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ABSTRACT

In finite-sum optimization problems, the sample orders for parameter updates can
significantly influence the convergence rate of optimization algorithms. While
numerous sample ordering techniques have been proposed in the context of
single-objective optimization, the problem of sample ordering in finite-sum multi-
objective optimization has not been thoroughly explored. To address this gap,
we propose a sample ordering method called JoGBa (Joint Gradient Balancing),
which finds the sample orders for multiple objectives by jointly performing on-
line vector balancing on the gradients of all objectives. Our theoretical analysis
demonstrates that this approach outperforms the standard baseline of random or-
dering and accelerates the convergence rate for the MGDA algorithm. Empiri-
cal evaluation across various datasets with different multi-objective optimization
algorithms further demonstrates that JoGBa can achieve faster convergence and
superior final performance than other data ordering strategies.

1 INTRODUCTION

Many well-known machine learning problems involve jointly optimizing multiple objectives in
model training. Examples include multi-task learning (Sener & Koltun, 2018), meta-learning (Ye
et al., 2021), learning with fairness and safety constraints (Zafar et al., 2017) and multi-agent re-
inforcement learning (Moffaert & Nowé, 2014). Mathematically, these problems share the same
formulation of minimizing a vector-valued loss function L and can be defined as:

min
w∈Rd

L(w) := [L1(w), . . . ,LM (w)]. (1)

Here, each loss function Lm(w),m = 1, . . . ,M corresponds to a training objective and can be
expressed by Lm(w) =

∑N
n=1 ℓm(w, ξn), where each ξn denotes a training sample and ℓm is

the per-sample loss. Solving problem (1) is fundamentally different from common single-objective
optimization problems as different objectives may have conflicts with each other. A straight-forward
baseline is to optimize a weighted average of the multiple objectives, also known as static or unitary
weighting (Kurin et al., 2022; Xin et al., 2022). Its performance then largely depends on how to
choose the weights to balance different objectives, and may involve huge amount of tuning efforts.
A popular alternative is thus to dynamically weight gradients from different objectives to avoid
conflicts between them. Generally, these methods share the same procedure: First, compute all
the gradients of each objective, then compute a set of weights for different objectives based on
their gradients. The model is updated by the weighted sum of all gradients, while the weights can
dynamically change. The pioneering work of this approach is the multi-gradient descent algorithm
(MGDA) (Désidéri, 2012) and its stochastic variants (Liu & Vicente, 2021; Fernando et al., 2023;
Zhou et al., 2022; Chen et al., 2024). Later works further improve upon MGDA by considering
the worst improvement among different objectives (Liu et al., 2021; Ban & Ji, 2024), as well as
constructing a bargaining game between different objectives (Navon et al., 2022).

While the aforementioned methods can be used to compute weights dynamically based on the loss
gradients, a less-investigated issue for the stochastic optimization of finite-sum multi-objective prob-
lem is how we should order the samples for the computation of their stochastic gradients so that
problem (1) can be solved efficiently. For single-objective optimization in the finite-sum setting,
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many methods have been proposed for ordering the samples in stochastic optimization (Ying et al.,
2017; Gürbüzbalaban et al., 2019; Lu et al., 2021; Mohtashami et al., 2022; Lu et al., 2022). With
multiple objectives, a simple generalization of these methods is to treat the weighted average of all
loss gradients as sample “gradient” for update (Figure 1(a)). However, the gradient weights may
change drastically during model update, making existing methods unstable and often do not outper-
form the simple baseline of random ordering. Another simple extension is to run the single-objective
sample ordering algorithm on each objective separately, but this can lead to different orderings for
different objectives (Figure 1(b)). Moreover, it overlooks possible conflicts between gradients from
different samples, and thus may still yield limited improvement over random ordering.

Motivated by the above limitations, in this paper, we propose a novel sample ordering framework
for multi-objective optimization. As illustrated in Figure 1(c), the proposed method jointly provides
sample orderings for different objectives by solving an online vector balancing problem with the
gradients on each objective. The online vector balancing problem allows us to control the maximum
norm of total model update in each epoch, leading to the theoretical guarantee of accelerated conver-
gence. Specifically, our theoretical results demonstrate that the proposed method improves over the
random ordering baseline for finite-sum multi-objective optimization, with smaller sample variance
and faster convergence. Empirical results on a variety of data sets with multiple learning objectives
demonstrate that the proposed method achieves faster convergence and better performance than the
other data sampling methods.

Our contributions can be summarized as follows:

• We propose a novel data ordering method that uses gradient balancing across different objectives
to accelerate convergence.

• We propose a novel theoretical framework to analyze multi-objective optimization with different
data ordering for each objective.

• Empirical results on various multi-task learning data sets demonstrate effectiveness of the pro-
posed method.

(a) Same ordering for all objec-
tives.

(b) Data ordering on each objective
separately.

(c) Proposed method: joint data or-
dering on all objectives.

Figure 1: Visualization of different data ordering approaches for multi-objective optimization.

2 RELATED WORKS

2.1 PERMUTATION-BASED SGD FOR FINITE-SUM OPTIMIZATION

Stochastic optimization often assumes that training samples are independently from an underlying
distribution in each iteration. However, this assumption does not match with practical implementa-
tions that typically use finite training samples in a certain order. Instead, permutation-based SGD
proposes to first sort all the training samples by an order, and then use the samples following this
order. An example is random reshuffling (Ying et al., 2017) and the related shuffle-once method
(Bertsekas, 2011; Gürbüzbalaban et al., 2019), which first generates a random order of all training
samples in each epoch, and then uses the training samples following this order in the subsequent
iterations. Theoretical analysis of random reshuffling dates back to Recht & Ré (2012). Rajput
et al. (2021) introduces a variant of random reshuffling that reverses the order every two epochs, and
theoretically demonstrates that this variant achieves faster convergence for quadratic objectives.

Instead of using a random order, Lu et al. (2021),Mohtashami et al. (2022), and Lu et al. (2022) try
to find better sample orders. These works are mostly based on the herding problem (Welling, 2009),
which minimizes the consecutive errors of stochastic gradients. Theoretical analysis (Cha et al.,
2023) demonstrates that the ordering based on the herding problem is asymptotically optimal. There
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are different methods to solve the herding problem. Mohtashami et al. (2022) evaluates gradients
on all samples first and then solves the herding problem to obtain the order for all samples before
starting an epoch. Lu et al. (2021) uses stale gradients from the previous epoch to estimate the
gradient on each sample. Lu et al. (2022) proposes to solve the herding problem via online vector
balancing, which removes the additional storage cost in (Mohtashami et al., 2022; Lu et al., 2021).

Despite the aforementioned improvements, existing works on permutation-based SGD only focus
on single-objective optimization problems. While some simple extensions exist for training with
multiple objectives (e.g., by using the weighted gradient or ordering samples for each objective sep-
arately), these simple extensions do not always yield much improvements, as will be demonstrated
in our empirical results.

2.2 GRADIENT-BASED MULTI-OBJECTIVE OPTIMIZATION

To balance the optimization on different objectives, most existing algorithms use the weighted aver-
age of all objective gradients to update the model. There are different ways to compute the weights
for different objectives. Some works perform the weighting based on some heuristics. Examples
include using the prediction uncertainty (Kendall et al., 2017), gradient norms (Chen et al., 2018) or
task difficulty (Guo et al., 2018). Another line of works propose to compute the objective weights
from some sub-problems on the objective gradients. The pioneering work is MGDA (Désidéri,
2012), which computes the weights by avoiding conflicts across any objective. Stochastic variants
of MGDA with optimization convergence guarantees have been proposed in (Liu & Vicente, 2021;
Zhou et al., 2022; Fernando et al., 2023; Chen et al., 2024). PCGrad (Yu et al., 2020) proposes to
project the gradients of tasks to the normal plane of the other tasks with conflicting gradients. CA-
Grad (Liu et al., 2021) searches for an update direction in a neighborhood of the average gradient
that maximizes the worst improvement of any task. Nash-MTL (Navon et al., 2022) proposes to
look for a fair gradient direction based on a bargaining game between different objectives.

Convergence analysis for the deterministic MGDA algorithm dates back to (Fliege et al., 2019).
Later on, stochastic variants of MGDA are introduced (Liu & Vicente, 2021; Zhou et al., 2022; Fer-
nando et al., 2023; Chen et al., 2024). However, the vanilla stochastic MGDA introduces a biased
estimate of the dynamic weight, which results in the biased estimate of update direction during op-
timization. To address this issue, Liu & Vicente (2021) propose to increase the batch size during
optimization, and prove the convergence of stochastic MGDA with the Lipschitz continuity assump-
tion on the objective weights λ∗(w) with respect to the loss gradients ∇L(w). Nevertheless, as first
proved in (Zhou et al., 2022, Proposition 2), this assumption does not hold in general. To address
this problem, momentum-based bias reduction algorithms (Zhou et al., 2022; Fernando et al., 2023)
are proposed to eliminate such unrealistic assumptions. The convergence of the MGDA algorithm
without the unrealistic Lipschitzness assumption is first established in (Chen et al., 2024), which
propose to mitigate the bias in update direction via double sampling. Most existing works focus
on the convergence analysis under an online setting instead of the finite-sum setting, and ignores the
impact of sample orders in their theoretical analysis.

