
A Background

A.1 Tensor algebra and tensor diagram notation

Our analysis makes use of tensor algebra for tensor operations [22]. Vectors are denoted with low-
ercase Roman letters (e.g., v), matrices are denoted with uppercase Roman letters (e.g., M), and
tensors are denoted with calligraphic font (e.g., T). An order N tensor corresponds to an N -
dimensional array. For an order N tensor T ∈ Rs1×···×sN , the size of ith dimension is si. The
ith column of the matrix M is denoted by M(:, i), and the ith row is denoted by M(i, :). Subscripts
are used to label different vectors, matrices and tensors (e.g. T1 and T2 are unrelated tensors). The
Kronecker product of two vectors/matrices is denoted with ⊗, and the outer product of two or more
vectors is denoted with ◦. For matrices A ∈ Rm×k and B ∈ Rn×k, their Khatri-Rao product results
in a matrix of size (mn) × k defined by A � B = [A(:, 1) ⊗ B(:, 1), . . . , A(:, k) ⊗ B(:, k)]. Ma-
tricization is the process of unfolding a tensor into a matrix. The dimension-n matricized version of
T is denoted by T(n) ∈ Rsn×K where K =

∏N
m=1,m 6=n sm.

We introduce the graph representation for tensors, which is also called tensor diagram [7]. A tensor
is represented by a vertex with hyperedges adjacent to it, each corresponding to a tensor dimension.
A matrix M and an order four tensor T are represented as follows,

M =⇒ T =⇒ .

The Kronecker product of two matrices A and B can be expressed as

A B = A⊗B .

Connecting two edges means two tensor dimensions are contracted or summed over. One example
is shown in Fig. 7.

𝐵

𝐴

𝐶

𝑖

𝑗
𝑘

𝑙

∑ 𝒜!"#ℬ#$𝒞#"$",#,$ →

Figure 7: An example of tensor diagram notation.

A.2 Background on sketching

In this section, we introduce definitions for sketching used throughout the paper.
Definition 2 (Gaussian embedding). A matrix S = 1√

m
M ∈ Rm×n is a Gaussian embedding if

each element of M is a normalized Gaussian random variable, M(i, j) ∼ N(0, 1).

One key property we would like the tensor network embedding to satisfy is the (ε, δ)-accurate
property. To achieve this, one central property each tensor in the tensor network embedding needs
to satisfy is the Johnson-Lindenstrauss (JL) moment property. The JL moment property captures
a bound on the moments of the difference between the vector Euclidean norm and the norm after
sketching. We introduce both definitions below.
Definition 3 ((ε, δ)-accurate embedding). A random matrix S ∈ Rm×n has the (ε, δ)-accurate
embedding property if for every x ∈ Rn with ‖x‖2 = 1,

Pr
S

(∣∣∣‖Sx‖22 − 1
∣∣∣ > ε

)
< δ.

15

Definition 4 ((ε, δ, p)-JL moment [18, 19]). A random matrix S ∈ Rm×n has the (ε, δ, p)-JL
moment property if for every x ∈ Rn with ‖x‖2 = 1,

E
S

∣∣∣‖Sx‖22 − 1
∣∣∣p < εpδ and E

[
‖Sx‖22

]
= 1.

Definition 5 (Strong (ε, δ)-JL moment [18, 1]). A random matrix S ∈ Rm×n has the strong (ε, δ)-JL
moment property if for every x ∈ Rn with ‖x‖2 = 1, and every integer p ∈ [2, log(1/δ)],

E
S

∣∣∣‖Sx‖22 − 1
∣∣∣p < (ε

e

)p(p

log(1/δ)

)p/2
(A.1)

and E
[
‖Sx‖22

]
= 1.

Note that the strong (ε, δ)-JL moment property directly reveals the (ε, δ, log(1/δ))-JL moment prop-
erty, since letting p = log(1/δ), (A.1) becomes

E
S

∣∣∣‖Sx‖22 − 1
∣∣∣log(1/δ) < (ε

e

)log(1/δ)
= εpδ.

Both the strong (ε, δ)-JL moment property and the (ε, δ, p)-JL moment property directly imply (ε,
δ)-accurate embedding via Markov’s inequality,

Pr
S

(∣∣∣‖Sx‖22 − 1
∣∣∣ > ε

)
<

E
∣∣∣‖Sx‖22 − 1

∣∣∣p
εp

< δ.

The lemmas below show that Gaussian embeddings can be used to construct embeddings with the
JL moment property.
Lemma A.1 (Strong JL moment of Gaussian embeddings [18]). Gaussian embeddings with m =
Ω(log(1/δ)/ε2) satisfy the (ε, δ)-strong JL moment property.

Below we review the composition rules of JL moment properties introduced in [1], which are used
to prove the (ε, δ)-accurate sufficient condition in Theorem 3.1.
Lemma A.2 (JL moment with Kronecker product). If a matrix S has the (ε, δ, p)-JL moment prop-
erty, then the matrixM = Ii⊗S⊗Ij also has the (ε, δ, p)-JL moment property for identity matrices
Ii and Ij with any size. This relation also holds for the strong (ε, δ)-JL moment property.
Lemma A.3 (Strong JL moment with matrix product). There exists a universal constant L, such
that for any constants ε, δ ∈ [0, 1] and any integer k, if M1 ∈ Rd2×d1 , · · · ,Mk ∈ Rdk+1×dk

are independent random matrices, each having the strong
(

ε
L
√
k
, δ
)

-JL moment property, then the

product matrix M = Mk · · ·M1 satisfies the strong (ε, δ)-JL moment property.

B Definitions and basic properties of tensor network embedding

In this section, we introduce definitions and basic properties of tensor network embeddings. These
properties will be used in Appendix C and Appendix D for detailed computational cost analysis.
The notation defined in the main text is summarized in Table 4, which is also used in later analysis.

B.1 Graph notation for tensor network and tensor contraction

We use undirected hypergraphs to represent tensor networks. For a given hypergraphG = (V,E,w),
V represents the vertex set, E represents the set of hyperedges, and w is a function such that w(e)
is the natural logarithm of the tensor dimension size represented by the hyperedge e ∈ E. We use
E(u, v) to denote the set of hyperedges adjacent to both u and v, which includes the edge (u, v)
and hyperedges adjacent to u, v. We use E(A,B) to denote the set of hyperedges connecting two
subsets A,B of V with A ∩B = ∅. We use E(A, ∗) to denote all uncontracted edges only adjacent
to A, E(A, ∗) = {(u) ∈ E : u ∈ A}. we illustrate E(A,B), E(A, ∗) in Fig. 8. For any set A ⊆ V ,
we let

E(A) = E(A, V \A) ∪ E(A, ∗). (B.1)

16

Notations Meanings

S, Si Embedding matrix

m Sketch size

GE = (VE , EE , w) Embedding tensor network

GD = (VD, ED, w) Input data tensor network

Ē = {e1, . . . , eN} Set of edges to be sketched

si Size of ei in Ē

T0 Given data contraction tree

D(e1), . . . ,D(eN),S, I Subsets of contractions in T0

X(ei) Sub network contracted by D(ei)

Table 4: Notations used throughout the paper.

𝐴 𝐵

𝐸(𝐴,∗)
𝐸(𝐴, 𝐵)

Figure 8: An example of E(A, ∗) and E(A,B), where both A,B are subset of vertices.

A tensor network implicitly represents a tensor with a set of (small) tensors and a specific contraction
pattern. We use G[A] = (A,EA, w) to denote a sub tensor network defined on A ⊆ V , where EA
contains all hyperedges in E adjacent to any v ∈ A.

Our analysis also use directed graphs to represent tensor network linearizations. We use E(u, v) to
denote the edge from u to v, and similarly use E(A,B) to denote the set of edges from A to B.

When representing the contraction tree, we use (v1, v2) to denote the contraction of v1, v2. This
notation is also used to represent multiple contractions. For example, we use (((v1, v4), (v2, v5)), v3)
to represent the contraction tree shown in Fig. 9. The computational cost of a contraction tree is the
summation of each contraction’s cost. In the discussion throughout the paper, we assume that all
tensors in the network are dense. Therefore, the contraction of two general dense tensors A and B,
represented as vertices va and vb in G = (V,E,w), can be cast as a matrix multiplication, and the
overall asymptotic cost is

Θ(exp(w(E(va)) + w(E(vb))− w(E(va, vb))))

with classical matrix multiplication algorithms. In general, contracting tensor networks with arbi-
trary structure is #P-hard [11, 48].

