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A EXPERIMENT SETUP

Training Settings We modified the code originally developed by Ahrabian et al. (2020) to perform
MIXUP and EMU with SAN. As explained in section 3, the models are trained using cross-entropy
losses, incorporating one true tail sample and multiple negative samples. The optimization was
performed using Adam (Kingma & Ba). The L3-norm loss function is used on the embedding
vectors for the models with the vanilla uniform negative sampling and SAN. The mini-batch size is
set to 1000. To compute the embedded triplets For all the KG models, we used an Embedding layer
with a hidden dimension of : d = 100. A more detailed hyper-parameters are provided in Table 4
and Table 5. We tuned our hyperparameters through 10000 iterations on the FB15K-237 dataset
using Optuna (Akiba et al., 2019).

Model Method Learning Rate α nP/d β γ

ComplEX uni 0.1 n/a n/a n/a 10−5

SAN 0.1 n/a n/a n/a 10−5

SAN EMU 0.1 0.34 0.92 0.12 0
uni EMU 0.1 0.34 0.92 0.12 0

DistMult uni 0.1 n/a n/a n/a 10−5

SAN 0.1 n/a n/a n/a 10−5

SAN EMU 0.1 0.73 0.94 0.25 0
uni EMU 0.1 0.73 0.94 0.25 0

RotatE uni 0.005 n/a n/a n/a 10−3

SAN 0.005 n/a n/a n/a 10−3

SAN EMU 0.005 0.11 0.39 0.53 0
uni EMU 0.005 0.11 0.39 0.53 0

TransE uni 0.005 n/a n/a n/a 10−3

SAN 0.005 n/a n/a n/a 10−3

SAN EMU 0.005 0.11 0.39 0.53 0
uni EMU 0.005 0.11 0.39 0.53 0

Table 4: Hyper-Parameters for FB15K-237 and WN18RR dataset. α, β, γ are the coefficient of EMU
Loss, negative label value of Unbounded LS, and the coefficient of L3-norm loss, respectively.

B A FULL DESCRIPTION OF MAIN RESULT

In Table 6 we provide the full description of our result visualized in Figure 3.

C RESULTS USING NSCACHING

This section presents the results obtained with EMU and NSCaching (Zhang et al., 2019)8. We
modified the official NSCaching repository to enable the use of the cross entropy loss function and
EMU. We used the same hyperparameters as those provided in section 3, mini-batch size is 1000
and 256 negative samples. EMU parameters are provided in Table 8. The results are provided in
Table 7 which demonstrate that our EMU consistently improves the performance, even when using
NSCaching9.

8We provided the results with NSCaching in the appendix rather than the main body because of differences
in the implementation between the official repositories for SAN and NSCaching, which makes it difficult to
compare those results equally.

9The obtained MMR and H@10 values may appear excessively good; however, we believe that this may be
partly due to the NSCaching code implementation, although we cannot confirm this with certainty.
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Model Method Learning Rate α nP/d β γ

ComplEX uni 0.1 n/a n/a n/a 10−5

SAN 0.1 n/a n/a n/a 10−5

SAN EMU 0.1 0.536 0.804 0.193 0
uni EMU 0.1 0.536 0.804 0.193 0

DistMult uni 0.1 n/a n/a n/a 10−5

SAN 0.1 n/a n/a n/a 10−5

SAN EMU 0.1 0.54 0.949 0.22 0
uni EMU 0.1 0.54 0.949 0.22 0

RotatE uni 0.1 n/a n/a n/a 10−5

SAN 0.1 n/a n/a n/a 10−5

SAN EMU 0.1 0.46 0.73 0.84 0
uni EMU 0.1 0.46 0.73 0.84 0

TransE uni 0.1 n/a n/a n/a 5× 10−5

SAN 0.1 n/a n/a n/a 5× 10−5

SAN EMU 0.1 0.11 0.39 0.53 0
uni EMU 0.1 0.11 0.39 0.53 0

Table 5: Hyper-Parameters for YAGO3 dataset. α, β, γ are the coefficient of EMU Loss, negative
label value of Unbounded LS, and the coefficient of L3-norm loss, respectively.

FB15K-237 WN18RR YAGO3-10
Model Method MRR HITS@10 MRR HITS@10 MRR HITS@10

ComplEX uni 0.306±0.001 0.486±0.000 0.461±0.000 0.526±0.002 0.399±0.004 0.605±0.003

(Trouillon et al., 2016) SAN 0.275±0.000 0.437±0.001 0.467±0.001 0.530±0.001 0.318±0.002 0.496±0.004

SAN EMU 0.298±0.001 0.474±0.001 0.466±0.002 0.543±0.003 0.385±0.002 0.563±0.002

uni EMU 0.344±0.001 0.532±0.001 0.473±0.003 0.547±0.002 0.437±0.001 0.638±0.004

DistMult uni 0.299±0.001 0.476±0.001 0.428±0.001 0.489±0.002 0.345±0.001 0.538±0.004

(Yang et al., 2015) SAN 0.259±0.001 0.415±0.001 0.425±0.001 0.481±0.002 0.251±0.002 0.428±0.001