3 PROPOSED METHOD

3.1 MULTIPLE SAMPLE ORDERINGS FOR MULTIPLE OBJECTIVES

A simple extension of existing single-objective sample ordering methods to multi-objective opti-
mization is to use the weighted average of all loss gradients as sample “gradient”, and follow ex-
isting data ordering methods on the weighted gradient. When the objective weights do not change
with different samples, this extension can be regarded as using the weighted objective as the only
objective in the existing methods. However, since the objective weights are constantly changing,
using the same sample order cannot well tackle the possible conflicts between different objectives.

To alleviate this problem, we propose to use different sample orders for different objectives. Specif-
ically, for a data set with K samples, we generate an order πm

t : {1, . . . ,K} → {1, . . . ,K} for the
m-th objective. Some simple methods to generate the order πm

t in each epoch t are listed below:

1. Random: In each epoch t, the data sets are randomly shuffled to generate an ordering πm
t for

each objective.
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2. FlipFlop: For each objective, create a new order πm
t+1 by reversing the previous πm

t , i.e.,
πm
t+1(k) = πm

t (K + 1− k).

3. Random FlipFlop, which performs Random on even epochs and FlipFlop on odd epochs.

3.2 SAMPLE ORDERING BY ONLINE VECTOR BALANCING

Besides the simple ordering methods in Section 3.1, some recent works (Lu et al., 2021; Mohtashami
et al., 2022; Lu et al., 2022) propose to adaptively find a good order for all training samples in each
epoch for faster convergence of stochastic optimization with a single objective. An example is
GraB (Lu et al., 2022), which tries to find a sample ordering π that minimizes the maximum norm
of parameter update in each epoch, i.e., maxK′ ∥w(K′) − w(1)∥∞. With a single objective ℓ, the
model parameters are updated by w(k+1) = w(k) − α∇ℓ(w, ξπ(k)) at each iteration k in an epoch.
This problem is then transformed to the online vector balancing problem defined below:

Definition 3.1 (Online Vector Balancing (Spencer, 1977)). Given K vectors {zk}Kk=1 ∈ Rd, arriv-
ing one at a time, the goal of online vector balancing is to assign a sign ϵk ∈ {−1,+1} to each
vector upon receiving it so as to minimize maxm∈{1,...,K} ∥

∑m
k=1 ϵkzk∥∞.

We propose to generalize this problem to multiple objectives by replacing the gradients on a single
objective to those on multiple objectives and jointly consider their influence to the model updates.
The complete procedure, called JoGBa (Joint Gradient Balancing), is shown in Algorithm 1. Specif-
ically, at the k-th iteration of epoch t, we compute the gradients {∇ℓm(w

(k)
t , ξπm

t (k))}Mm=1 for all

M objectives w.r.t. the current model parameter w(k)
t . The sample order πm for each objective is

then determined by solving the balancing problem on the gradients from different objectives, im-
plemented by routine Balancing in step 11. While there exists different ways to solve the online
vector balancing problem and compute the gradient sign ϵm,k,t, here we follow GraB and use a
greedy algorithm that works well in practice. As shown in Algorithm 2, we compare two vector
norms ∥s + gm,k,t∥∞ and ∥s − gm,k,t∥∞, where s + gm,k,t corresponds to putting this sample at
the beginning and s− gm,k,t corresponds to putting this sample at the end. Since the online vector
balancing problem in Definition 3.1 tries to minimize the vector sum’s norm, we choose the sample
order that can lead to the smallest norm, as is indicated by the value of ϵm,k,t. The vector s is shared
among different objectives to enable joint balancing across their corresponding gradients. After the
balancing routine is complete, we compute the objective weights λ by any multi-task learning algo-
rithm (routine MTL), such as MGDA (Désidéri, 2012) or Nash-MTL (Navon et al., 2022). We then
update the mean v of all gradients and perform model update on w

(k)
t .

3.3 THEORETICAL ANALYSIS

In this section, we theoretically demonstrate how Algorithm 1 improves upon simple extensions
of sample ordering methods to multi-objective optimization. Since the convergence analysis of
multi-objective optimization is different from optimizing a single objective, we first introduce the
definition of Pareto stationary. Denote the gradients for all M objectives as ∇L(w) ∈ Rd×M , where
L(w) is defined as in (1), and define ∆M as the following set:

∆M :=

{
λ ∈ RM :

∑M

m=1
λm = 1, λm ≥ 0,∀m = 1, . . . ,M

}
.

Analogous to the stationary and optimal solutions for a single objective, we define Pareto stationary
and Pareto-optimal solutions for the multi-objective optimization problem minw∈Rd L(w).

Definition 3.2 (Pareto stationary and Pareto optimality (Momma et al., 2022)). If there exists a
convex combination of the gradient vectors that equals to zero, i.e., there exists λ ∈ ∆M such that
∇L(w)λ = 0, then w ∈ Rd is Pareto stationary for L. If there is no w ∈ Rd and w ̸= w∗

such that, for all Lm(w) defined in (1) with m = 1, . . . ,M , Lm(w) ≤ Lm(w∗), and for at least a
m′ = 1, . . . ,M , Lm′(w) < Lm′(w∗), then w∗ is Pareto-optimal for L.

By definition, at a Pareto stationary point, there is no common descent direction for all objectives.
A necessary and sufficient condition for w being Pareto stationary for smooth objectives is that
minλ∈∆M ∥∇L(w)λ∥ = 0 (Tanabe et al., 2019), which corresponds to the stationary condition
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Algorithm 1 JoGBa: Joint Gradient Balancing for Multi-Objective Optimization.
1: Input: number of epochs T , initialized order π1, initialized weight w0, stale mean v0 = 0, step size α.
2: for t = 0, . . . , T − 1 do {t is the number of epochs}
3: for m = 1, . . . ,M do {m is the index on different objectives}
4: Initialize left index lm ← 1, right index rm ← K
5: end for
6: Initialize running average s← 0, stale mean vt+1 ← 0.
7: for k = 1, . . . ,K do {k is the number of iterations in each epoch, π1

t (k), . . . , π
M
t (k) indicates the

sample index we select for each objective}
8: Sample data ξπ1

t (k)
, . . . , ξπM

t (k) from data set D
9: for m = 1, . . . ,M do {Compute the gradient on the m-th objective and updates its sample order

πm
t+1 for next epoch t+ 1}

10: Compute gradient∇ℓm(w
(k)
t ; ξπm

t (k)) and centered gradient gm,k,t ← ∇ℓm(w
(k)
t ; ξπm

t (k))−vt

11: Compute sign for the current gradient: ϵm,k,t ← Balancing(s, gm,k,t)
12: if ϵm,k,t = +1 then
13: Update s and left index lm: s← s+ gm,k,t; πm

t+1(lm)← πm
t (k); lm ← lm + 1.

14: else
15: Update s and right index rm: s← s− gm,k,t; πm

t+1(rm)← πm
t (k); rm ← rm − 1.

16: end if
17: end for
18: Compute weights λ from multi-task learning algorithms λ = MTL({∇ℓm(w

(k)
t ; ξπm

t (k))}Mm=1)

19: Update stale mean vt+1 ← vt+1 +
1
K

∑M
m=1∇ℓm(w

(k)
t ; ξπm

t (k))

20: Optimizer Step: w(k+1)
t ← w

(k)
t − α

∑M
m=1 λm∇ℓm(w

(k)
t ; ξπm

t (k))
21: end for
22: Use the model parameter from last iteration as the initialization for next epoch t+ 1:w(1)

t+1 ← w
(K+1)
t .

23: end for

Algorithm 2 Online greedy implementation of Balancing(s, gm,k,t).
1: Input: s, gm,k,t.
2: ϵm,k,t = 1 if ∥s+ gm,k,t∥∞ ≤ ∥s− gm,k,t∥∞ else ϵm,k,t = −1.
3: Return ϵm,k,t.

∥∇Lm(w)∥ = 0 for a specific objective Lm. Then, similar to the gradient norm ∥∇Lm(w)∥ for
single-objective optimization, the quantity minλ∈∆M ∥∇L(w)λ∥ can be used as a measure of Pareto
stationarity (Désidéri, 2012; Fliege et al., 2019; Liu & Vicente, 2021; Fernando et al., 2023).

Now we list several assumptions that are necessary for our theoretical results. These assumptions
are all commonly used in previous theoretical analysis (Liu & Vicente, 2021; Fernando et al., 2023;
Zhou et al., 2022; Chen et al., 2024) on the convergence of multi-objective optimization methods:
Assumption 3.3 (Lipschitzness of ℓm(w)’s and L(w)). For all m ∈ {1, . . .M}, ℓm(w, ξ) is f -
Lipschitz continuous for all training samples ξ. L(w) is then F -Lipschitz continuous in the Frobe-
nius norm with F =

√
Mf .

Assumption 3.4 (Lipschitz smoothness of ℓm(w)’s and L(w)). The gradient ∇ℓ(w, ξ) is f1-
Lipschitz continuous for all m ∈ {1, . . . ,M} for all ξ. ∇Lm(w) is then F1-Lipschitz continuous
in the Frobenius norm with F1 =

√
Mf1.

Assumption 3.5 (Bounded gradient variance for each objective). For any w and sample ξ, the m-th
loss function satisfies ∥∇ℓm(w, ξ)−∇Lm(w)∥22 ≤ σ2

m for some given σm.