Here is an example of constrained contraction tree, which is defined in Definition 1. Consider a ten-
sor network with three tensors, v1, v2, v3, with a given contraction tree T0 that is ((v1, v2), v3), which
indicates that v1 first contracts with v2 and subsequently with v3. Consider an additional tensor net-
work consisting of v1, v2, v3 and another tensors u. Then the contraction tree (((v1, v2), u), v3),
(((v1, u), v2), v3) and (((v1, v2), v3), u) are all constrained on T0, since the contraction ordering of
v1, v2, v3 remains unchanged. However, the contraction tree (((v1, v3), u), v2) is not constrained on
T0.

For a given data GD and its given contraction tree T0, its dimension tree is a directed binary tree
showing the way edges in Ē are merged onto the same tensor. Each vertex in the dimension tree is a
subset E′ ⊆ Ē, and for any two vertices E′1, E

′
2 of the dimension tree with the same parent, there is

17

𝑣! 𝑣"

𝑣# 𝑣$

𝑣%

𝑒% 𝑒! 𝑒"

(a)

𝑣!

𝑣!,𝑣"

𝑣" 𝑣#

𝑣!, 𝑣#, 𝑣", 𝑣$

𝑣$

𝑣#, 𝑣$

𝑣%

𝑣!, 𝑣#, 𝑣%, 𝑣", 𝑣$

(b)

𝑒! 𝑒" 𝑒#

𝑒!, 𝑒"

𝑒!, 𝑒", 𝑒#

(c)

Figure 9: Example of a tensor network, its contraction tree and the corresponding dimension tree.

a contraction in T0 such that the two input tensors are incident to E′1, E
′
2, respectively. One example

is shown in Fig. 9.

B.2 Definitions used in the analysis of tensor network embedding

In this section, we introduce definitions that will be used in later analysis. For a (hyper)graph
G = (V,E,w) and two subsets of V denoted as A,B, we define cutG(A,B) =

∑
e∈E(A,B) w(e).

Similarly, we define cutG(A, ∗) =
∑
e∈E(A,∗) w(e), and define cutG(A) =

∑
e∈E(A) w(e), where

E(A) is expressed in (B.1). When G is a directed hypergraph, cutG(A,B) denotes the sum of the
weights of edges from A to B. When G is an undirected graph, cutG(A,B) denotes the sum of the
weights of hyperedges connecting A and B.

For two tensors represented by two subsets A,B ⊂ V and A ∩ B = ∅, the logarithm of the
contraction cost between a tensor represented by A and a tensor represented by B, (A,B), is

costG(A,B) = cutG(A) + cutG(B)− cutG(A,B).

Note that the function cost is only defined on undirected hypergraphs.

Consider a given input data GD = (VD, ED, w) and an embedding GE = (VE , EE , w). Below we
let V = VE ∪ VD, E = EE ∪ ED, and G = (V,E,w) denote the hypergraph including both the
embedding and the input data. We use L = (V,EE , w) to denote the graph including V and all
edges in the embedding, and use R = (V,E \ EE , w). Note that in this work we focus on the case
where L is a graph, and R can be a general hypergraph. We illustrate G,GD, GE , L,R in Fig. 10.
For any A,B ⊂ V and A ∩B = ∅, we have

cutG(A) = cutL(A) + cutR(A), (B.2)

and
cutG(A,B) = cutL(A,B) + cutR(A,B). (B.3)

Based on (B.2) and (B.3), we have

costG(A,B) = costL(A,B) + costR(A,B).

Our analysis of tensor network embedding is based on the linearization of the tensor network graph.
Linearization casts an undirected graph into a directed acyclic graph (DAG). We define lineariza-
tion formally below, then specify linearizations of the data and embedding graphs that our analysis
considers.
Definition 6 (Linearization DAG). A linearization of the undirected graphG = (V,E,w) is defined
by the DAGG′ = (V,E′, w) induced by a given choice of vertex ordering in V . For each contracted
edge in E, E′ contains an same-weight edge directing towards the higher indexed vertex. For each
uncontracted edge in E, E′ contains an edge with the same weight that is directed outward from the
vertex it is adjacent to.

Based on Definition 6, we define the sketching linearization DAG, GS = (V,ES , w), as a DAG
defined on top of the graph L = (V,EE , w), which includes all vertices in both the embedding and
the data and all embedding edges. For a given vertex ordering of embedding vertices, GS is the
linearization of L based on the ordering with all data vertices being ordered ahead of embedding
vertices.

18

As discussed in Section 3, for a given sketching linearization, the sketching accuracy of each tensor
Ai at vi is dependent on the row size of its matricization Ai, which is the weighted size of the
edge set adjacent to vi containing all uncontracted edges and contracted edges also adjacent to vj
with j > i, which is called effective sketch dimension of vi throughout the paper. Based on the
definition, when v ∈ VE , cutGS

(v) equals the effective sketch dimension size of v. When v ∈ VD,
cutGS

(v) represents the size of the sketch dimension adjacent to v. We look at embeddings GE not
only satisfying the (ε, δ)-accurate sufficient condition in Theorem 3.1, but also only have one output
sketch dimension (|E1| = 1) with the output sketch size m = Θ

(
NE log(1/δ)/ε2

)
. For each one of

these embeddings, there must exist a linearization GS such that for all v ∈ VE , we have

cutGS
(v) = Ω(log(m)). (B.4)

𝑢!

𝑣!

𝑣"

𝑣#

𝑣$

𝑢"

𝑢$

𝑢#

𝑢%

𝑢&

(a) G = (V,EE ∪ ED, w)

𝑣!

𝑣"

𝑣#

𝑣$

(b) GE = (VE , EE , w)

𝑢!

𝑢"

𝑢#

𝑢$

𝑢%

𝑢&

(c)GD = (VD, ED, w)

𝑢!

𝑣!

𝑣"

𝑣#

𝑣$

𝑢"

𝑢$

𝑢#

𝑢%

𝑢&

(d) L = (V,EE , w)

𝑢!

𝑣!

𝑣"

𝑣#

𝑣$

𝑢"

𝑢$

𝑢#

𝑢%

𝑢&

(e) R = (V,E \ EE , w)

𝑢!

𝑣!

𝑣"

𝑣#

𝑣$

𝑢"

𝑢$

𝑢#

𝑢%

𝑢&

(f) GS = (V,ES , w)

Figure 10: Illustration of graphs and hypergraphs used throughout the paper.

B.3 Properties of tensor network embedding

We now derive properties that are used in the sketching computational cost analysis. In Lemma B.1,
we show relations between cuts in the graph L and cuts in the graph GS . In Lemma B.2, we show
relations between costs in the graph L and cuts in the graph GS . Lemma B.2 along with cut lower
bounds (B.4) is used to derive lower bounds for costL and costG in Appendix D.
Lemma B.1. Consider an embedding GE = (VE , EE , w) and a data tensor network GD =
(VD, ED, w), and a given sketching linearization GS = (V,ES , w), where V = VE ∪ VD. For
any A,B ⊂ V and A ∩B = ∅, the following relations hold,

cutL(A) = cutGS
(A) + cutGS

(V \A,A), (B.5)

cutL(A,B) = cutGS
(A,B) + cutGS

(B,A), (B.6)

cutGS
(A ∪B) = cutGS

(A) + cutGS
(B)− cutGS

(A,B)− cutGS
(B,A)

= cutGS
(A) + cutGS

(B)− cutL(A,B). (B.7)

Proof. (B.5) and (B.6) hold directly based on the definition of the linearization DAG. For (B.7),
based on (B.1), we have

cutGS
(A ∪B) = cutGS

(A ∪B, V \ (A ∪B)) + cutGS
(A ∪B, ∗)

= cutGS
(A, V \ (A ∪B)) + cutGS

(B, V \ (A ∪B)) + cutGS
(A ∪B, ∗)

= cutGS
(A, V \A)− cutGS

(A,B) + cutGS
(B, V \B)− cutGS

(B,A)

+ cutGS
(A, ∗) + cutGS

(B, ∗)
= cutGS

(A) + cutGS
(B)− cutGS

(A,B)− cutGS
(B,A). (B.8)

Note that the second and third equalities in (B.8) hold since A and B are disjoint sets. This finishes
the proof.

19

Lemma B.2. Consider any data GD = (VD, ED, w) and embedding GE = (VE , EE , w), and a
sketching linearization GS = (V,ES , w), where V = VD ∪ VE . For any two subsets A,B ∈ V
such that A∩B = ∅, the contraction of two tensors that are the contraction outputs of A and B has
a logarithm cost of

costL(A,B) = cutGS
(A) + cutGS

(B) + cutGS
(V \ (A ∪B), A ∪B).

