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Algorithm 1 Training Algorithm
1: procedure Training(SCM Black Box Distribution D, with M nodes and N categories)
2: Let i an index from 0 to M ≠ 1

3: for I iterations, or until convergence, do
4: for F functional parameter training steps do Û Phase 1
5: X ≥ D
6: C ≥ Ber(‡(“))
7: L = ≠ log P (X|C ; ◊)
8: ◊t+1 Ω Adam(◊t, Ò◊L)

9: for Q interventions do
Û Phase 2

10: I_N Ω randint(0, M ≠ 1) Û Black Box, hidden
11: Dint := D with intervention on node I_N Û Black Box, hidden

12: if predicting intervention then Û Phase 2 Prediction
13: Li Ω 0 ’i
14: for NP prediction steps do
15: X ≥ Dint
16: for CP configurations do
17: C ≥ Ber(‡(“))
18: Li Ω Li ≠ log Pi(X|Ci; ◊) ’i

19: I_N Ω argmax(Li)

20: gammagrads, logregrets = [], [] Û Phase 2 Scoring
21: for NS scoring steps do
22: X ≥ Dint
23: gammagrad, logregret = 0, 0
24: for CS configurations do
25: C ≥ Ber(‡(“))
26: Li = ≠ log Pi(X|Ci; ◊) ’i
27: gammagrad += ‡(“) ≠ C Û Collect ‡(“) ≠ C for Equation 3
28: logregret +=

q
i”=I_N

Li Û Collect LC
(k)
,i (X) for Equation 3

29: gammagrads.append(gammagrad)
30: logregrets.append(logregret)

Û Phase 3

31: gij =
q

k
(‡(“ij) ≠ c

(k)
ij )LC

(k)
,i (X)q

k
LC

(k)
,i (X)

Û Gradient Estimator, Equation 3

32: g Ω g + Ò“ (⁄sparse Lsparse(“) + ⁄DAG LDAG(“)) Û Regularizers
33: “t+1 Ω Adam(“t, g)

A.1 Training Algorithm

Algorithm 1 shows the pseudocode of the method for training sdi. Typical values for the loop trip counts are
found in §A.11.

A.2 Preliminaries

Interventions. In a purely-observational setting, it is known that causal graphs can be distinguished
only up to a Markov equivalence class. In order to identify the true causal graph intervention data is
needed (Eberhardt et al., 2012). Several types of common interventions may be available (Eaton & Murphy,
2007b). These are: No intervention: only observational data is obtained from the ground truth causal model.
Hard/perfect: the value of a single or several variables is fixed and then ancestral sampling is performed on
the other variables. Soft/imperfect: the conditional distribution of the variable on which the intervention is
performed is changed. Uncertain: the learner is not sure of which variable exactly the intervention a�ected
directly. Here we make use of soft interventions for several reasons: First, they include hard interventions as a
limiting case and hence are more general. Second, in many real-world scenarios, it is more di�cult to perform
a hard intervention compared to a soft one. We also deal with a special case of uncertain interventions,
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where the variable selected for intervention is random and unknown. We call these unidentified or unknown

interventions.

Intervention setup. For our experiments, the groundtruth models of the synthetic datasets are modeled
by neural networks as described in section A.6. Each neural network models the relationship of the causal
parents and a variable. We perform our intervention by first randomly selecting which variable to intervene
on, then soft-intervening on it. The selected variable is sampled from a uniform distribution. The soft
intervention is a reinitialization of its neural network’s parameters.

Causal su�ciency. The inability to distinguish which causal graph, within a Markov equivalence class,
is the correct one in the purely-observational setting is called the identifiability problem. In our setting, all
variables are observed (there are no latent confounders) and all interventions are random and independent.
Hence, within our setting, if the interventions are known, then the true causal graph is always identifiable
in principle (Eberhardt et al., 2012; Heinze-Deml et al., 2018a). We also consider here situations where a
single variable is randomly selected and intervened upon with a soft or imprecise intervention, its identity
is unknown and must be inferred. In this case, there is no theoretical guarantee that the causal graph is
identifiable. However, there is existing work (Peters et al., 2016) that handles this scenario and the proposed
method is also proven to work empirically.