We then have the following convergence result if we use the MGDA algorithm (Désidéri, 2012;
Sener & Koltun, 2018) to compute the objective weights λ. Proof is in Appendix A.1.
Theorem 3.6 (Random Ordering). Suppose Assumptions 3.3, 3.4 and 3.5 hold. Define ∆ =
maxλ∈∆M L(w0)λ − minw∈Rd,λ∈∆M L(w)λ as the maximum difference between objective val-
ues at initialization and that at Pareto optimality. Consider the model parameters1 {w(1)

t } gen-

erated by the MGDA algorithm with random sample ordering. Set α =
√

2∆
F1(F 2+σ2)KT where

1Superscript 1 indicates the model parameters at the beginning of each epoch.
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σ2 = maxm σ2
m with σ2

m defined in Assumption 3.5, then,

1

T

T−1∑
t=0

E
[
min

λ∈∆M
∥∇L(w(1)

t )λ∥2
]
≤
√

2F1∆(F 2 + σ2)

KT
+

σ2(1 + log(T ))

T
. (2)

To analyze the convergence rate of Algorithm 1 that uses online gradient balancing to determine
sample ordering for different objectives, we first need an additional assumption on the Balancing
subroutine, which is also used for gradient balancing with single objective in (Lu et al., 2022).

Assumption 3.7. (Balancing Bound) For the subroutine Balancing in Algorithm 1, denote its
input vectors as z1, . . . ,zn ∈ Rd which satisfy ∥zi∥2 ≤ 1,∀i = 1, . . . n. Suppose the sub-
routine assigns each vector zi a sign ϵi ∈ {−1,+1}. There exists a constant A > 0 such that
∥
∑k

i=1 ϵizi∥∞ ≤ A for all k ∈ {1, . . . , n}.

From Definition 3.1, solving the online vector balancing problem corresponds to minimizing A
in Assumption 3.7. We also have the following Proposition that controls the maximum norm of
parameter updates in each epoch. Proof is in Appendix A.2.

Proposition 3.8. Under Assumption 3.3 and 3.7 Algorithm 1 satisfies: ∥w(k)
t −w

(1)
t ∥∞ ≤ AF for

all k ∈ {1, . . . ,K} and t ∈ {0, . . . , T − 1}.

Based on this Proposition, we can then prove the following convergence result.

Theorem 3.9. Set

α = min

{
3

√
∆

32KA2σ2F 2
1 T

,
1

26(K +A)(F + F1)

}
.

where σ2 = maxm σ2
m with σ2

m defined in Assumption 3.5. Under Assumptions 3.3, 3.4 and 3.5,
Algorithm 1 yields

1

T

T−1∑
t=0

E
[
min

λ∈∆M
∥∇L(w(1)

t )λ∥2
]
≤11

3

√
A2F 2

1∆
2(F 2 + σ2)

K2T 2
+

σ2

T
+

65∆(F + F1)

T
+

8∆AF1

KT
.

Proof is in Appendix A.3. Compared to random ordering in Theorem 3.6, the convergence rate
of Algorithm 1 has a different term O((KT )−2/3) on the right hand side, which is better than the
O((KT )−1/2) term in Theorem 3.6. As such, Algorithm 1 can achieve faster convergence than
random ordering as is implemented in existing multi-objective optimization methods. We also note
that a smaller A leads to faster convergence, which demonstrates that solving the online vector
balancing problem (minimizing A) is indeed useful to find better orders on the training samples.

The naive extension of GraB (Lu et al., 2022) that performs online vector balancing for gradients of
each objective separately can also be analyzed under the same framework as follows:

Proposition 3.10 (Separate Ordering). Under Assumption 3.3 and 3.7, suppose that the sample
order πm

t in Algorithm 1 is separately generated for each objective. We have ∥w(k)
t − w

(1)
t ∥∞ ≤

MAF for all k ∈ {1, . . . ,K} and t ∈ {0, . . . , T − 1}.

Proof is in Appendix A.4. Compared to the results in Proposition 3.8, the bound here is M times
larger if we apply gradient balancing separately on each objective. Recall that M is the total number
of objectives. Thus, the convergence can be much slower than that in Theorem 3.9.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed method for multi-objective opti-
mization. We consider the following baselines: (i) Random reshuffling (Random), which is used in
most existing implementations to randomly shuffle the whole data set in each epoch t, (ii) FlipFlop,
which creates a new order πt+1 by reversing the previous order, i.e., πt+1(k) = πt(K+1−k). (iii)
Random FlipFlop, the combination of random reshuffling and FlipFlop, and (iv) GraB (Lu et al.,
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(a) MGDA.
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(b) CAGrad.
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(c) PCGrad.
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(d) Nash-MTL.
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(f) CAGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 D
ep

th
 L

os
s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(g) PCGrad.
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(h) Nash-MTL.
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(i) MGDA.
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Figure 2: Training losses (objective values) of different tasks on NYUv2 data with different data
ordering methods. Top: Loss on semantic segmentation task (semantic loss). Middle: Loss on depth
estimation task (depth loss). Bottom: Loss on surface normal prediction task (normal loss).

2022), which performs gradient balancing on the weighted gradient of all objectives, and the weight
is computed using the combined dynamic weighting algorithm.

The proposed method is independent of the dynamic weighting algorithms. In the following, we
combine it with a variety of dynamic weighting algorithms, including: (i) MGDA (Désidéri, 2012;
Liu & Vicente, 2021; Zhou et al., 2022; Fernando et al., 2023), (ii) PCGrad (Yu et al., 2020), (iii)
CAGrad (Liu et al., 2021), and (iv) Nash-MTL (Navon et al., 2022). We select these methods as
they generally have good empirical performance. The proposed method can also be easily combined
with other dynamic weighting algorithms. Moreover, we include the single-task learning (Liu et al.,
2021; Navon et al., 2022) baseline (STL), which trains on one task only and serves a performance
upper bound.

We consider two data sets that are commonly used for multi-objective optimization in machine learn-
ing: (i) NYUv2 (Silberman et al., 2012), an indoor scene data set that involves three different tasks:
semantic segmentation, depth estimation, and surface normal prediction. (ii) QM9 (Ramakrishnan
et al., 2014), which is a widely used benchmark for graph neural networks predicting 11 properties
of molecules. More details on the setup can be found in Appendix B.

4.1 NYUV2

Figure 2 compares the convergence curves of different ordering methods with the proposed method.
We can see that the impact of sample order on the convergence can be different for different objec-
tives. Both depth estimation and surface normal prediction tasks are more influenced by different
sample ordering methods, while such influence becomes less significant for the semantic segmenta-
tion task. FlipFlop and GraB generally achieve worse performance than the other methods, while the
proposed JoGBa is the only method that consistently outperforms existing baselines with random
ordering.

Table 1 compares the testing performance of different data ordering combined with different multi-
objective optimization methods. FlipFlop generally performs worse than the other methods as it
only reverses the sample ordering after each epoch. Random FlipFlop slightly improves upon the
standard random baseline. While GraB does not yield faster convergence rate in Figure 2, its testing
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Table 1: Test performance (averaged over 3 random seeds) for the three tasks on NYUv2 data:
semantic segmentation, depth estimation, and surface normal prediction.

Segmentation Depth Surface Normal

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Distance ↓ Within t◦ ↑ ∆m% ↓
Mean Median 11.25 22.5 30

STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

MGDA (Random) 30.48 59.77 0.6020 0.2555 24.13 19.22 29.51 57.11 69.58 1.31
MGDA+FlipFlop 29.47 57.90 0.6270 0.2755 24.88 19.45 29.18 55.88 68.36 1.58

MGDA+Random FlipFlop 30.52 59.81 0.6018 0.2556 24.11 19.16 29.52 57.23 69.56 1.28
MGDA+GraB 30.74 59.92 0.6011 0.2524 24.12 19.11 29.54 57.35 69.76 1.25

MGDA+JoGBa 31.02 60.21 0.6008 0.2508 24.08 19.08 29.55 57.47 70.03 1.19

PCGrad (Random) 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97
PCGrad+FlipFlop 37.74 64.63 0.5590 0.2285 26.84 22.19 23.96 49.30 62.94 3.89

PCGrad+Random FlipFlop 38.12 64.64 0.5570 0.2329 26.99 22.67 23.56 49.65 63.18 3.86
PCGrad+GraB 38.31 64.66 0.5552 0.2317 26.79 22.87 23.68 49.76 63.22 3.78

PCGrad+JoGBa 38.59 64.67 0.5545 0.2270 26.53 22.40 23.87 49.95 63.87 3.56

CAGrad (Random) 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20
CAGrad+FlipFlop 39.42 65.55 0.5437 0.2219 25.79 21.75 25.97 52.17 65.34 0.27

CAGrad+Random FlipFlop 39.85 65.73 0.5467 0.2226 26.14 21.46 25.62 52.24 65.62 0.17
CAGrad+GraB 39.91 66.09 0.5428 0.2214 25.79 21.44 25.64 52.26 65.44 0.18

CAGrad+JoGBa 40.42 66.08 0.5410 0.2205 25.52 21.50 26.04 52.43 65.73 0.03

Nash-MTL (Random) 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 −4.04
Nash-MTL+FlipFlop 39.46 65.82 0.5313 0.2190 26.12 20.99 28.05 54.64 67.77 -3.88

Nash-MTL+Random FlipFlop 40.67 66.32 0.5184 0.2009 25.34 19.73 28.54 55.35 68.07 -4.16
Nash-MTL+GraB 40.84 66.51 0.5156 0.2087 25.26 19.45 28.62 55.37 68.11 -4.19

Nash-MTL+JoGBa 41.13 66.71 0.5112 0.2009 25.11 19.19 28.77 55.28 68.18 -4.27

performance is comparable to Random FlipFlop. The proposed method JoGBa achieves the best
overall performance across different performance metrics for all three tasks.