Proof. Based on Lemma B.1, we have

cutL(A)
(B.5)
= cutGS

(V \A,A) + cutGS
(A), (B.9)

cutL(B)
(B.5)
= cutGS

(V \B,B) + cutGS
(B). (B.10)

Based on (B.6), we have

cutGS
(V \A,A) + cutGS

(V \B,B)− cutL(A,B)

= cutGS
(V \A,A) + cutGS

(V \B,B)− cutGS
(A,B)− cutGS

(B,A)

= cutGS
(V \ (A ∪B), A) + cutGS

(V \ (A ∪B), B)

= cutGS
(V \ (A ∪B), A ∪B). (B.11)

Based on (B.9),(B.10), (B.11), we have

costL(A,B) = cutL(A) + cutL(B)− cutL(A,B)

= cutGS
(A) + cutGS

(B) + cutGS
(V \ (A ∪B), A ∪B).

This finishes the proof.

Lemma B.3. Consider any data GD = (VD, ED, w) and an embedding GE = (VE , EE , w), and a
sketching linearization GS = (V,ES , w) such that the embedding is (ε, δ)-accurate. Then for any
U ⊆ V such that there exists v ∈ U and cutGS

(v) ≥ log(m), we have cutGS
(U) ≥ log(m).

Proof. When U is a subset of the data vertices, U ⊆ VD, this holds directly since

cutGS
(U) =

∑
u∈U

cutGS
(u) ≥ cutGS

(v) ≥ log(m).

Next we consider the case where U ∩ VE 6= ∅. Let A = U ∩ VE and B = U ∩ VD. Based on
the definition of DAG, there is no directed cycle in the subgraph GS [A]. Therefore, there exists one
vertex s ∈ A, such that cutGS

(s,A \ {s}) = 0. Based on Lemma B.1, we have

cutGS
(A)

(B.7)
= cutGS

(s) + cutGS
(A \ {s})− cutGS

(s,A \ {s})− cutGS
(A \ {s}, s)

≥ cutGS
(s)− cutGS

(s,A \ {s})

= cutGS
(s)

(B.4)
≥ log(m),

In addition, we have cutGS
(A,B) = 0 since A ⊆ VE and B ⊆ VD. Thus we have

cutGS
(U) = cutGS

(A ∪B)
(B.7)
= cutGS

(A) + cutGS
(B)− cutGS

(A,B)− cutGS
(B,A)

= cutGS
(A) + cutGS

(B)− cutGS
(B,A)

≥ cutGS
(A) ≥ log(m).

This finishes the proof.

C Computationally-efficient sketching algorithm

In this section, we introduce the detail of the computationally-efficient sketching algorithm in Al-
gorithm 1. Consider a given data tensor network GD = (VD, ED, w) and a given data contraction
tree, T0. Also let ND = |VD|, and let Ē ⊆ ED denote the set of edges to be sketched, and N = |Ē|.
Below we let Ē = {e1, e2, . . . , eN}, and let each ei has weight log(si) > log(m). Based on the

20

definition we have N ≤ ND. Let one contraction path representing T0 be expressed as a sequence
of ND − 1 contractions,

{(U1, V1), . . . , (UND−1, VND−1)}. (C.1)

Above we use (Ui, Vi) to represent the contraction of two intermediate tensors represented by two
subset of vertices Ui, Vi ⊂ VD. Below we let

ai = exp(cutR(Ui)− cutR(Ui, Vi)),

ci = exp(cutR(Vi)− cutR(Ui, Vi)),

di = exp(cutR(Ui ∪ Vi))/(aici),
bi = exp(cutR(Ui, Vi))/di. (C.2)

Note that di represents the size of uncontracted dimensions adjacent to both Ui and Vi, and bi
represents the size of contracted dimensions between Ui and Vi. We also have costR(Ui, Vi) =
log(aibicidi), and cutR(Ui ∪ Vi) = log(aicidi). ai, bi, ci, di are visualized in Fig. 11.

In Section 4, the ND − 1 contractions are categorized into N + 2 sets, D(e1), . . . ,D(eN),S, I,
where D(ei) contains contractions such that ei is the only data edge adjacent to the contraction
output and in Ē, S contains contractions (Ui, Vi) such that both Ui and Vi are adjacent to edges in
Ē, and I includes (Ui, Vi) such that both Ui and Vi are not adjacent to Ē. An illustration of these
sets is provided below.

Consider an input data consisting of five tensors, v1, v2, v3, v4, v5, where v1 is adjacent to the edge
e1, v2 is adjacent to e2, v3 is adjacent to e3, and e1, e2, e3 are the edges to be sketched. There are
no edges to be sketched adjacent to v4, v5. Consider the contraction tree (((v1, v4), (v2, v5)), v3),
where v1 contracts with v4 and outputs v1,4, v2 contracts with v5 and outputs v2,5, and then v1,4, v2,5
contract together into v1,2,4,5, and v1,2,4,5 contracts with v3. We have D(e1) = {(v1, v4)} and
D(e2) = {(v2, v5)}, since v1, v2 are adjacent to e1, e2, respectively. We also have I = ∅ and
D(e3) = ∅, since each contraction is adjacent to at least one edge in {e1, e2, e3}, and there is no
contraction such that e3 is the only data edge in the output. All the remaining contractions are in S,
so S = {(v1,4, v2,5), (v1,2,4,5, v3)}.

C.1 Sketching with the embedding containing a binary tree of small tensor networks

We now present the details of applying the embedding containing a binary tree of small tensor
networks. In Section 4, we define S as the set containing contractions (Ui, Vi) such that both Ui
and Vi are adjacent to edges in Ē. For each contraction i ∈ S, one small embedding tensor network
(denoted as Zi) is applied to the contraction. Let Ûi, V̂i denote the sketched Ui and Vi formed in
previous contractions in the sketching contraction tree TB , such that Ûi∩VD = Ui and V̂i∩VD = Vi.
The structure of Zi is determined so that the asymptotic cost to sketch (Ûi, V̂i) is minimized, under
the constraint that Zi is (ε/

√
N, δ)-accurate and only has one output sketch dimension.

The structure of Zi is illustrated in Fig. 11. For the case ai ≤ ci, the structure is shown in Fig. 11a,
and sketching is performed via the contraction sequence of contracting Ûi and v1 first, then with
V̂i, and then with v2 (also denoted as a contraction sequence of (((Ûi, v1), V̂i), v2)). For the case
ai > ci, the structure of Zi is shown in Fig. 11b, and the sketching is performed via the contraction
sequence of (((V̂i, v2), Ûi), v1). With this algorithm, sketching (Ûi, V̂i) yields a computational cost
proportional to

yi = aibicidim
2 +m2di

√
aibicim ·min(

√
ai,
√
ci). (C.3)

We show in Lemma D.6 that the asymptotic cost lower bound to sketch (Ui, Vi) is also Ω(yi).

C.2 Computational cost analysis

We provide the computational cost analysis of Algorithm 1 in this section.

Theorem C.1. Algorithm 1 has an asymptotic computational cost of

Θ

 N∑
j=1

t(ej) +
∑
i∈S

yi +
∑
i∈I

zi

, (C.4)

21

𝑈"! 𝑉$!

𝑣"

𝑣#

𝑎! 𝑐!
𝑏!

𝑐!𝑚/𝑏!𝑚
𝑏!𝑚/𝑐!

𝑚

𝑚

𝑑!

(a)

𝑈"! 𝑉$!

𝑣"
𝑣#

𝑎! 𝑐!
𝑏!

𝑎!𝑚/𝑏! 𝑚
𝑏!𝑚/𝑎!

𝑚

𝑚

𝑑!

(b)

Figure 11: Illustration of the small network in the binary tree structured embedding. For each edge
e, we show the dimension size of that edge (exponential in w(e)).

where t(ej) is the optimal asymptotic cost to sketch the sub tensor networkX(ej) (defined in Table 4)
with a matrix in the Kronecker product embedding, yi is expressed in (C.3), and

zi = aibicidi ·min(exp(cutGS
(Ui ∪ Vi)),m), (C.5)

where ai, bi, ci, di are expressed in (C.2).

Proof. The terms
∑
j∈N t(ej) +

∑
i∈S yi can be easily verified based on the analysis in Section 4

and Appendix C.1.