SAN EMU 0.282±0.001 0.446±0.002 0.427±0.001 0.506±0.004 0.293±0.002 0.478±0.002

uni EMU 0.332±0.001 0.513±0.001 0.446±0.002 0.523±0.003 0.403±0.004 0.601±0.004

RotatE uni 0.305±0.001 0.484±0.001 0.458±0.001 0.549±0.002 0.378±0.003 0.569±0.003

(Sun et al., 2019) SAN 0.257±0.001 0.418±0.001 0.456±0.001 0.532±0.003 0.303±0.003 0.459±0.003

SAN EMU 0.282±0.000 0.455±0.001 0.451±0.001 0.516±0.002 0.363±0.002 0.535±0.002

uni EMU 0.329±0.001 0.514±0.001 0.453±0.002 0.525±0.002 0.391±0.001 0.609±0.002

TransE uni 0.314±0.001 0.479±0.002 0.227±0.002 0.506±0.002 0.233±0.001 0.389±0.005

(Bordes et al., 2013) SAN 0.299±0.001 0.460±0.002 0.237±0.001 0.518±0.002 0.222±0.002 0.375±0.001

SAN EMU 0.281±0.000 0.450±0.003 0.202±0.001 0.493±0.001 0.221±0.003 0.383±0.001

uni EMU 0.323±0.001 0.503±0.003 0.216±0.001 0.493±0.001 0.255±0.002 0.438±0.002

Table 6: MRR and Hit@10 of the results on FB15K-237, WN18RR, and YAGO3-10 datasets. ”uni”
means the uniform negative sampling, ”SAN” means the structure aware negative sampling. The
shown results are the average with the standard deviation of three trials of the randomly determined
initial weights.

D NEGATIVE SAMPLE NUMBER DEPENDENCE

In the main body of this work, we maintained a fixed number of negative samples at 256. However,
in Figure 6, we depict the relationship between the optimal MRR and the number of negative samples
employed. Our experiments were conducted using the FB15K-237. Notably, EMU demonstrated
superior MRR values in most cases, with a notable increase in performance gains as the number of
negative samples increased.
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Model Method MRR Hit@10

ComplEX NSCaching 0.387±0.001 0.577±0.001

NSCaching EMU 0.394±0.001 0.585±0.005

DistMult NSCaching 0.370±0.001 0.557±0.003

NSCaching EMU 0.376±0.002 0.565±0.000

TransE NSCaching 0.322±0.001 0.470±0.002

NSCaching EMU 0.323±0.001 0.467±0.004

RotatE NSCaching n/a n/a
NSCaching EMU n/a n/a

Table 7: MRR and Hit@10 of the results with NSCaching code trained using FB15K-237.
”NSCaching” means the NSCaching negative smapling. The shown results are the average with
the standard deviation of three trials of the randomly determined initial weights. Note that the result
of RotatE is omitted because RotatE is not provided in the original repository.

Model Method Learning Rate α nP/d β γ

ComplEX uni 3× 10−4 n/a n/a n/a 10−5

NSCaching 3× 10−4 n/a n/a n/a 10−5

NSCaching EMU 3× 10−4 0.44 0.34 0.32 0

DistMult uni 10−3 n/a n/a n/a 10−5

NSCaching 10−3 n/a n/a n/a 10−5

NSCaching EMU 10−3 0.68 0.17 0.16 0

TransE uni 5× 10−4 n/a n/a n/a 2× 10−2

NSCaching 5× 10−4 n/a n/a n/a 2× 10−2

NSCaching EMU 5× 10−4 0.54 0.168 0.151 0

Table 8: Hyper-Parameters of NScaching code trained using FB15K-237 dataset. α, β, γ are the
coefficient of EMU Loss, negative label value of Unbounded LS, and the coefficient of L3-norm
loss, respectively.

E HYPER-PARAMETER DEPENDENCE STUDY

In Table 9 illustrates the dependence of EMU performance on hyper-parameters: α, nP /d, and β.
We considered the DistMult as a KGE model. The results indicate that the excessively large values of
the coefficient of EMU loss, α, are undesirable. Conversely, it is preferable to use a moderate value
for the negative label value of Unbounded LS, β. Finally, the performance is relatively insensitive
to the change of the mutation ratio, nP /d, but exhibits a slight improvement as the value approaches
the optimal one.

(α, nP/d, β) MRR HITS@10

(0.11, 0.914, 0.53) baseline 0.333 0.513
(0.5, 0.914, 0.53) 0.318 0.498
(0.9, 0.914, 0.53) 0.306 0.484
(0.11, 0.1, 0.53) 0.326 0.509
(0.11, 0.5, 0.53) 0.327 0.504
(0.11, 0.914, 0.1) 0.314 0.496
(0.11, 0.914, 0.9) 0.326 0.501

Table 9: Hyper-Parameters study results using FB15K-237 dataset with DistMult model. α, β, nP

are the coefficient of EMU Loss, negative label value of Unbounded LS, and the number of mutation
components, respectively.
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Figure 6: The negative sample number dependence of MRR trained on FB15K-237. The right-edge
of the ComplEX and DistMult of the uniform negative sampling case is the ”1 VS ALL” results.