4.2 QM9

Due to the large number of objectives in the QM9 data, here we only plot the average of all training
objectives. The convergence curves are shown in Figure 3 for different sample ordering methods.
Compared to the NYUv2 data set, the effect of sample ordering becomes less significant for the
QM9 data. Only GraB and JoGBa achieve slight improvements than the other ordering methods.
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Figure 3: Training losses on QM9 data with different data ordering methods.
Table 2 compares the testing performance of different data ordering methods. Similar to the results
for NYUv2, FlipFlop generally performs worse as it only reverses the sample ordering after each
epoch. Random FlipFlop achieves comparable performance with the random ordering baseline, and
GraB slightly improves upon it. The proposed method JoGBa achieves the best overall performance.

4.3 COMPARISON ON TIME COSTS

The proposed JoGBa has two key steps in each iteration: (i) sample ordering, in which we determine
the order of a sample based on its gradients, and (ii) model updating, in which we compute the
objective weights and update the model with the weighted gradients. Table 3 compares the time
costs of these two steps in each iteration for different multi-objective optimization algorithms on
NYUv2 and QM9 data. As can be seen, the time cost of sample ordering is almost negligible
compared to that of model update, and is generally the same for the same data set across different
multi-objective optimization algorithms. This is intuitive as sample ordering is not related to any
specific multi-objective optimization algorithm, and demonstrates that the proposed method does
not introduce much additional time cost.
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Table 2: Test performance (averaged over 3 random seeds) on all property prediction tasks in QM9.

µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv

MAE ↓ ∆m% ↓
STL 0.067 0.181 60.57 53.91 0.502 4.53 58.8 64.2 63.8 66.2 0.072

MGDA (Random) 0.217 0.368 126.8 104.6 3.22 5.69 88.37 89.40 89.32 88.01 0.120 120.5
MGDA+FlipFlop 0.221 0.371 130.9 104.5 3.32 5.62 88.31 89.45 89.71 88.84 0.124 121.4

MGDA+Random FlipFlop 0.216 0.365 126.7 103.2 3.19 5.65 88.34 89.27 88.74 87.34 0.115 118.9
MGDA+GraB 0.206 0.343 120.8 101.4 3.16 5.44 87.68 88.63 88.87 87.26 0.119 118.4

MGDA+JoGBa 0.202 0.332 117.3 99.2 3.12 5.37 87.48 88.37 88.80 87.04 0.116 116.7

PCGrad (Random) 0.106 0.293 75.85 88.33 3.94 9.15 116.36 116.8 117.2 114.5 0.110 125.7
PCGrad+FlipFlop 0.106 0.306 75.15 88.29 3.87 9.17 120.17 117.4 117.8 114.1 0.113 126.3

PCGrad+Random FlipFlop 0.104 0.293 75.05 88.25 3.83 9.07 114.89 116.4 116.9 114.1 0.106 125.2
PCGrad+GraB 0.098 0.281 74.91 86.98 3.75 8.91 115.66 114.4 117.1 113.6 0.102 124.2

PCGrad+JoGBa 0.098 0.271 74.43 84.30 3.56 8.78 113.15 113.2 117.1 113.5 0.096 123.5

CAGrad (Random) 0.118 0.321 83.51 94.81 3.21 6.93 113.99 114.3 114.5 112.3 0.116 112.8
CAGrad+FlipFlop 0.115 0.325 85.13 94.94 3.24 7.09 114.32 115.2 114.9 113.1 0.117 113.1

CAGrad+Random FlipFlop 0.113 0.322 83.19 94.87 3.15 6.92 114.18 113.8 113.8 111.6 0.113 112.8
CAGrad+GraB 0.111 0.312 82.49 94.71 2.96 6.77 113.89 113.7 110.4 111.8 0.108 112.1

CAGrad+JoGBa 0.110 0.304 82.38 94.49 2.92 6.49 113.22 113.5 110.2 111.6 0.104 111.9

Nash-MTL (Random) 0.102 0.248 82.95 81.89 2.42 5.38 74.50 75.02 75.10 74.16 0.093 62.0
Nash-MTL+FlipFlop 0.106 0.255 82.79 82.01 2.45 5.42 74.52 75.07 75.13 74.27 0.096 62.2

Nash-MTL+Random FlipFlop 0.097 0.254 82.53 81.47 2.42 5.29 74.41 75.08 75.07 74.22 0.094 61.6
Nash-MTL+GraB 0.099 0.252 82.64 81.68 2.38 5.31 74.43 74.94 75.05 74.13 0.091 61.7

Nash-MTL+JoGBa 0.094 0.231 82.24 80.73 2.29 5.24 74.37 74.84 75.03 74.05 0.087 59.2

Table 3: Per-iteration CPU time cost (in seconds) of the two key steps in JoGBa combined with
different multi-objective optimization algorithms.

NYUv2 QM9
MGDA PCGrad CAGrad Nash-MTL MGDA PCGrad CAGrad Nash-MTL

Sample ordering 0.02 0.03 0.03 0.03 0.06 0.05 0.04 0.05
Model update 1.04 0.91 0.99 1.06 2.97 1.37 1.17 1.62

Table 4: Test performance (averaged over 3 random seeds) for three tasks on NYUv2 with different
sample ordering methods for the proposed multi-ordering framework.

Segmentation Depth Surface Normal

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Distance ↓ Within t◦ ↑ ∆m% ↓
Mean Median 11.25 22.5 30

MGDA+Random 30.48 59.77 0.6020 0.2555 24.13 19.22 29.51 57.11 69.58 1.31
MGDA+FlipFlop 29.47 57.90 0.6270 0.2755 24.88 19.45 29.18 55.88 68.36 1.58

MGDA+Random FlipFlop 30.52 59.81 0.6018 0.2556 24.11 19.16 29.52 57.23 69.56 1.28
MGDA+GraB 30.74 59.92 0.6011 0.2524 24.12 19.11 29.54 57.35 69.76 1.25

MGDA+JoGBa 31.02 60.21 0.6008 0.2508 24.08 19.08 29.55 57.47 70.03 1.19

PCGrad+Random 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97
PCGrad+FlipFlop 37.74 64.63 0.5590 0.2285 26.84 22.19 23.96 49.30 62.94 3.89

PCGrad+Random FlipFlop 38.12 64.64 0.5570 0.2329 26.99 22.67 23.56 49.65 63.18 3.86
PCGrad+GraB 38.31 64.66 0.5552 0.2317 26.79 22.87 23.68 49.76 63.22 3.78

PCGrad+JoGBa 38.59 64.67 0.5545 0.2270 26.53 22.40 23.87 49.95 63.87 3.56

CAGrad+Random 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20
CAGrad+FlipFlop 39.42 65.55 0.5437 0.2219 25.79 21.75 25.97 52.17 65.34 0.27

CAGrad+Random FlipFlop 39.85 65.73 0.5467 0.2226 26.14 21.46 25.62 52.24 65.62 0.17
CAGrad+GraB 39.91 66.09 0.5428 0.2214 25.79 21.44 25.64 52.26 65.44 0.18

CAGrad+JoGBa 40.42 66.08 0.5410 0.2205 25.52 21.50 26.04 52.43 65.73 0.03

Nash-MTL+Random 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 −4.04
Nash-MTL+FlipFlop 39.46 65.82 0.5313 0.2190 26.12 20.99 28.05 54.64 67.77 -3.88

Nash-MTL+Random FlipFlop 40.67 66.32 0.5184 0.2009 25.34 19.73 28.54 55.35 68.07 -4.16
Nash-MTL+GraB 40.84 66.51 0.5156 0.2087 25.26 19.45 28.62 55.37 68.11 -4.19

Nash-MTL+JoGBa 41.13 66.71 0.5112 0.2009 25.11 19.19 28.77 55.28 68.18 -4.27

4.4 ABLATION STUDY

To solve the underlying online vector balancing balancing problem, besides using Algorithm 1,
other data ordering methods (such as those mentioned in Section 3.1) may also be used to obtain
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(d) Nash-MTL.
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(l) Nash-MTL.

Figure 4: Training loss (objective values) of different tasks on NYUv2 data with different data order-
ing methods for the proposed multi-ordering framework. Top: Loss on the semantic segmentation
task (semantic loss). Middle: Loss on the depth estimation task (depth loss). Bottom: Loss on the
surface normal prediction task (normal loss).

sample orders for different objectives. In this experiment, we consider the following sample ordering
methods for comparison: (i) Random reshuffling (Random), (ii) FlipFlop, which creates the new
order πm

t+1 by reversing the previous order for each objective, i.e., πm
t+1(k) = πm

t (K + 1 − k).
(iii) Random FlipFlop (Random FF), the combination of random reshuffling and FlipFlop, and (iv)
GraB (Lu et al., 2022), which applies GraB to all objectives separately. Experiment is performed on
the same NYUv2 data set and training setup as in Section 4.1.

