtrain > 0. We store the corresponding
µtrain, σ

2
train, γtrain, βtrain, and only update running statistics µtrain, σ

2
train during testing.

Testing without updating running statistics (α = 0) Figure 9d shows the testing result when
we do not update the running statistics, i.e., α = 0. Since two conditional feature distributions are
symmetric, the accuracy will not change.

Testing with α > 0 Positive adaptation rates align the intermediate feature distribution. When we
use α = 1, the distribution of z will be centralized. As shown in Figure 9b, such alignment greatly
reduces the accuracy. Similar result is also observed with any positive α, e.g., α = 0.5 in Figure 9c.

Testing with α < 0 While α = 0 has stable accuracy under label shift, by comparing the histograms
of z of two classes in Figure 9d, we notice that z = 0 is not the optimal decision boundary anymore,
because there are less negative samples than positive samples. By using negative adaptation rate
α < 0, the normalization layer can further “disalign” the intermediate feature, which can further
improve the accuracy, as shown in Figure 9e.
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