Consider the contractions in I, which include (Ui, Vi) such that bothUi and Vi are not adjacent to Ē,
and contractions where Ui or Vi is adjacent to at least two edges in Ē. The first type of contractions
in I would have a cost of Θ(aibicidi), and not be affected by previous sketching steps. For the
second type, application of the Kronecker product and binary tree embeddings to Ui and Vi would
reduce all adjacent edges in Ē to a single dimension of size m. Consequently, the contraction cost
would be Θ(aibicidi ·m). Summarizing both cases prove the cost in (C.5). The cost in (C.4) follows
from combining the terms

∑
j∈N t(ej) +

∑
i∈S yi and

∑
i∈I zi.

For the special case where each vertex in the data tensor network is adjacent to an edge to be
sketched, we have D(ej) = ∅ for all j ∈ [N] and I = ∅, thus all the contractions are in the set
S. Therefore, sketching each ej has an asymptotic cost of Θ(t(ej)) = Θ(exp(cutG(vj)) · m),
where vj is the vertex in the data graph adjacent to ej , and Theorem C.1 implies that the sketching
cost would be

Θ

 N∑
j=1

t(ej) +
∑
i∈S

yi +
∑
i∈I

zi

 = Θ

 N∑
j=1

exp(cutG(vj)) ·m+

N−1∑
j=1

yi

. (C.6)

As we will show in Theorem D.1, this cost matches the asymptotic cost lower bound, when the em-
bedding satisfies the (ε, δ)-accurate sufficient condition and only has one output sketch dimension.

When the data has a Kronecker product structure, we have cutG(vj) = w(ej) = log(sj), and
ai, bi, ci, di = 1 for all i ∈ {1, . . . , N − 1} for all contraction trees. Therefore,

yi = aibicidim
2 +m2di

√
aibicim ·min(

√
ai,
√
ci) = m2 +m2.5,

and the sketching cost is

Θ

 N∑
j=1

sjm+Nm2.5

. (C.7)

As we will show in Appendix E, sketching with tree tensor network embeddings yield an asymp-
totic cost of Θ

(∑N
j=1 sjm+Nm3

)
. Therefore, Algorithm 1 is more efficient to sketch Kronecker

product input data.

22

D Lower bound analysis

In this section, we discuss the asymptotic computational lower bound for sketching with embed-
dings satisfying the (ε, δ)-accurate sufficient condition and only have one output sketch edge. In
Appendix D.1, we discuss the case where the data has uniform sketch dimensions. In this case, each
vertex in the data tensor network is adjacent to an edge to be sketched. In Appendix D.2, we discuss
the sketching computational lower bound for a more general case, when the data tensor network can
have arbitrary graph structure, and vertices not adjacent to sketch edges are allowed. For both cases,
we assume that the size of each dimension to be sketched is greater than the sketch size.

D.1 Sketching data with uniform sketch dimensions

We now discuss the sketching asymptotic cost lower bound when the data GD = (VD, ED, w) has
uniform sketch dimensions, where each v ∈ VD is adjacent to an edge to be sketched with size
lower bounded by the target sketch size, m. We have N = |Ē| = |VD|, and we let the size of each
ei ∈ Ē be denoted si > m. We let V = VE ∪ VD denote the set of all vertices in both the data
and the embedding. Below, we show the main theorem using lemmas and notations introduced in
Appendix B.
Theorem D.1. For any embedding GE satisfying the (ε, δ)-accurate sufficient condition and only
has one output sketch dimension, and any contraction tree TB of (GD, GE) constrained on the data
contraction tree T0 expressed in (4.2), the sketching asymptotic cost is lower bounded by

Ω

 N∑
j=1

exp(cutG(vj)) ·m+

N−1∑
j=1

yi

, (D.1)

where m = Ω(N log(1/δ)/ε2) represents the embedding sketch size, vj is the vertex in VD adjacent
to ej , and exp(cutG(vj)) denotes the size of the tensor at vj , and yi is expressed in (C.3).

We present the proof of Theorem D.1 at the end of Appendix D.1. Note that the first term in (D.1),∑
v∈VD

exp(cutG(v)) ·m, is a term independent of the data contraction tree, while the second term
is dependent of the data contraction tree.

Proof of Theorem 4.1. The asymptotic cost of of Algorithm 1 in (C.6) matches the lower bound
shown in Theorem D.1, thus proving the statement.

Theorem D.1 also yields an asymptotic lower bound for sketching data with a Kronecker product
structure. We state the results below.
Corollary D.2. Consider an input dataGD representing a vector with a Kronecker product structure
and each vj for j ∈ [N] is adjacent to an edge to be sketched with size sj . For any embedding GE
satisfying the (ε, δ)-accurate sufficient condition with only one output sketch dimension and any
contraction tree TB of (GD, GE), the asymptotic cost must be lower bounded by

Ω

 N∑
j=1

sjm+Nm2.5

,
where m = Ω(N log(1/δ)/ε2).

Below, we present some lemmas needed to prove Theorem D.1.
Lemma D.3. Consider an (ε, δ)-accurate embedding GE = (VE , EE , w) with a sketching lin-
earization GS = (V,ES , w). Then for any subset of the embedding and data graph vertex set,
W ⊆ V , we have cutGS

(W) ≥ log(m).

Proof. Since each vertex in the data graph is adjacent to an edge to be sketched, and the edge
dimension size is greater thanm, we have cutGS

(w) ≥ log(m) for allw ∈ VD. Since the embedding
satisfies the (ε, δ)-accurate sufficient condition, we have cutGS

(w) ≥ log(m) for all w ∈ VE .
Therefore, cutGS

(w) ≥ log(m) for all w ∈ V . Based on Lemma B.3, cutGS
(W) ≥ log(m) for all

W ⊆ V .

23

Lemma D.4. Consider an (ε, δ)-accurate embedding GE with a sketching linearization GS =
(V,ES , w). Consider any contraction tree TB for (GD, GE). If there exists a contraction output of
U ⊂ V formed in TB and cutGS

(U) > log(m), then the asymptotic cost for the contraction tree TB
must be lower bounded by Ω(exp(cutR(U) + cutGS

(U)) ·m).

Proof. Since cutGS
(U) > log(m), there must exist a contraction (U,W) ∈ TB with W containing

some vertices in V \ U . Based on Lemma D.3, cutGS
(W) ≥ log(m). Based on Lemma B.2, we

have

costG(U,W) = costR(U,W) + costL(U,W)

= costR(U,W) + cutGS
(U) + cutGS

(W) + cutGS
(V \ (U ∪W), U ∪W).

Further, since costR(U,W) ≥ cutR(U),

costG(U,W) ≥ cutR(U) + cutGS
(U) + cutGS

(W)

≥ cutR(U) + cutGS
(U) + log(m).

This proves the lemma since the contraction cost is Θ(exp(costG(U,W))).

In Lemma D.6, we show that when the data contraction tree T0 contains the contraction (Ui, Vi),
then any contraction tree TB of (GD, GE) that is constrained on T0 will yield a contraction cost of
Ω(yi). To show that, we first discuss the case where TB also contains the contraction (Ui, Vi) in
Lemma D.5. The more general case where the contraction (Ui, Vi) need not be in TB is discussed
in Lemma D.6.

Lemma D.5. Consider a specific contraction tree T0 for GD, where the contraction (Ui, Vi) is in
T0. For any embedding GE satisfying the (ε, δ)-accurate sufficient condition with only one output
sketch dimension and any contraction tree TB of (GD, GE) constrained on T0, if (Ui, Vi) is also
in TB , the sketching asymptotic cost must be lower bounded by Ω

(
aibicidim

2 + aicidim
3
)
, where

ai, bi, ci, di are defined in (C.2).

Proof. Consider any sketching linearization GS = (V,ES , w) such that the embedding satisfies the
(ε, δ)-accurate sufficient condition with only one output sketch dimension. Based on Lemma D.3,
we have cutGS

(Ui), cutGS
(Vi) ≥ log(m). Based on Lemma B.2, we have

costG(Ui, Vi) = costR(Ui, Vi) + costL(Ui, Vi)

= costR(Ui, Vi) + cutGS
(Ui) + cutGS

(Vi) + cutGS
(V \ (Ui ∪ Vi), Ui ∪ Vi)

≥ costR(Ui, Vi) + cutGS
(Vi) + cutGS

(Vi)

≥ log(aibicidi) + 2 log(m).

Thus this contraction has a cost of Ω
(
aibicidi ·m2

)
. In addition, since Ui, Vi are subsets of the data

vertices, cutL(Ui, Vi) = 0. Therefore, based on (B.7),

cutGS
(Ui ∪ Vi) = cutGS

(Ui) + cutGS
(Vi) ≥ 2 log(m).