Figure 4 compares the convergence curves of different sample ordering methods. Similar to Figure 2,
the influence of sample orders on the convergence rate is generally different for different objectives.
The surface normal prediction task is more influenced by different sample ordering methods than the
other two tasks. FlipFlop and GraB generally achieves worse performance than the other methods,
while JoGBa is the only method that consistently outperforms existing baselines.

Table 4 compares the testing performance of different data ordering combined with different multi-
objective optimization methods. FlipFlop generally performs worse than other methods as it only
reverses the sample ordering after each epoch. Both Random FlipFlop and GraB improve upon the
standard random baseline, but their performance is still worse than the proposed method JoGBa,
which demonstrate the effectiveness of joint sample ordering in multi-objective optimization.

5 CONCLUSION

In this paper, we propose a novel sample ordering framework for multi-objective optimization. The
proposed framework determines sample orders for each objective by performing online vector bal-
ancing with the gradients on different objectives. It can be seamlessly combined with existing multi-
objective optimization methods. Theoretical results demonstrate that the proposed method improves
upon the baseline of random ordering with faster convergence. Empirical results on different multi-
objective optimization problems demonstrate that the proposed method achieves faster convergence
and better performance than the other data ordering methods.
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A PROOFS

A.1 PROOF OF THEOREM 3.6

Theorem 3.6. By the F1-smoothness of L(w)λ for all λ ∈ ∆M , we have

L(wt+1)λ− L(wt)λ ≤⟨∇L(w)λ,wt+1 −wt⟩+
F1

2
∥wt+1 −wt∥2 (3)

where wt+1−wt = αt∇L(wt)λ
∗
t , s.t. λ

∗
t ∈ argminλ∈∆M ∥∇L(wt)λ∥2. For notation simplicity,

we define Qt = ∇L(wt), and λ∗
Qt

= argminλ∈∆M ∥∇L(wt)λ∥. Then we have:

L(wt+1)λ− L(wt)λ ≤− αt⟨∇L(wt)λ,Qtλ
∗
Qt

⟩+ F1

2
α2
t ∥Qtλ

∗
Qt

∥2. (4)

The inner product term can be bounded as
−⟨∇L(wt)λ,Qtλ

∗
Qt

⟩ =⟨∇L(wt)λ,∇L(wt)λ
∗
t (wt)−Qtλ

∗
Qt

⟩ − ⟨∇L(wt)λ,∇L(wt)λ
∗
t (wt)⟩

(a)

≤⟨∇L(wt)λ,∇L(wt)λ
∗
t (wt)−Qtλ

∗
Qt

⟩ − ∥∇L(wt)λ
∗
t (wt)∥2

≤F∥∇L(wt)λ
∗
t (wt)−Qtλ

∗
Qt

∥ − ∥∇L(wt)λ
∗
t (wt)∥2

(b)

≤2F
3
2 ∥Qt −∇L(wt)∥

1
2 − ∥∇L(wt)λ

∗
t (wt)∥2 (5)

where (a) follows from (13) in Lemma A.3, (b) follows from Lemma A.4. Plugging (5) into (4),
taking expectations on both sides and rearranging yields

αtEA[∥∇L(wt)λ
∗
t (wt)∥2] ≤ EA[L(wt)− L(wt+1)]λ+ 2F

3
2αtEA[∥Qt −∇L(wt)∥

1
2 ]

+
F1

2
(F 2 + σ2)α2

t .

For all t ∈ [T ], plugging in αt = α, and taking the telescope sum on both sides of the last inequality
yield

1

T

T∑
t=1

EA[∥∇L(wt)λ
∗
t (xt)∥2]

≤ 1

αT
EA[L(wt)− L(wt+1)]λ+ 2ℓ

3
2

f

1

T

T∑
t=1

EA[∥Qt −∇L(wt)∥
1
2 ] +

F1

2
(F 2 + σ2)α

≤ 1

αT
EA[L(wt)− L(wt+1)]λ+ 2ℓ

3
2

f

( 1

T

T∑
t=1

EA[∥Qt −∇L(wt)∥2]
) 1

4

+
F1

2
(F 2 + σ2)α.(6)

By increasing the batch size during optimization with a batch size of O(t), it holds that

1

T

T∑
t=1

EA[∥Qt −∇L(wt)∥2] ≤
1

T

T∑
t=1

σ2

t
≤ σ2(1 + log(T ))

T
. (7)

Plugging (7) back into (6), its optimization error is given by:

EA

[
min

t∈[T ],λ∈∆M
∥∇L(wt)λ∥2

]
≤ 1

T

T∑
t=1

EA[∥∇L(wt)λ
∗
t (wt)∥2]

=
σ2(1 + log(T ))

T
+

EA[L(wt)− L(wT+1)]λ

αKT
+

F1

2
(F 2 + σ2)α

≤σ2(1 + log(T ))

T
+

∆

αKT
+

F1

2
(F 2 + σ2)α, (8)

where the last inequality uses the definition of ∆ = maxλ∈∆M L(w0)λ−minw∈Rd,λ∈∆M L(w)λ.

Then setting α =
√

2∆
F1(F 2+σ2)KT , we have:

EA

[
min

t∈[T ],λ∈∆M
∥∇L(wt)λ∥2

]
≤
√

2F1∆(F 2 + σ2)

KT
+

σ2(1 + log(T ))

T
,

which concludes our proof.
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A.2 PROOF OF PROPOSITION 3.8

Proof. The proof follows directly by using Assumption 3.3 in Assumption 3.7 for each
∥∇ℓi(w)∥∞ ≤ F .

A.3 PROOF OF THEOREM 3.9

Proof. From Lemma A.1 in Appendix A.5, we have

1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t )λ∥2 ≤ 2∆

αKT
+

2F 2
1

T

T−1∑
t=0

max
k

∥∥∥w(k)
t −w

(1)
t

∥∥∥2
∞

+
α2F1(F

2 + σ2)

2
.

On the other hand, from Lemma A.2, we obtain

T−1∑
t=0

∆2
t ≤ 120α2K2σ2 + 64α2A2σ2T + 48α2K2

T−1∑
t=0

max
k

∥∇L(w(k)
t )λ∥2∞.

Combining them together gives:

1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t )λ∥2

≤ 2∆

αKT
+

F 2
1

T

(
120α2K2σ2 + 64α2A2σ2T + 48α2K2

T−1∑
t=0

max
k

∥∇L(w(k)
t )λ∥2∞

)

+
α2F1(F

2 + σ2)

2

≤ 2∆

αKT
+

120α2F 2
1K

2σ2

T
+ 64α2A2F 2

1 σ
2 +

48α2K2F 2
1

T

T−1∑
t=0

max
k

∥∇L(w(k)
t )λ∥2∞

+
α2F1(F

2 + σ2)

2
.

Note that for any x ∈ Rd, ∥x∥∞ ≤ ∥x∥2, so the last term can by bounded by its ℓ2-norm. Moving
it to the left side of the inequality gives:

1− 48α2K2F 2
1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t )λ∥2 ≤ 2∆

αKT
+

120α2F 2
1K

2σ2

T
+ 64α2A2F 2

1 σ
2

+
α2F1(F

2 + σ2)

2
.

Finally, we set the value of α as:

α = min

{
3

√
∆

32KA2σ2F 2
1 T

,
1

KF
,

1

26(K +A)F1

}
,

and we obtain

1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t )λ∥2 ≤ 11

3

√
A2F 2

1∆
2(F 2 + σ2)

K2T 2
+

σ2

T
+

65∆(F + F1)

T
+

8∆AF1

KT
,

which concludes the proof.

A.4 PROOF FOR PROPOSITION 3.10

Proof. Similar to Proposition 3.8, the proof follows directly by using Assumption 3.3 in Assump-
tion 3.7 for each ∥∇ℓi(w)∥∞ ≤ F , and repeated for M objectives.
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A.5 TECHNICAL LEMMAS

Lemma A.1. In Algorithm 1, if αKF < 1 holds and Assumption 3.3 and 3.4 hold, then

1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t )λ∥2 ≤ 2∆

αKT
+

2F 2
1

T

T−1∑
t=0

max
k

∥∥∥w(k)
t −w

(1)
t

∥∥∥2
∞

+
α2F1(F

2 + σ2)

2
.

Proof. Note that the update can be written as

w
(1)
t+1 = w

(1)
t − α

K∑
k=1

M∑
m=1

λk,m∇ℓm(w
(k)
t ; ξπm

k (t)).