Faithfulness. It is possible for causally-related variables to be probabilitistically independent purely by
happenstance, such as when causal e�ects along multiple paths cancel out. This is called unfaithfulness.
We assume that faithfulness holds, since the “ gradient estimate is extracted from shifts in probability
distributions. However, because of the “soft” nature of our interventions and their infinite variety, it would
be exceedingly unlikely for cancellation-related unfaithfulness to persist throughout the causal-learning
procedure.

A.3 Experimental setup

For all datasets, the weight parameters for the learned model is initialized randomly. In order to not bias the
structural parameters, all ‡(“) are initialized to 0.5 in the beginning of training. Details of hyperparameters
of the learner model are described in Section A.5. The experimental setup for the groundtruth model for the
synthetic data can be found in Section A.6 and the details for the real world data are described in Section
A.7.

A.4 Model setup

Wwe model the M variables in the graph using M independent MLPs, each possesses an input layer of
M ◊ N neurons (for M one-hot vectors of length N each), a single hidden layer chosen arbitrarily to have
max(4M, 4N) neurons with a LeakyReLU activation of slope 0.1, and a linear output layer of N neurons
representing the unnormalized log-probabilities of each category (a softmax then recovers the conditional
probabilities from these logits). To force fi to rely exclusively on the direct ancestor set pa(i, C) under
adjacency matrix C (See Eqn. 3), the one-hot input vector Xj for variable Xi’s MLP is masked by the
Boolean element cij . The functional parameters of the MLP are the set ◊ = {W0ihjn, B0ih, W1inh, B1in}.An
example of the multi-MLP architecture with M=3 categorical variables of N=2 categories is shown in Figure
2.

A.5 Hyperparameters

Both the functional and structural parameters are optimized using the Adam optimizer (Kingma & Ba, 2014).
We use a learning rate of 5e ≠ 2 with alpha of 0.9 for the functional parameters, and we use a learning rate of
5e ≠ 3 with alpha of 0.1 for the structural parameters. We perform 5 runs of each experiment with random
seeds 1 ≠ 5 and error bars are plotted for graphs up to size 13 in Figure 10. We use a batch size of 256.
The L1 norm regularizer is set to 0.1 and the DAG regularizer is set to 0.5 for all experiments. We study
the e�ect of DAG and sparsity penalties in Section 6.6. For each “ update step, we sample 25 structural
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(a) chainN (b) colliderN

(c) bidiagN

(d) fullN (e) jungleN

Figure 6: Figures for various synthetic graphs. chain, collider, bidiagonal, full and jungle graph.

configurations from the current “. In all experiments, we use 100 batches from the interventional distribution
to predict the intervened node.

Learner model. All experiments on the synthetic graphs of size 3-8 use the same hyperparameters. Both
the functional and structural parameters are optimized using the Adam optimizer (Kingma & Ba, 2014). We
use a learning rate of 5e ≠ 2 with alpha of 0.9 for the functional parameters, and we use a learning rate of
5e ≠ 3 with alpha of 0.1 for the structural parameters. We perform 5 runs of each experiment with random
seeds 1 ≠ 5 and error bars are plotted for various graphs from size 3 to 8 in Figure 10. We use a batch size of
256. The L1 norm regularizer is set to 0.1 and the DAG regularizer is set to 0.5 for all experiments. For each
“ update step, we sample 25 structural configurations from the current “. In all experiments, we use 100
batches from the interventional distribution to predict the intervened node.

A.6 Synthetic data

We study a variety of SCMs with di�erent ground-truth edge structures “. Our selection of synthetic graphs
explores various extremes in the space of DAGs, stress-testing sdi. The chain graphs are the sparsest
connected graphs possible, and are relatively easy to learn. The bidiag graphs are extensions of chain
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Figure 7: Left to right: Ground Truth SCM for Cancer, Groundtruth SCM for Earthquake, Groundtruth
SCM for Asia.

where there are 2-hops as well as single hops between nodes, doubling the number of edges and creating
a meshed chain of forks and colliders. The jungle graphs are binary-tree-like graphs, but with each node
connected directly to its grandparent in the tree as well. Half the nodes in a jungle graph are leaves, and
the out-degree is up to 6. The collider graphs deliberately collide independent M ≠ 1 ancestors into the
last node; They stress maximum in-degree. Lastly, the full graphs are the maximally dense DAGs. All
nodes are direct parents of all nodes below them in the topological order. The maximum in- and out-degree
are both M ≠ 1. These graphs are depicted in Figure 6.