Based on Lemma D.4, the cost needed to sketchUi∪Vi is Ω
(
aicidim

3
)
. Thus the overall asymptotic

cost is lower bounded by Ω
(
aibicidim

2 + aicidim
3
)
. This finishes the proof.

Lemma D.6. Consider a specific contraction tree T0 forGD, where the contraction (Ui, Vi) is in T0.
For any embeddingGE satisfying the (ε, δ)-accurate sufficient condition with only one output sketch
dimension and any contraction tree TB of (GD, GE) constrained on T0, the sketching asymptotic
cost must be lower bounded by

Ω(yi) = Ω
(
aibicidim

2 +m2di
√
aibicim ·min(

√
ai,
√
ci)
)
, (D.2)

where ai, bi, ci, di are defined in (C.2), and yi is defined in (C.3).

Proof. Consider any sketching linearization GS = (V,ES , w) such that the embedding satisfies the
(ε, δ)-accurate sufficient condition with only one output sketch dimension. We first consider the

24

case where the contraction (Ui, Vi) exists in TB . Based on Lemma D.5, the overall asymptotic cost
is lower bounded by Ω

(
aibicidim

2 + aicidim
3
)
. Since

aibicidim
2 + aicidim

3 = aicidim
2(bi +m) ≥ 2aicidim

2
√
bim,

the overall asymptotic cost is lower bounded by

Ω
(
aibicidim

2 + aicidim
2
√
bim

)
= Ω

(
aibicidim

2 + aim
2di
√
bicim

)
,

and hence it satisfies (D.2).

We next consider the other case where the contraction (Ui, Vi) is not performed directly in TB . Since
TB is constrained on T0, there must exist a contraction (Ûi, V̂i) ∈ TB with either Ûi or V̂i containing
embedding vertices, and Ûi ∩ VD = Ui, V̂i ∩ VD = Vi. Let x be the last embedding vertex (based
on the linearization order) applied in TB to Ûi ∪ V̂i, so that cutGS

(x, (Ûi ∪ V̂i) \ {x}) = 0. For the
case where x ∈ Ûi \ Ui, we show below that the sketching asymptotic cost is lower bounded by

Ω
(
aibicidim

2 + aim
2di
√
bicim

)
. (D.3)

For the other case where x ∈ V̂i \ Vi, we have the cost is lower bounded by
Ω
(
aibicidim

2 + cim
2di
√
aibim

)
by symmetry. Together, these two results prove the lemma.

Detailed proof of (D.3) Since |Ûi| > |Ui|, there must exist a contraction (Y1, Y2), for which the
output is Ûi = Y1 ∪ Y2. Based on Lemma B.2, we have

costG(Y1, Y2) = costR(Y1, Y2) + costL(Y1, Y2)

= costR(Y1, Y2) + cutGS
(Y1) + cutGS

(Y2) + cutGS
(V \ (Y1 ∪ Y2), Y1 ∪ Y2)

≥ costR(Y1, Y2) + cutGS
(Y1) + cutGS

(Y2) + cutGS
(V̂i, Ûi)

≥ log(aibidi) + 2 log(m) + cutGS
(V̂i, Ûi).

Thus, the cost of the contraction (Y1, Y2) is lower bounded by

Ω
(
aibidim

2 · exp
(
cutGS

(V̂i, Ûi)
))
. (D.4)

In addition, since

costG(Ûi, V̂i) = costR(Ûi, V̂i) + cutGS
(Ûi) + cutGS

(V̂i) + cutGS
(V \ (Ûi ∪ V̂i), Ûi ∪ V̂i)

≥ log(aibicidi) + 2 log(m),

the contraction (Ûi, V̂i) yields a cost lower bounded by

Ω
(
aibicidi ·m2

)
. (D.5)

Combining (D.4) and (D.5), we have that the contractions (Y1, Y2) and (Ûi, V̂i) have a cost of

Ω
(
aibidim

2 · exp
(
cutGS

(V̂i, Ûi)
)

+ aibicidi ·m2
)
. (D.6)

When cutGS
(V̂i, Ûi) = log(m), (D.6) implies that the overall asymptotic cost is lower bounded by

Ω(aibicidim
2 + aibidim

3). Since

aibicidim
2 + aibidim

3 = aibidim
2(ci +m) ≥ 2aibidim

2√cim,
the overall asymptotic cost is lower bounded by

Ω
(
aibicidim

2 + aibidim
2√cim

)
= Ω

(
aibicidim

2 + aim
2di
√
bicim

)
.

When cutGS
(V̂i, Ûi) < log(m), based on Lemma B.1, the effective sketch dimensions of Ûi ∪ V̂i

satisfy

cutGS
(Ûi ∪ V̂i) =

(
cutGS

(Ûi)− cutGS
(Ûi, V̂i)

)
+ cutGS

(V̂i)− cutGS
(V̂i, Ûi)

≥ cutGS
(x) + cutGS

(V̂i)− cutGS
(V̂i, Ûi)

≥ 2 log(m)− cutGS
(V̂i, Ûi), (D.7)

25

where the first inequality holds since

cutGS
(Ûi)− cutGS

(Ûi, V̂i) = cutGS
(Ûi, V \ (Ûi ∪ V̂i)) + cutGS

(Ûi, ∗)
≥ cutGS

(x, V \ (Ûi ∪ V̂i)) + cutGS
(x, ∗) = cutGS

(x),

and the second inequality in (D.7) holds since cutGS
(x), cutGS

(V̂i) ≥ log(m) based on Lemma D.3.
Based on the condition cutGS

(V̂i, Ûi) < log(m) as well as (D.7), we have cutGS
(Ûi∪V̂i) > log(m).

Based on Lemma D.4, since cutGS
(Ûi ∪ V̂i) > log(m), there must exist another contraction in TB

to sketch Ûi ∪ V̂i with a cost of

Ω
(

exp
(
cutR(V̂i ∪ Ûi) + cutGS

(V̂i ∪ Ûi)
)
·m
)

= Ω
(
aicidi · exp

(
cutGS

(V̂i ∪ Ûi)
)
·m
)

(D.7)
= Ω

(
aicidi ·

m3

exp(cutGS
(V̂i, Ûi))

)
.

Let α = exp
(
cutGS

(V̂i, Ûi)
)

, the asymptotic cost is then lower bounded by

Ω

(
aibicidim

2 + aibidim
2 · α+ aicidim

3 · 1

α

)
= Ω

(
aibicidim

2 + aim
2di
√
bicim

)
.

This finishes the proof.

Proof of Theorem D.1. Based on Lemma D.6, the cost of Ω(yi) is needed to sketch the contraction
(Ui, Vi). Since T0 contains contractions (Ui, Vi) for i ∈ [N − 1], the asymptotic cost of TB must be
lower bounded by Ω

(∑N−1
i=1 yi

)
. In addition, in the analysis of Lemma D.6, at least one embedding

vertex is needed to sketch each contraction (Ui, Vi), thus NE = Ω(N) and m = Ω(N log(1/δ)/ε2)

for the lower bound Ω
(∑N−1

i=1 yi

)
to hold.

In addition, each vj ∈ VD for j ∈ [N] is adjacent to ej and each w(ej) > log(m). Based on
Lemma D.4, the asymptotic cost must be lower bounded by

Ω

 N∑
j=1

exp(cutR(vj) + cutGS
(vj)) ·m

 = Ω

 N∑
j=1

exp(cutG(vj)) ·m

.
The above holds since vj is a vertex in the data graph, thus cutGS

(vj) = cutL(vj) and cutR(vj) +
cutGS

(vj) = cutG(vj). This finishes the proof.

D.2 Sketching general data

In this section, we look at general tensor network data GD, where each vertex in GD can either be
adjacent to an edge to be sketched with weight greater than log(m) or not adjacent to any edge to
be sketched. Below we consider any data contraction tree T0 containing D(e1), . . . ,D(eN),S, I
defined in Section 4. We also let X(ej) ⊂ V represent the sub network contracted by D(ej). We
present the asymptotic sketching lower bound in Theorem D.9.
Lemma D.7. Consider GD with a data contraction tree T0 containing D(ej), which is a set con-
taining contractions such that ej is the only data edge adjacent to the contraction output and in Ē
(set of data edges to be sketched). For any embedding GE satisfying the (ε, δ)-accurate sufficient
condition with only one output sketch dimension and any contraction tree TB of (GD, GE) con-
strained on the data contraction tree T0, the sketching asymptotic cost must be lower bounded by
Ω(t(ej)), where t(ej) is the optimal asymptotic cost to sketch the sub tensor networkX(ej) (defined
in Table 4) with an adjacent matrix in the Kronecker product embedding.