By Taylor’s Theorem, for all t = 0, · · · , T − 1,

L(w(1)
t+1)λ ≤ L(w(1)

t )λ+ ⟨∇L(xt)λ,w
(1)
t+1 −w

(1)
t ⟩+ F1

2
∥w(1)

t+1 −w
(1)
t ∥2

≤ L(w(1)
t )λ− αKE

〈
∇L(wt)λ,

1

K

K∑
k=1

M∑
m=1

λi,k∇ℓi(w
(k)
t ; ξπm

t (t))

〉

+
α2K2F1

2
E

∥∥∥∥∥ 1

K

K∑
k=1

M∑
m=1

λi,k∇ℓi(w
(k)
t ; ξπi(t))

∥∥∥∥∥
2

= L(w(1)
t )λ− αK

2
∥∇L(w(1)

t )λ∥2 − αK

2
∥ 1

K

K∑
k=1

M∑
m=1

λi,k∇ℓi(w
(k)
t ; ξσk(t))∥

2

+
αK

2
∥∇L(w(1)

t )λ− 1

K

K∑
k=1

M∑
m=1

λi,k∇ℓi(w
(k)
t ; ξσk(t))∥

2

+
α2K2F1

2
E

∥∥∥∥∥ 1

K

K∑
k=1

m∑
i=1

λi,k∇ℓi(w
(t)
k ; ξσk(t))

∥∥∥∥∥
2

≤ L(w(1)
t )λ− αK

2
∥∇L(w(1)

t )λ∥2 + αK

2
∥∇L(w(1)

t )λ− 1

K

K∑
k=1

M∑
m=1

λi,k∇ℓi(w
(k)
t ; ξσk(t))∥

2

+
α2F1(F

2 + σ2)

2
.

In the second step, we apply −⟨a, b⟩ = − 1
2∥a∥

2− 1
2∥b∥

2
+ 1

2∥a− b∥2,∀a, b. In the third step, we
use the condition that αnL < 1. Expanding the last term using Assumption 3.4, we get

∥∇L(w(1)
t )λ− 1

K

K∑
k=1

M∑
m=1

λm,k,t∇ℓm(w
(k)
t ; ξσm

t (k))∥2

=

∥∥∥∥∥ 1

K

K∑
k=1

∇L(w(1)
t )λ− 1

K

K∑
k=1

M∑
m=1

λm,k,t∇ℓm(w
(k)
t ; ξσm

t (k))

∥∥∥∥∥
2

≤ 1

K

K∑
k=1

∥∥∥∇L(w(1)
t )λ−∇L(w(k)

t )λ
∥∥∥2

≤ 1

K

K∑
k=1

F 2
1

∥∥∥w(1)
t −w

(k)
t

∥∥∥2
∞

≤ F 2
1∆

2
k.

In the second step we apply Jensen’s Inequality. Putting it back, we obtain

L(w(1)
t+1)λ ≤ L(w(1)

t )λ− αK

2

∥∥∥∇L(w(1)
t )λ

∥∥∥2 + αK

2
F 2
1∆

2
k +

α2F1(F
2 + σ2)

2
.
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Finally, summing from t = 0 to T − 1, and using the definition ∆ = maxλ∈∆M L(w0)λ −
minw∈Rd,λ∈∆M L(w)λ, we have:

1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t )λ∥2 ≤ 2∆

αKT
+

2F 2
1

T

T−1∑
t=0

max
k

∥∥∥w(k)
t −w

(1)
t

∥∥∥2
∞

+
α2F1(F

2 + σ2)

2
.

That completes our proof.

Lemma A.2. In Algorithm 1, if the learning rate α satisfies

α ≤ min

{
1

32nL∞
,

1

16HL2

}
,

then the following holds:

∆k ≤ 2αHς + (8αnL∞ + 4αHL2)∆k−1 + 2αn∥∇L(wk)∥∞,∀k ≥ 2,

and

∆2
1 ≤ 8α2n2∥∇L(w1)∥2∞ + 8α2n2ς2.

Finally,

K∑
k=1

∆2
k ≤ 16α2n2ς2 + 48α2H2ς2K + 48α2n2

K∑
k=1

∥∇L(wk)∥2∞.

Proof. Without loss of generality, for all m ∈ {2, · · · , n+ 1} and all k ∈ {2, · · · ,K},

w
(m)
k = wk − α

m−1∑
t=1

∇f
(
w

(t)
k ;xσk(t)

)
= wk − α

m−1∑
t=1

∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)

−α

m−1∑
t=1

(
∇f

(
w

(t)
k ;xσk(t)

)
−∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

))
.

Now add and subtract

α

m−1∑
t=1

1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

)
=

α(m− 1)

n

n∑
t=1

∇f
(
w

(t)
k−1;xσk−1(t)

)
,

which gives

w
(m)
k = wk − α

m−1∑
t=1

(
∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

))

−α(m− 1)

n

n∑
t=1

∇f
(
w

(t)
k−1;xσk−1(t)

)
−α

m−1∑
t=1

(
∇f

(
w

(t)
k ;xσk(t)

)
−∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

))
.

We further add and subtract

α(m− 1)

K

K∑
k=1

∇L(wt;xσt−1(k)) = α(m− 1)∇L(wk)
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to arrive at

w
(m)
k = wk − α

m−1∑
t=1

(
∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

))

−α(m− 1)∇L(wk) +
α(m− 1)

n

n∑
t=1

(
∇f

(
wk;xσk−1(t)

)
−∇f

(
w

(t)
k−1;xσk−1(t)

))
−α

m−1∑
t=1

(
∇f

(
w

(t)
k ;xσk(t)

)
−∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

))
.

We now rearrange, take norms on both sides and apply the triangle inequality,∥∥∥w(m)
k −wk

∥∥∥
∞

≤ α

∥∥∥∥∥
m−1∑
t=1

(
∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

))∥∥∥∥∥
∞

+α(m− 1)∥∇L(wk)∥∞

+
α(m− 1)

n

∥∥∥∥∥
n∑

t=1

(
∇f

(
wk;xσk−1(t)

)
−∇f

(
w

(t)
k−1;xσk−1(t)

))∥∥∥∥∥
∞

+α

∥∥∥∥∥
m−1∑
t=1

(
∇f

(
w

(t)
k ;xσk(t)

)
−∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

))∥∥∥∥∥
∞

. (9)

There are four terms on the right hand side. We apply Assumption 3.7 on the first term, and As-
sumption 3.4 on the last two terms. First, for the first term,∥∥∥∥∥∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

)∥∥∥∥∥
≤

∥∥∥∥∥∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk−1(s)

)∥∥∥∥∥
+

∥∥∥∥∥ 1n
n∑

s=1

∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk−1(s)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

)∥∥∥∥∥
Assumption 3.4 and 3.5

≤ ς + σi +
L2

n

n∑
s=1

∥∥∥∥w(σ−1
k−1(σk(t)))

k−1 −w
(s)
k−1

∥∥∥∥
∞

≤ max
m

σm +
L2

n

n∑
s=1

(∥∥∥∥wk−1 −w
(σ−1

k−1(σk(t)))

k−1

∥∥∥∥
∞

+
∥∥∥wk−1 −w

(s)
k−1

∥∥∥
∞

)
≤ max

m
σm + 2L2∆k−1.

Denote

ut := ∇ℓ

(
w

σ−1
k−1(σk(t))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇L(w(s)
k−1;xσk−1(s)).

We can use Assumption 3.7 to obtain a bound on the prefix sum∥∥∥∥∥
m−1∑
t=1

ut

ς + σi + 2L2∆k−1

∥∥∥∥∥
∞

≤ A,

that is,∥∥∥∥∥
m−1∑
t=1

(
∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

))∥∥∥∥∥
∞

≤ A(ς + σi + 2L2∆k−1).
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Now we have a bound for the first term in Equation (9), we proceed to bound the last two terms
where we apply Assumption 3.4. We can then rewrite Equation (9) into∥∥∥w(m)

k −wk

∥∥∥
∞

≤ αA(ς + σi + 2L2∆k−1) + α(m− 1)∥∇L(wk)∥∞

+
αL∞(m− 1)

n

n∑
t=1

∥∥∥wk −w
(t)
k−1

∥∥∥
∞

+ αL∞

m−1∑
t=1

∥∥∥∥w(t)
k −w

(σ−1
k−1(σk(t)))

k−1

∥∥∥∥
∞
.

Furthermore, applying the triangle inequality to the norms in the last two terms, we obtain∥∥∥w(t)
k−1 −wk

∥∥∥
∞

=
∥∥∥w(t)

k−1 −wk−1 +wk−1 −w
(n+1)
k−1

∥∥∥
∞

≤ 2∆k−1,

and similarly,∥∥∥∥w(t)
k −w

(σ−1
k−1(σk(t)))

k−1

∥∥∥∥
∞

=

∥∥∥∥w(t)
k −wk +wk −wk−1 +wk−1 −w

(σ−1
k−1(σk(t)))

k−1

∥∥∥∥
∞

≤ ∆k + 2∆k−1.

This gives∥∥∥w(m)
k −wk

∥∥∥
∞

≤ αA(ς + σi + 2L2∆k−1) + α(m− 1)∥∇L(wk)∥∞ + 2αL∞(m− 1)∆k−1

+αL∞(m− 1)(2∆k−1 +∆k)

≤ αA(ς + σi + 2L2∆k−1) + α(m− 1)∥∇L(wk)∥∞
+αL∞(m− 1)(4∆k−1 +∆k). (10)

Note that Equation (10) only holds with k ∈ {2, . . . ,K} and m ∈ {2, . . . , n+ 1}. We now discuss
the boundary cases. Note that the bound of Equation (10) trivially holds with m = 1 for any k since
the left hand side becomes zero. On the other hand, when k = 1, we have

w
(m)
1 = w1 − α

m−1∑
t=1

∇f
(
w

(t)
1 ;xσ1(t)

)
= w1 − α

m−1∑
t=1

1

n

n∑
s=1

∇f
(
w1;xσ1(s)

)
+ α

m−1∑
t=1

∇f
(
w

(t)
1 ;xσ1(t)

)
−α

m−1∑
t=1

∇f
(
w1;xσ1(t)

)
+ α

m−1∑
t=1

∇f
(
w1;xσ1(t)

)
− α

m−1∑
t=1

1

n

n∑
s=1

∇f
(
w1;xσ1(s)

)
.