A.6.1 Synthetic data results

The model can recover correctly all synthetic graphs with 10 variables or less, as shown in Figure 10 and
Table 1. For graphs larger than 10 variables, the model found it more challenging to recover the denser
graphs (e.g. fullM), as shown in Table 1. Plots of the training curves showing average cross entropy (CE)
and Area-Under-Curve(AUC/AUCROC) for edge probabilities of the learned graph against the ground-truth
graph for synthetic SCMs with 3-13 variables are available in Figure 10.

A.7 BnLearn data repository

The repo contains many datasets with various sizes and structures modeling di�erent variables. We evaluate
the proposed method on 3 of the datasets in the repo, namely the Earthquake (Korb & Nicholson, 2010),
Cancer (Korb & Nicholson, 2010) and Asia (Lauritzen & Spiegelhalter, 1988) datasets. The ground-truth
model structure for the Cancer (Korb & Nicholson, 2010) and Earthquake (Korb & Nicholson, 2010) datasets
are shown in Figure 7. Note that even though the structure for the 2 datasets seems to be the same, the
conditional probability tables (CPTs) for these 2 datasets are very di�erent and hence results in di�erent
structured causal models (SCMs) for the 2 datasets.

Method Asia chain8 jungle8 collider7 collider8 full8
(Zheng et al., 2018) 14 24 14 11 18 21
(Yu et al., 2019) 10 7 12 6 7 25
(Heinze-Deml et al., 2018b) 8 7 12 6 7 28
(Peters et al., 2016) 5 3 8 4 2 16
(Eaton & Murphy, 2007a) 0 0 0 7 7 1
sdis 0 0 0 0 0 0

Table 5: Baseline comparisons: Hamming distance (lower is better) for learned and ground-truth edges on
various graphs from both synthetic and real datasets, compared to (Peters et al., 2016), (Heinze-Deml et al.,
2018b), (Eaton & Murphy, 2007b), (Yu et al., 2019) and (Zheng et al., 2018). The proposed sdi is run on
random seeds 1 ≠ 5 and we pick the worst performing model out of the random seeds in the table.
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Figure 8: Learned edges at three di�erent stages of training. Left: chain4 (chain graph with 4 variables).
Right: full4 (tournament graph with 4 variables).

Figure 9: Left: Earthquake: Learned edges at three di�erent stages of training. Right: Asia: Learned edges
at three di�erent stages of training.

Given that some of the CPTs contain very unlikely events, we have found it necessary to add a temperature

parameter in order to make them more frequent. The near-ground-truth MLP model’s logit outputs are
divided by the temperature before being used for sampling. Temperatures above 1 result in more uniform
distributions for all causal variables; Temperatures below 1 result in less uniform, sharper distributions that
peak around the most likely value. We find empirically that a temperaure of about 2 is required for our
BnLearn benchmarks.

A.8 Comparisons to other methods

We compare to 5 other methods. The full comparison between sdis and other methods on various graphs can
be found in Table 1.

One of these methods, DAG-GNN Yu et al. (2019), outputs 3 graphs based on di�erent criteria: best mean
square error (MSE), best negative loglikelihood (NLL) and best evidence lower bound (ELBO). We report
performance of all outputs of DAG-GNN Yu et al. (2019) in Table 6, and the best one is selected for Table 1.

sdi Best MSE Best NLL Best Elbo

Asia 0 10 10 13
chain8 0 7 7 7
jungle8 0 12 12 13
collider7 0 6 6 6
collider8 0 8 8 7
full8 0 27 25 27

Table 6: Baseline comparisons: Hamming distance (lower is better) for learned and ground-truth edges on
Asia and various synthetic graphs. compared to DAG-GNN Yu et al. (2019). DAG-GNN outputs 3 graphs
according to di�erent criterion. We show results on all outputs in this table and we show the best performing
result in Table 1.