Proof. When D(ej) = ∅, X(ej) = {vj}, where vj is the vertex in the data graph adjacent to
ej . As is analyzed in the proof of Theorem D.1, the asymptotic cost must be lower bounded by

26

Ω(exp(cutG(vj)) ·m), which equals the asymptotic cost to contract vj with the adjacent embedding
matrix.

Now we discuss the case where D(ej) 6= ∅. We first consider the case where there is a contraction
(X(ej),W) in TB . We show that under this case, the cost is lower bounded by Ω(t(ej)). We then
show that for the case where there is no contraction (X(ej),W) in TB , meaning that some sub
network of X(ej) is sketched, the cost is also lower bounded by Ω(t(ej)). Summarizing both cases
prove the lemma.

Consider the case where there exists a contraction (X(ej),W) in TB . Contracting X(ej) yields a
cost of Ω(

∑
i∈D(ej)

aibicidi ·sj). Next we analyze the contraction cost of (X(ej),W). SinceX(ej)

is the contraction output of D(ej), W must either contain embedding vertices, or contain some data
vertex adjacent to edges in Ē (edges to be sketched). Therefore, W contains some vertex v with
cutGS

(v) ≥ log(m). Based on Lemma B.3, we have cutGS
(W) ≥ log(m). Therefore,

costL(X(ej),W) = cutGS
(X(ej)) + cutGS

(W) + cutGS
(V \ (X(ej) ∪W), X(ej) ∪W)

≥ log(sj) + log(m).

Let l ∈ D(ej) denote the last contraction inD(ej), then we have cutR(X(ej)) = log(alcldl). Thus,
we have

costG(X(ej),W) = costL(X(ej),W) + costR(X(ej),W) (D.8)
≥ costL(X(ej),W) + cutR(X(ej)) ≥ log(alcldlsjm), (D.9)

making the cost lower bounded by Ω
(∑

i∈D(ej)
aibicidi · sj + alcldlsjm

)
. Note that contracting

X(ej) and sketching the contraction output with a matrix in the Kronecker product embedding yields

a cost of Θ
(∑

i∈D(ej)
aibicidi · sj + alcldlsjm

)
, which upper-bounds the value of t(ej) based on

definition. Thus the sketching cost is lower bounded by Ω(t(ej)).

Below we analyze the case where there is no contraction (X(ej),W) in TB . Without loss of gener-
ality, for each contraction (Ui, Vi) with i ∈ D(ej), assume that Ui is adjacent to ej . When X(ej) is
not formed in TB , there must exist Uk with k ∈ D(ej), and a contraction (Uk, X) with X ⊂ VE is
in TB . All contractions before k yield a cost of

Ω

 ∑
i∈D(ej),i<k

aibicidi · sj

. (D.10)

Similar to the analysis for the contraction (X(ej),W) in (D.8), the contraction (Uk, X) yields a
cost of

Ω(akbkdksjm). (D.11)

For other contractions in T0, (Ui, Vi) with i ∈ D(ej), i ≥ k, there must exist some contractions
(Ûi, V̂i) in TB with Ûi ∩ VD = Ui, V̂i ∩ VD = Vi, since TB is constrained on T0. Therefore, we
have

costG(Ûi, V̂i) = costR(Ûi, V̂i) + costL(Ûi, V̂i) = costR(Ui, Vi) + costL(Ûi, V̂i)

≥ costR(Ui, Vi) + cutGS
(Ûi) ≥ log(aibicidim). (D.12)

In the last inequality in (D.12) we use the fact that there exists a vertex v ∈ Ui ⊆ Ûi with cutGS
(v) =

log(sj) ≥ log(m), then based on Lemma B.3, cutGS
(Ûi) ≥ log(m).

Combining (D.10), (D.11) and (D.12), we have the cost is lower bounded by

Ω(f(k)) = Ω

 ∑
i∈D(ej),i<k

aibicidi · sj + akbkdksjm+
∑

i∈D(ej),i≥k

aibicidi ·m

,
where f(k) represents the asymptotic cost to contract X(ej) with an embedding matrix adjacent to
ej , when sketching is performed at kth contraction with k ∈ D(ej). Based on the definition of t(ej),
we have f(k) = Ω(t(ej)), thus finishing the proof.

27

Lemma D.8. Consider any dataGD. For any embeddingGE satisfying the (ε, δ)-accurate sufficient
condition with only one output sketch dimension and any contraction tree TB of (GD, GE), the
sketching asymptotic cost must be lower bounded by Ω(Nm2.5), where m = Ω(N log(1/δ)/ε2).

Proof. Let G′D be the data with the same set of sketching edges (Ē) as GD, but G′D is a Kronecker
product data. For any given contraction tree TB of (GD, GE), there must exist a contraction tree of
(G′D, GE) whose asymptotic cost is upper bounded by the cost of TB . Therefore, the asymptotic
cost lower bound to contract (G′D, GE) must also be the asymptotic cost lower bound to contract
(GD, GE). Based on Corollary D.2, the asymptotic cost of TB must be lower bounded by

Ω

 N∑
j=1

sjm+Nm2.5

 = Ω(Nm2.5).

Theorem D.9. For any embedding GE satisfying the (ε, δ)-accurate sufficient condition and any
contraction tree TB of (GD, GE) constrained on the data contraction tree T0 expressed in (4.2), the
sketching asymptotic cost must be lower bounded by

Ω

 N∑
j=1

t(ej) +
∑
i∈S

aibicidim
2 +Nm2.5 +

∑
i∈I

zi

, (D.13)

where m = Ω(N log(1/δ)/ε2), ai, bi, ci, di are expressed in (C.2), t(ej) is the optimal asymptotic
cost to sketch the sub tensor network X(ej) (the sub network contracted by D(ej), also defined in
Table 4) with an adjacent matrix in the Kronecker product embedding, and zi is expressed in (C.5).

Proof. The term
∑N
j=1 t(ej) can be proven based on Lemma D.7, and the term Nm2.5 with m =

Ω(N log(1/δ)/ε2) can be proven based on Lemma D.8. Below we show the asymptotic cost is also
lower bounded by Ω(

∑
i∈S aibicidim

2 +
∑
i∈I zi), thus finishing the proof.

For each contraction (Ui, Vi) in T0 with i ∈ S ∪I, there must exist a contraction (Ûi, V̂i) in TB , and
Ûi ∩ VD = Ui, V̂i ∩ VD = Vi. For the case where i ∈ S , since both Ui and Vi contain edges to be
sketched, we have cutGS

(Ûi) ≥ log(m) and cutGS
(V̂i) ≥ log(m) based on Lemma B.3. Therefore,

we have ∑
i∈S

costG(Ûi, V̂i) =
∑
i∈S

costR(Ûi, V̂i) + costL(Ûi, V̂i)

=
∑
i∈S

costR(Ui, Vi) + costL(Ûi, V̂i)

≥
∑
i∈S

costR(Ui, Vi) + cutGS
(Ûi) + cutGS

(V̂i)

≥
∑
i∈S

log(aibicidim
2), (D.14)

where the first inequality above holds based on Lemma B.2. This shows the cost is lower bounded
by Ω(

∑
i∈S aibicidim

2).

Now consider the case where i ∈ I. In this case, either cutGS
(Ui ∪ Vi) = 0 or cutGS

(Ui ∪
Vi) ≥ log(m). When cutGS

(Ui ∪ Vi) = 0, we have cutGS
(Ûi ∪ V̂i) ≥ cutGS

(Ui ∪ Vi). When
cutGS

(Ui∪Vi) ≥ log(m), based on Lemma B.3, we have cutGS
(Ûi∪V̂i) ≥ log(m). To summarize,

we have

cutGS
(Ûi ∪ V̂i) ≥ min(cutGS

(Ui ∪ Vi), log(m)),

28

thus ∑
i∈I

costG(Ûi, V̂i) =
∑
i∈I

costR(Ûi, V̂i) + costL(Ûi, V̂i)

≥
∑
i∈I

costR(Ui, Vi) + cutGS
(Ûi) + cutGS

(V̂i)

≥
∑
i∈I

costR(Ui, Vi) + cutGS
(Ûi ∪ V̂i)

≥
∑
i∈I

log(aibicidi) + min(cutGS
(Ui ∪ Vi), log(m))

=
∑
i∈I

log(zi). (D.15)

This shows the sketching cost is lower bounded by Ω
(∑

i∈I zi
)
, thus finishing the proof.