Take norms and apply the triangle inequality, we obtain∥∥∥w(m)
1 −w1

∥∥∥
∞

≤ α

∥∥∥∥∥
m−1∑
t=1

1

n

n∑
s=1

∇f
(
w1;xσ1(s)

)∥∥∥∥∥
∞

+α

∥∥∥∥∥
m−1∑
t=1

(
∇f

(
w

(t)
1 ;xσ1(t)

)
−∇f

(
w1;xσ1(s)

))∥∥∥∥∥
∞

+α

∥∥∥∥∥
m−1∑
t=1

(
∇f

(
w1;xσ1(t)

)
− 1

n

n∑
s=1

∇f
(
w1;xσ1(s)

))∥∥∥∥∥
∞

≤ α(m− 1)∥∇L(w1)∥∞ + α(m− 1)L∞∆1 + α(m− 1)(ς + σi)

≤ αn∥∇L(w1)∥∞ + αnL∞∆1 + αn(ς + σi). (11)

Now that we have the bounds for ∆k, we next will sum them up. Taking a max over m on both sides
in Equation (10), this implies for all the k ≥ 2,

∆k ≤ αH(ς + σi + 2L2∆k−1) + αL∞n(4∆k−1 +∆k) + αn∥∇L(wk)∥∞,

as m− 1 ≤ n. Considering the fact that αL∞n < 1/2, we get

∆k ≤ 2αHς + σi + (8αnL∞ + 4αHL2)∆k−1 + 2αn∥∇L(wk)∥∞.
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This completes the proof of the first inequality in the lemma. Applying this recursively from any
k ≥ 2 to 2, this gives

∆k ≤(8αnL∞ + 4αHL2)
k−1∆1 +

∞∑
i=1

(8αnL∞ + 4αHL2)
i (2αH(ς + σi) + 2αn∥∇L(wk)∥∞) .

Applying the learning rate conditions that 32αnL∞ ≤ 1 and 16αHL2 ≤ 1, we obtain

∆k ≤
(
1

2

)k−1

∆1 + 4αH(ς + σi) + 4αn∥∇L(wk)∥∞.

Square on both sides,

∆2
k ≤3

(
1

4

)k−1

∆2
1 + 48α2H2(ς + σi)

2 + 48α2n2∥∇L(wk)∥2∞.

We can apply a similar trick to Equation (11) and get

∆2
1 ≤ 8α2n2∥∇L(w1)∥2∞ + 8α2n2(ς + σi)

2.

This completes the proof of the second inequality in the lemma. Summing from k = 1 to K, we get
K∑

k=1

∆2
k = ∆2

1 +

K∑
k=2

∆2
k

= ∆2
1 + 3∆2

1

K∑
k=2

(
1

4

)k−1

+ 48α2H2(ς + σi)
2(K − 1) + 48α2n2

K∑
k=2

∥∇L(wk)∥2∞

≤ ∆2
1 + 3∆2

1

∞∑
k=1

(
1

4

)k

+ 48α2H2(ς + σi)
2(K − 1) + 48α2n2

K∑
k=2

∥∇L(wk)∥2∞

≤ 16α2n2∥∇L(w1)∥2∞ + 16α2n2(ς + σi)
2

+48α2H2(ς + σi)
2(K − 1) + 48α2n2

K∑
k=2

∥∇L(wk)∥2∞

≤ 16α2n2(ς + σi)
2 + 48α2H2(ς + σi)

2K + 48α2n2
K∑

k=1

∥∇L(wk)∥2∞.

That completes the third inequality, and we have finished proving all three inequalities.

Lemma A.3 ((Chen et al., 2024)). Given Q ∈ Rd×M , recall λ∗
Q,ρ with ρ ≥ 0 is defined as

λ∗
Q,ρ ∈ argmin

λ∈∆M

∥Qλ∥2 + ρ∥λ∥2. (12)

Then, for any λ ∈ ∆M , it holds that

⟨Qλ∗
Q,ρ, Qλ⟩ ≥ ∥Qλ∗

Q,ρ∥2 − ρ, (13)

and ∥Qλ−Qλ∗
Q,ρ∥2 ≤ ∥Qλ∥2 − ∥Qλ∗

Q,ρ∥2 + 2ρ. (14)

Proof. By the first-order optimality condition for equation (12), for any λ ∈ ∆M , we have

⟨Q⊤Qλ∗
Q,ρ, λ− λ∗

Q,ρ⟩ ≥ −ρ.

By rearranging the above inequality, we obtain

⟨Qλ∗
Q,ρ, Qλ⟩ ≥ ∥Qλ∗

Q,ρ∥2 − ρ,

which is precisely the first inequality in the claim. Furthermore, we also have

∥Qλ−Qλ∗
Q,ρ∥2 = ∥Qλ∥2 + ∥Qλ∗

Q,ρ∥2 − 2⟨Qλ∗
Q,ρ, Qλ⟩

≤ ∥Qλ∥2 + ∥Qλ∗
Q,ρ∥2 − 2∥Qλ∗

Q,ρ∥2 + 2ρ

= ∥Qλ∥2 − ∥Qλ∗
Q,ρ∥2 + 2ρ,

which is the desired second inequality in the claim. Hence, the proof is complete.
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Lemma A.4 (Hölder continuity of dQ w.r.t. Q (Chen et al., 2024)). For all Q,Q′ ∈ Rd×M , define
λ∗ ∈ argminλ∈∆M ∥Qλ∥2, and λ∗′ ∈ argminλ∈∆M ∥Q′λ∥2, and dQ = Qλ∗, d′Q = Q′λ∗′, then

∥dQ − dQ′∥2 ≤ 4max

{
sup

λ∈∆M

∥Qλ∥, sup
λ∈∆M

∥Q′λ∥

}
· sup
λ∈∆M

∥(Q−Q′)λ∥. (15)

Proof. We first rewrite ∥dQ − dQ′∥2 = ∥Qλ∗ −Q′λ∗′∥2 as

∥Qλ∗ −Q′λ∗′∥2 =∥Qλ∗∥2 + ∥Q′λ∗′∥2 − 2⟨Qλ∗, Q′λ∗′⟩
=∥Qλ∗∥2 − ∥Q′λ∗′∥2 + 2⟨Q′λ∗′, Q′λ∗′ −Qλ∗⟩
=∥Qλ∗∥2 − ∥Q′λ∗′∥2 + 2⟨Q′λ∗′, Q′λ∗′ −Q′λ∗⟩︸ ︷︷ ︸

≤0

+2⟨Q′λ∗′, Q′λ∗ −Qλ∗⟩,

where ⟨Q′λ∗′, Q′λ∗′ −Q′λ∗⟩ ≤ 0 by (13) in Lemma A.3. Then it can be further bounded by

∥Qλ∗ −Q′λ∗′∥2
(a)

≤ min
λ∈∆M

∥Qλ∥2 − min
λ∈∆M

∥Q′λ∥2 + 2∥Q′λ∗′∥∥(Q′ −Q)λ∗∥

=− max
λ∈∆M

−∥Qλ∥2 + max
λ∈∆M

−∥Q′λ∥2 + 2∥Q′λ∗′∥∥(Q′ −Q)λ∗∥

(b)

≤ max
λ∈∆M

(
∥Qλ∥2 − ∥Q′λ∥2

)
+ 2∥Q′λ∗′∥∥(Q′ −Q)λ∗∥

(c)

≤ max
λ∈∆M

∥(Q−Q′)λ∥
(
∥Qλ∥+ ∥Q′λ∥

)
+ 2∥Q′λ∗′∥∥(Q′ −Q)λ∗∥

≤4max
{

sup
λ∈∆M

∥Qλ∥, sup
λ∈∆M

∥Q′λ∥
}
· sup
λ∈∆M

∥(Q−Q′)λ∥,

where (a) follows from the Cauchy-Schwartz inequality; (b) follows from subadditivity of maxi-
mum operator; (c) follows from the triangle inequality. The proof is complete.

A.6 PROOF ON THE CONVERGENCE RATE OF ALGORITHM 1 WITH RANDOM ORDERING

The following Theorem studies the convergence rate of Algorithm 1 with random ordering.

Theorem A.5. Set α = min

{√
24∆

KLT
∑K

k=1 σ2
k

, 1√
2KL

, 1
AL2K2T 1/3

}
with random yields:

1

T

T−1∑
t=0

E∥∇L(wt)∥22 ≤

√√√√24L∆

KT

K∑
k=1

σ2
k +

48L∆B2

T
K

∑K
k=1 σ

2
k

.