F COMPARISON BETWEEN VANILLA LS AND UNBOUNDED LS

In this study we proposed the unbounded label-smoothing (LS) technique. To assess its efficacy, we
also trained our models using vanilla LS (Szegedy et al., 2016) with a label smoothing parameter of
0.2. The result is provided in Table 10 which demonstrate the clear speriority of Unbounded LS for
all cases.

Model Ablation MRR HITS@10

ComplEX Unbounded LS 0.344 0.532
(Trouillon et al., 2016) Vanilla LS (w/t ULS) 0.262 (-0.082) 0.423 (-0.109)

DistMult Unlabeled LS 0.332 0.513
(Yang et al., 2015) Vanilla LS (w/t ULS) 0.252 (-0.080) 0.410 (-0.103)

RotatE Unbounded LS 0.329 0.514
(Sun et al., 2019) Vanilla LS (w/t ULS) 0.236 (-0.093) 0.382 (-0.132)

TransE Unbounded LS 0.322 0.503
(Bordes et al., 2013) Vanilla LS (w/t ULS) 0.259 (-0.063) 0.423 (-0.080)

Table 10: A comparison between Unbounded LS and vanilla LS.
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G AN BRIEF INTRODUCTION TO MIXUP

In this section, we provide a brief introduction of Mixup (Zhang et al., 2018). MIXUP is a simple
regularization technique that constructs virtual training examples as:

z̃Mixup ≡ λzi + (1− λ)zj , (6)

where zi, yi are the i-th input and label data, λ ∼ Beta(α, α) is a random scalar value controlling
mixing ratio between the two samples, and α ∈ (0,∞). MIXUP is typically applied across the
elements of a given batch, and randomly produces new virtual samples by linearly mixing two
classes as shown in Equation 6. While MIXUP was originally proposed to address problems such
as reducing memorization of corrupted labels and increasing the robustness to adversarial examples,
we observed limitations to its performance when we extended it to embedding methods (refer to
Table 3). We hypothesize that the linear nature of MIXUP-generated example restricts the magnitude
of gradients without changing their direction, which limits its effectiveness. On the other hand,
EMU overcomes this limitation by producing updates that can take multiple directions and thus,
enhances model training.

For the MIXUP experiments, we simply replaced the embedding mutation into Mixup in Equation 6.
For simplicity, we set λ ∼ Beta(α, β)|α=2,β=1. Note that here we did not set as α = β, as in
the original implementation (Zhang et al., 2018), because we found that using different values of
α and β resulted in a significantly improved accuracy. We attribute this to the skewed probabilistic
distribution that arises due to the different values of α and β, which allows for a higher ratio of
negative samples than positive samples in the mixed-tail embedding vectors.

H T-SNE

In the main body of our study, we provide a scatter plot in Figure 5 to visualize the distribution of
true and negative samples using the first and second components of PCA . Furthermore, to better
capture the geometry in high-dimension, we also plot the distribution of h*r and negative-sample
tails using tSNE in Figure 7. Our results show that EMU leads to a distribution that is more similar
to the h*r than the uniform negative sampling case.
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Figure 7: tSNE distribution of head * relation and tail for FB15k-237. The KG model is the Dist-
Mult.
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Figure 8: Cosine similarity of negative-negative tail pairs for DistMult with FB15k-237.

I EUCLIDEAN DISTANCE BETWEEN POSITIVE AND NEGATIVE SAMPLES
GENERATED BY MIXUP AND EMU

The generation of new samples by EMU is expected to have a distinct impact on their position in
the latent space. In particular, we can demonstrate that the distance between the newly generated
example and a true sample is always equal to or lower than that between the original negative sample
and a true sample because of the nature of EMU generating a harder negative sample. The vanilla
Euclidean distance can be written as:

dPN =

√√√√1

d

d∑
i=1

(z+i − z−i )
2. (7)

While in the case of MIXUP, the distance is

dMixup =

√√√√1

d

d∑
i=1

(z+i − zMixup
i )2

= (1− λ)dPN < dPN, (8)

In the case of EMU, the distance is

dEMU =

√√√√1

d

d∑
i=1

(z+i − zEMU
i )2

=

√√√√1

d

d∑
i=nT+1

(z+i − z−i )
2

∼
√

1− nP

d
dPN, (9)

where in the last line, we approximated as |z+i − z−i | ∼ dPN/d for the order estimation of the
equation. In Equation 9 we assume the first nP components in λEMU is unity and the others are
zero: λEMU = {1, 1, · · · , 1, 0, · · · , 0}, for simplicity.

The above equations show that EMU enables to generate hard negative samples similar to MIXUP
but in a different manner.

J COSINE SIMILARITY BETWEEN NEGATIVE SAMPLES

Figure 8 plots the cosine similarity among negative samples for EMU-EMU, uniform-uniform,
and uniform-EMU. The results indicate that the similarity between uniform negative samples are
consistently lower than that of EMU negative samples, suggesting that EMU generates more hard
negative samples.
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