Proof of Theorem 4.2. Based on Theorem C.1, the computational cost of Algorithm 1 is

α = Θ

 N∑
j=1

t(ej) +
∑
i∈S

yi +
∑
i∈I

zi

.
Let β equals the expression in (D.13). We have

α

β
=

Θ
(∑N

j=1 t(ej) +
∑
i∈S yi +

∑
i∈I zi

)
Ω
(∑N

j=1 t(ej) +
∑
i∈S(aibicidim2 +m2.5) +

∑
i∈I zi

) = O

(∑
i∈S yi∑

i∈S(aibicidim2 +m2.5)

)

= O

(
max
i∈S

yi
aibicidim2 +m2.5

)
= O

(
max
i∈S

aibicidim
2 +m2di

√
aibicim ·min(

√
ai,
√
ci)

aibicidim2 +m2.5

)
= O(1) +O

(
max
i∈S

m2di
√
aibicim ·min(

√
ai,
√
ci)

aibicidim2 +m2.5

)
.

Below we derive asymptotic upper bound of the term θ =
m2di

√
aibicim·min(

√
ai,
√
ci)

aibicidim2+m2.5 . We analyze
the case below with ai ≤ ci, and the other case with ai > ci can be analyzed in a similar way based
on the symmetry of ai, ci in θ.

When ai ≤ ci, we havem2di
√
aibicim ·min(

√
ai,
√
ci) = aim

2di
√
bicim. We consider two cases,

one satisfies
√
bicim ≤ bici and the other satisfies

√
bicim > bici.

When
√
bicim ≤ bici, we have θ ≤ 1, thus α

β = O(1), thus satisfying the theorem statement.

When
√
bicim > bici, which means that m > bici, we have

θ =
aim

2di
√
bicim

aibicidim2 +m2.5
≤ min

(√
m√
bici

, aidi
√
bici

)
≤
√
m,

thus α
β ≤ O(

√
m). In addition, when GD is a graph, we have di = 1 for all i. Therefore,

θ ≤ min

(√
m√
bici

, aidi
√
bici

)
= min

(√
m√
bici

, ai
√
bici

)
≤ min

(√
m√
bici

, ci
√
bici

)
≤ min

(√
m

(bici)1/2
, (bici)

3/2

)
≤ m0.375.

Therefore, in this case we have α
β ≤ O

(
m0.375

)
, thus finishing the proof.

E Analysis of tree tensor network embeddings

In this section, we provide detailed analysis of sketching with tree embeddings. The algorithm
to sketch with tree embedding is similar to Algorithm 1, and the only difference is that for each

29

contraction (Ui, Vi) with i ∈ S , such that both Ui and Vi are adjacent to edges in Ē, we sketch it
with one embedding tensor zi rather than a small network. Let Ûi, V̂i denote the sketched Ui and Vi
formed in previous contractions in the sketching contraction tree TB , such that Ûi ∩ VD = Ui and
V̂i ∩ VD = Vi, we sketch (Ûi, V̂i) via the contraction path ((Ûi, V̂i), zi). For the case where each
vertex in the data tensor network is adjacent to an edge to be sketched, the sketching cost would be

Θ

 N∑
j=1

exp(cutG(vj)) ·m+

N−1∑
j=1

(aibicidim
2 + aicidim

3)

, (E.1)

where vj is the vertex in the data graph adjacent to ej , ai, bi, ci, di are defined in (C.2), and we
replace the term yi = aibicidim

2 + m2di
√
aibicim · min(

√
ai,
√
ci) in (C.6) with aibicidim2 +

aicidim
3.

Proof of Theorem 4.3. Since each contraction in T0 contracts dimensions with size being at least the
sketch size m, we have bi ≥ m for i ∈ S. Therefore,

m2di
√
aibicim ·min(

√
ai,
√
ci) ≤ aim2di

√
bicim ≤ aibidim2√ci ≤ aibicidim2,

and the asymptotic cost in (C.6) would be

Θ

 N∑
j=1

exp(cutG(vj)) ·m+

N−1∑
j=1

aibicidim
2

. (E.2)

Based on Theorem D.1, (E.2) matches the sketching asymptotic cost lower bound for this data.
Since aicidim3 ≤ aibicidim

2 so (E.1) equals (E.2), sketching with tree embeddings also yield the
optimal asymptotic cost.

When the data has a Kronecker product structure, sketching with tree tensor network embedding
is less efficient compared to Algorithm 1. As is shown in (E.3), Algorithm 1 yields a cost of
Θ
(∑N

j=1 sjm+Nm2.5
)

to sketch the Kronecker product data. However, for tree embeddings,
the asymptotic cost (E.1) is equal to

Θ

 N∑
j=1

sjm+Nm3

. (E.3)

F Computational cost analysis of sketched CP-ALS

In this section, we provide detailed computational cost analysis of the sketched CP-ALS algorithm
based on Algorithm 1. We are given a tensor X ∈ Rs×···×s, and aim to decompose that into N
factor matrices, Ai ∈ Rs×R for i ∈ [N]. Let Li = A1 � · · · �Ai−1 �Ai+1 � · · · �AN and Ri =
XT

(i). In each iteration, we aim to update Ai via solving a sketched linear least squares problem,

Ai = argmin
A

∥∥SiLiAT − SiRi∥∥2F , where Si is an embedding constructed based on Algorithm 1.

Below we first discuss the sketch size of Si sufficient to make each sketched least squares problem
accurate. We then discuss the contraction trees of Li, on top of which embedding structures are
determined. We select contraction trees such that contraction intermediates can be reused across
subproblems. Finally, we present the detailed computational cost analysis of the sketched CP-ALS
algorithm.

F.1 Sketch size sufficient for accurate least squares subproblem

Since the tensor network of Li contains N output dimensions and Li contains R columns, we show
below that a sketch size of Θ(NR log(1/δ)/ε2) = Θ̃(NR/ε2) is sufficient for the least squares
problem to be (ε, δ)-accurate.

30

Theorem F.1. Consider the sketched linear least squares problem minA
∥∥SiLiAT − SiRi∥∥2F .

Let Si be an embedding constructed based on Algorithm 1, with the sketch size m =
Θ(NR log(1/δ)/ε2), solving the sketched least squares problem gives us an (1 + ε)-accurate solu-
tion with probability at least 1− δ.

Proof. Algorithm 1 outputs an embedding with Θ(N) vertices. Based on Theorem 3.1, a sketched
size of Θ(NR log(1/δ)/ε2) will make the embedding (ε, δ

eR
)-accurate. Based on the ε-net argu-

ment [50], S is the (ε, δ)-accurate subspace embedding for a subspace with dimension R. There-
fore, we can get an (1 + ε)-accurate solution with probability at least 1 − δ for the least squares
problem.

F.2 Data contraction trees and efficient embedding structures

The structures of embeddings S1, . . . , SN also depend on the data contraction trees for L1, . . . , LN .
We denote the contraction tree of Li as Ti. We construct Ti for i ∈ [N] such that resulting embed-
dings S1, . . . , SN have common parts, which yields more efficient sketching computational cost via
reusing contraction intermediates.

Let the vertex vi represent the matrix Ai. We also let V (i)
L = {v1, . . . , vi} denote the set of all first

i vertices, and let V (i)
R = {vi, . . . , vN} denote the set of vertices from vi to vN . In addition, we

let C(i)L denote a contraction tree to fully contract V (i)
L , from v1 to vi. Let C(1)L = ∅, we have for

all i ≥ 1, C(i+1)
L = C(i)L ∪

{
(V

(i)
L , vi+1)

}
. Similarly, we let C(i)R denote a contraction tree to fully

contract V (i)
R , from vN to vi. Let C(N)

R = ∅, we have for all i ≤ N , C(i−1)R = C(i)R ∪
{

(V
(i)
R , vi−1)

}
.

𝑣! 𝑣" 𝑣#𝑣$

(a)

𝑣! 𝑣" 𝑣#𝑣$

(b)

𝑣! 𝑣" 𝑣#𝑣$

(c)

𝑣! 𝑣" 𝑣#𝑣$

(d)

𝑣! 𝑣" 𝑣#𝑣$

(e)

𝑣!𝑣"𝑣#𝑣$

𝑣", 𝑣!

𝑣#, 𝑣", 𝑣!

𝑣$, 𝑣#, 𝑣", 𝑣! 𝒞!
(#)

(f)

𝑣!𝑣"𝑣#𝑣$

𝑣", 𝑣!

𝑣#, 𝑣", 𝑣!

𝑣$, 𝑣#, 𝑣", 𝑣!