To prove Theorem A.5, we first need the following Lemma:

Lemma A.6. Suppose that Assumption 3.4 holds. Then for iterates wt generated by Algorithm 1
with stepsize α ≤ 1

Ln , we have

L(wt+1) ≤ L(wt)−
αK

2
∥∇L(wt)∥2 +

αL2
2

K
Vi +

α2L

2

K∑
k=1

σ2
k, (16)

where Vt ≡
∑K

k=1

∥∥∥wt −w
(k)
t

∥∥∥2
∞

.
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Proof. Recall that wt+1 = wt − αgt, where gt =
∑n−1

i=0 ∇fπi
(wi

t). Using L-smoothness of f , we
get

EL(wt+1) ≤ EL(wt)− αKE

〈
∇L(wk),

1

K

K∑
k=1

∇ℓ(w
(t)
k ; ξσk(t))

〉

+
α2K2L

2
E

∥∥∥∥∥ 1n
n∑

t=1

∇ℓ(w
(t)
k ; ξσk(t))

∥∥∥∥∥
2

= EL(wk)−
αK

2
∥∇L(wk)∥2 −

αn

2

∥∥∥∥∥ 1

K

K∑
k=1

∇Lk(w
(t)
k )

∥∥∥∥∥
2

+
αK

2

∥∥∥∥∥∇L(wk)−
1

K

K∑
k=1

∇Lk(w
(t)
k )

∥∥∥∥∥
2

+
α2n2L

2
E

∥∥∥∥∥ 1

K

K∑
k=1

∇ℓ(w
(t)
k ; ξσk(t))

∥∥∥∥∥
2

≤ EL(wk)−
αK

2
∥∇L(wk)∥2 +

αn

2

∥∥∥∥∥∇L(wk)−
1

K

K∑
k=1

∇Lk(w
(t)
k )

∥∥∥∥∥
2

+
α2L

2

K∑
k=1

σ2
k.

Then note that∥∥∥∥∥∇L(wt)−
1

K

K∑
k=1

∇Lk(w
(k)
t )

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

K

K∑
k=1

∇Lk(wt)−
1

K

K∑
k=1

∇Lk(w
(k)
t )

∥∥∥∥∥
2

≤ 1

K

K∑
k=1

∥∥∥∇Lk(wt)−∇Lk(w
(k)
t )
∥∥∥2

≤ 1

K

K∑
k=1

L2
2

∥∥∥wt −w
(k)
t

∥∥∥2
∞

≤ L2
2

K
Vi,

which completes the proof.

Lemma A.7. Suppose that Assumption 3.4 holds and that Algorithm 1 is used with a stepsize α ≤
1

2LK . Then
E[Vt] ≤ α2K3∥∇f(wt)∥2 + α2K2ς2, (17)

where Vt ≡
∑K

k=1 ∥wt −w
(k)
t ∥2∞.

Proof. Let us fix any k ∈ [1,K − 1] and find an upper bound for Et∥wk
t −wt∥2. First, note that

wk
t = wt − α

k−1∑
i=0

∇ℓ(wi
t, ξ

i
t).

Therefore, by Young’s inequality, Jensen’s inequality and gradient Lipschitzness,

Et∥wk
t −wt∥2 = α2Et

∥∥∥∥∥
k−1∑
i=0

∇ℓ(wi
t, ξ

i
t)

∥∥∥∥∥
2

≤ 2α2Et

∥∥∥∥∥
k−1∑
i=0

(
∇ℓ(wi

t, ξ
i
t)−∇ℓ(wt, ξ

i
t)
)∥∥∥∥∥

2

+ 2α2Et

∥∥∥∥∥
k−1∑
i=0

∇ℓ(wt, ξ
i
t)

∥∥∥∥∥
2

≤ 2α2k

k−1∑
i=0

Et∥∇ℓ(wi
t, ξ

i
t)−∇ℓ(wt, ξ

i
t)∥2 + 2α2Et

∥∥∥∥∥
k−1∑
i=0

∇ℓ(wt, ξ
i
t)

∥∥∥∥∥
2

≤ 2α2L2k

k−1∑
i=0

Et∥wi
t −wt∥2 + 2α2Et

∥∥∥∥∥
k−1∑
i=0

∇ℓ(wt, ξ
i
t)

∥∥∥∥∥
2

.
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Let us bound the second term. For any i we have Et[∇ℓ(wt, ξ
i
t)] = ∇L(wt). So using (with vectors

∇fπ0
(xt),∇fπ1

(xt), . . . ,∇fπk−1
(xt)), we obtain

Et

∥∥∥∥∥
k−1∑
i=0

∇ℓ(wt, ξ
i
t)

∥∥∥∥∥
2

= k2∥∇L(wt)∥2 + k2Et

∥∥∥∥∥1k
k−1∑
i=0

(∇ℓ(wt, ξ
i
t)−∇L(wt))

∥∥∥∥∥
2

≤ k2∥∇L(wt)∥2 +
k(K − k)

K − 1
(ς +max

k
σk)

2.

Combining the produced bounds yields

Et∥wk
t −wt∥2 ≤ 2α2L2k

k−1∑
i=0

Et∥wi
t −wt∥2 + 2α2k2∥∇f(xt)∥2 + 2α2 k(K − k)

K − 1
(ς +max

k
σk)

2

≤ 2α2L2kE[Vt] + 2α2k2∥∇f(xt)∥2 + 2α2 k(K − k)

K − 1
(ς +max

k
σk)

2,

whence

E[Vt] =
K−1∑
k=0

Et∥wk
t −wt∥2

≤ α2L2K(K − 1)E[Vt] +
1

3
α2(K − 1)K(2K − 1)∥∇f(xt)∥2 +

1

3
α2K(K + 1)(ς +max

k
σk)

2.

Since E[Vt] appears in both sides of the equation, we rearrange and use that α ≤ 1
2LK by assumption,

which leads to

E[Vt] ≤
4

3
(1− α2L2n(n− 1))E[Vt]

≤ 4

9
α2(n− 1)n(2n− 1)∥∇L(wt)∥2 +

4

9
α2n(n+ 1)σ2

t

≤ α2n3∥∇L(wt)∥2 + α2n2(ς +max
k

σk)
2.

Now we are ready to prove theorem A.5:

Proof. Taking expectation in Lemma A.6 and then using A.7, we have that for any t ∈ {0, 1, . . . , T−
1},

Et[L(wt+1)]
(16)

≤ L(wt)−
αK

2
∥∇L(wt)∥2 + αL2Et[Vt] +

α2L

2

K∑
k=1

σ2
k

(17)

≤ L(wt)−
αK

2
∥∇L(wt)∥2 + αL2(α2K3∥∇L(wt)∥2 + α2K2(ς +max

k
σk)

2)

+
α2L

2

K∑
k=1

σ2
k

= L(wt)−
αK

2
(1− α2L2K2)∥∇L(wt)∥2 + α3L2K2(ς +max

k
σk)

2 +
α2L

2

K∑
k=1

σ2
k.

Let δt = L(wt)− L∗. Adding −L∗ to both sides gives:

Et[δt+1] ≤ δt −
αK

2
(1− α2L2K2)∥∇L(wt)∥2 + α3L2K2(ς +max

k
σk)

2 +
α2L

2

K∑
k=1

σ2
k

≤ (1 + α3AL2K2)δt −
αK

2
(1− α2L2K2)∥∇L(wt)∥2 + α3L2K2(ς +max

k
σk)

2

+
α2L

2

K∑
k=1

σ2
k.
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Taking unconditional expectations in the last inequality and using that by assumption on α we have
1− α2L2K2 ≥ 1

2 , we get the estimate

E[δt+1] ≤ (1 + α3AL2K2)E(δt)−
αK

4
E[∥∇L(wt)∥2] + α3L2K2(ς +max

k
σk)

2 +
α2L

2

K∑
k=1

σ2
k.

Then we have:

min
t=0,...,T−1

E[∥∇L(wt)∥2] ≤ 4(1 + α3AL2K2)T

αKT
(L(w0)− L∗)

+2α2L2K(ς +max
k

σk)
2 +

αL

2

K∑
k=1

σ2
k.

Using that 1 + x ≤ exp(x) and that the stepsize α satisfies α ≤ (AL2K2T )−1/3, we have

(1 + α3AL2K2)T ≤ exp(α3AL2K2T ) ≤ exp(1) ≤ 3.

Using this in the previous bound, we finally obtain

min
t=0,...,T−1

E[∥∇L(wt)∥2] ≤
12(L(w0)− L∗)

αKT
+ 2α2L2K(ς +max

k
σk)

2 +
αL

2

K∑
k=1

σ2
k.

B DETAILS ON EXPERIMENTAL SETUP

All experiments are conducted on a server with an Intel Xeon Gold 6342 CPU and an NVIDIA RTX
A6000 GPU. We use the PyTorch version 1.10.1 with CUDA version 11.7. For experiments on the
NYUv2 data set, we train a Multi-Task Attention Network (MTAN) (Liu et al., 2019) following
previous works on multi-task learning (Yu et al., 2020; Navon et al., 2022). We also follow the
training procedure from (Liu et al., 2019; Yu et al., 2020; Navon et al., 2022). Each method is
trained for 200 epochs with the Adam optimizer (Kingma & Ba, 2015). We set the learning rate
α = 1 × 10−4 at the beginning of training, and reduce it to 5 × 10−5 after 100 epochs. The batch
size is set to 2 for all methods.

For experiments on QM9 data set, we use the MPNN model proposed in (Gilmer et al., 2017). Each
method is trained for 300 epochs with the Adam optimizer (Kingma & Ba, 2015) and we set the
learning rate α = 1 × 10−4 throughout the whole training process. The batch size is set to 120 for
all methods.
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