𝒞!
(#)

(g)

𝑣!𝑣"𝑣#𝑣$

𝑣", 𝑣!

𝑣$, 𝑣#, 𝑣", 𝑣!

𝑣$, 𝑣# 𝒞!
(#)𝒞%

(&)

(h)

𝑣!𝑣"𝑣#𝑣$

𝑣$, 𝑣#, 𝑣", 𝑣!

𝑣$, 𝑣#

𝑣$, 𝑣#, 𝑣"𝒞!
(#)

(i)

𝑣!𝑣"𝑣#𝑣$

𝑣$, 𝑣#, 𝑣", 𝑣!

𝑣$, 𝑣#

𝑣$, 𝑣#, 𝑣"

𝒞!
(#)

(j)

Figure 12: (a)-(e): Representations of L1, . . . , L5 for the CP decomposition of an order 5 tensor.
(f)-(j): Data dimension trees T1, . . . , T5.

Note that the vertex set of the tensor network of Li is V (i−1)
L ∪ V (i+1)

R . Each Ti is constructed so
that V (i−1)

L , V
(i+1)
R are first contracted via the contraction trees C(i−1)L , C(i+1)

R , respectively, then a
contraction of (V

(i−1)
L , V

(i+1)
R) is used to contract them into a single tensor. We illustrate Ti for the

CP decomposition of an order 5 tensor in Fig. 12.

These tree structures allow us to reuse contraction intermediates during sketching. On top of T1,
sketching L1 using Algorithm 1 yields a cost of Θ(N(smR+m2.5R)), where the term Θ(NsmR)
comes from sketching with the Kronecker product embedding, and the term Θ(Nm2.5R) comes
from sketching each data contraction in C(2)R . Since C(2)R = C(3)R ∪

{
(V

(3)
R , v2)

}
, all contractions in

C(3)R are sketched, and we obtain the sketching output of V (3)
R , which is denoted as V̂ (3)

R below.

We use V̂ (3)
R formed during sketching L1 to sketch L2. Since T2 contains contractions

T2 = C(3)R ∪ C
(1)
L ∪

{
(V

(1)
L , V

(3)
R)

}
= C(3)R ∪

{
(v1, V

(3)
R)

}
,

31

𝑣! 𝑣" 𝑣!"#𝑣# ⋯ 𝑣$

Figure 13: Illustration of the matricization of the tensor train (X) to be sketched. The N − 1
uncontracted edges adjacent to v1, . . . , vN−1 are to be sketched.

through reusing V̂
(3)
R , we only need to sketch (v1, V̂

(3)
R) to compute S2L2, which only costs

Θ(smR + m2.5R). Similarly, sketching each Li for i ≥ 2 only costs Θ(smR + m2.5R), thus
making the overall cost of sketching L1, . . . , LN being Θ(N(smR+m2.5R)).

F.3 Detailed algorithm and the overall computational cost

Algorithm 2 Sketched-ALS: Sketched ALS for CP decomposition
1: Input: Input tensor X , initializations A1, . . . , AN , maximum number of iterations Imax
2: GD(Li)← structure of the data Li = A1 � · · · �Ai−1 �Ai+1 � · · · �AN for i ∈ [N]
3: Ti ← contraction tree of GD(Li) for i ∈ [N] constructed based on Appendix F.2
4: Build tensor network embeddings Si on GD(Li) and Ti based on Algorithm 1 for i ∈ [N]

5: Compute R̂i ← SiX
T
(i) for i ∈ [N]

6: for t ∈ [Imax] do
7: for i ∈ [N] do
8: Compute L̂i ← SiLi

9: Ai ← argmin
X

∥∥∥L̂iX − R̂i∥∥∥2
F

10: end for
11: end for
12: return A1, . . . , AN

We present the detailed sketched CP-ALS algorithm in Algorithm 2. Here we analyze the overall
computational cost of the algorithm.

Line 5 yields a preparation cost of the algorithm. Note that we construct Si based on Appendix F.2,
where they share common tensors. Contracting S1X

T
(1) yields a cost of Θ(sNm). On top of that,

contracting SiXT
(i) for i ≥ 2 also only yields a cost of Θ(sNm), making the overall preparation cost

Θ(sNm).

Within each ALS iteration (Lines 7-10), based on Appendix F.2, computing SiLi for i ∈ [N] costs
Θ(N(smR+m2.5R)). For each i ∈ [N], line 9 costs Θ(mR2), making the cost of per-iteration least
squares solves Θ(NmR2). Based on Appendix F.1, a sketch size of m = Θ̃(NR/ε2) is sufficient
for the least squares solution to be (1 + ε)-accurate with probability at least 1 − δ. Overall, the
per-iteration cost is Θ(N(smR+m2.5R)) = Θ̃(N2(N1.5R3.5/ε3 + sR2)/ε2).

G Computational cost analysis of sketching for tensor train rounding

We provide the computational cost lower bound analysis of computing SX , where X denotes a
matricization of the tensor train data shown in Fig. 13. This step is the computational bottleneck of
the tensor train randomized rounding algorithm proposed in [10]. As is discussed in Section 5, we
assume the tensor train has order N with the output dimension sizes equal s, the tensor train rank is
R < s, and the goal is to round the rank to r < R. The sketch size m of S is r plus some constant,
and is assumed to be smaller than R. The lower bound is derived within all embeddings satisfying
the sufficient condition in Theorem 3.1 and only have one output sketch dimension with size m.

For the data contraction tree that contracts the tensor train shown in Fig. 13 from left to right, we
have ai = 1, bi = R, ci = R, di = 1 for i ∈ [N − 2], where ai, bi, ci, di are expressed in (C.2).

32

Based on Theorem D.9, the sketching asymptotic cost lower bound is

Ω

(
N−1∑
j=1

t(ej) +
∑
i∈S

aibicidim
2 +Nm2.5+

∑
i∈I

zi

)
= Ω

N−1∑
j=1

t(ej) +
∑
i∈S

aibicidim
2


= Ω

N−1∑
j=1

exp(cutG(vj)) ·m+

N−2∑
j=1

aibicidim
2


= Ω

(
NsR2m+NR2m2

)
= Ω

(
NsR2m

)
.

Above we use the fact that exp(cutG(v1)) = sR, and for j ∈ {2, . . . , N − 1}, we have
exp(cutG(vj)) = sR2. Sketching with Algorithm 1, tree embedding and tensor train embedding all
would yield this optimal asymptotic cost.

H Additional experiments

Uniform Gaussian
Tensor network embedding (Algorithm 1) 85.0 78.1

Tree embedding (Theorem 4.3) 75.4 68.1
Tensor train embedding [10] 49.3 45.4

Table 5: Comparison of the mean sketch sizes with different input data distribution when sketching
a tensor train input. The tensor train order is chosen to be 6 and the dimension size is chosen to be
500. Each reported sketch size is the mean of 25 experiments. Variables in the uniform distribution
are within the interval of [0, 1], and variables in the Gaussian distribution have the same mean as the
uniform distribution and have the unit variance.

In this section, we experimentally verify that the sketch size of embeddings to get the same sketching
accuracy trends similarly for both uniform and Gaussian input tensor distributions. We compare the
performance of general tensor network embedding used in Algorithm 1, tree embedding discussed
in Theorem 4.3, and the baseline, tensor train embedding [10], in sketching tensor train input data in
Table 5. For each input tensor train x and a specific embedding structure, we calculate the relative
sketching error twice under different sketch sizes, and record the smallest sketch size such that both
of its relative sketching errors are within 0.2, ‖Sx‖2‖x‖2 ≤ 0.2. As can be seen in the table, for both
distributions, tensor network embedding produces a slightly larger sketch size than tree embedding,
and tensor train embedding yields the lowest sketch size.

33

	Background
	Tensor algebra and tensor diagram notation
	Background on sketching

	Definitions and basic properties of tensor network embedding
	Graph notation for tensor network and tensor contraction
	Definitions used in the analysis of tensor network embedding
	Properties of tensor network embedding

	Computationally-efficient sketching algorithm
	Sketching with the embedding containing a binary tree of small tensor networks
	Computational cost analysis

	Lower bound analysis
	Sketching data with uniform sketch dimensions
	Sketching general data

	Analysis of tree tensor network embeddings
	Computational cost analysis of sketched CP-ALS
	Sketch size sufficient for accurate least squares subproblem
	Data contraction trees and efficient embedding structures
	Detailed algorithm and the overall computational cost

	Computational cost analysis of sketching for tensor train rounding
	Additional experiments