A.9 Sparsity of Ground-Truth Graph

We evaluated the performance of sdi on graphs of various size and sparsity to better understand the
performance of the model. We evaluated the proposed model on 4 representative types of graphs in increasing
order of density. They are the chain, jungle, bidiag and full graphs. As shown in the results in figure 11,
for graphs of size 5 or smaller, there is almost no di�erence in the final results in terms of variance and sample
complexity. However, as the graphs gets larger (than 6), the denser graphs (full graphs) gets progressively
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Chain Jungle Full
3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

ldag=0.5, lsparse=0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ldag=0.5, lsparse=0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ldag=0., lsparse=0.1 0 0 0 1 0 0 0 0 0 1 3 1 0 0 0 0 1 6

Table 7: Regularizer: sdi performance measured by Hamming distance to the ground-truth graph. Compar-
isons are between sdis with di�erent regularizer settings for di�erent graphs. Our default setting is ldag = 0.5,
lsparse = 0.1, with ldag the DAG regularization strength and lsparse the sparsity regularization strength. As
shown in the table, sdis is not very sensitive to di�erent regularizer settings. Tasks with non-zero Hamming
distance (errors) are in bold.

more di�cult to learn compared to the sparser graphs (chain, jungle and bidiag). The models learned for
denser graphs have higher complexity, higher variance and slightly worse results.
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Figure 10: Cross entropy (CE) and Area-Under-Curve (AUC/AUROC) for edge probabilities of learned graph
against ground-truth for synthetic SCMs. Error bars represent ±1‡ over PRNG seeds 1-5. Left to right,
up to down: chainM,jungleM,fullM,M = 3 . . . 8 (9 . . . 13 in Appendix A.6.1). Graphs (3-13 variables) all
learn perfectly with AUROC reaching 1.0. However, denser graphs (fullM) take longer to converge.

A.10 Predicting interventions

In Phase 2, we score graph configurations based on how well they fit the interventional data. We find that it
is necessary to avoid disturbing the learned parameters of intervened variables, and to ignore its contribution
to the total negative log-likelihood of the sample. Intuitively, this is because, having been intervened upon,
that variable should be taken as a given. It should especially not be interpreted as a poorly-learned variable
requiring a tuning of its functional parameters, because those functional parameters were not responsible for
the value of that variable; the extrinsic intervention was.
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Since an intervened variable is likely to be unusually poorly predicted, we heuristically determine that
the most poorly predicted variable is the intervention variable. We then zero out its contribution to the
log-likelihood of the sample and block gradient into its functional parameters.

Figure 5 illustrates the necessity of this process. When using the prediction heuristic, the training curve
closely tracks training with ground-truth knowledge of the identity of the intervention. If no prediction is
made, or a random prediction is made, training proceeds much more slowly, or fails entirely.

A.11 Sample complexity

Our method relies on sampling of configurations and data in Phases 1 and 2. We present here the breakdown
of the sample complexity. Let

• I be the number of iterations of the method, (typical: 500-2000)

• B the number of samples per batch, (typical: 256)

• F the number of functional parameter training iterations in Phase 1, (typical: 10000)

• Q the number of interventions performed in Phase 2, (typical: 100)

• NP the number of data batches for prediction, (typical: 100)

• CP the number of graph configurations drawn per prediction data batch, (typical: 10)

• NS the number of data batches for scoring, (typical: 10)

• CS the number of graph configurations drawn per scoring data batch. (typical: 20-30)

Then the total number of interventions performed, and configurations and samples drawn, over an entire run
are:

Interventions = IQ = “ updates (4)
Samples = I( F¸˚˙˝

Phase 1
+ Q(NP + NS)¸ ˚˙ ˝

Phase 2

)B (5)

Configurations = I( F¸˚˙˝
Phase 1

+ Q(CP NP + CSNS)¸ ˚˙ ˝
Phase 2

) (6)

Because of the multiplicative e�ect of these factors, the number of data samples required can quickly
spiral out of control. For typical values, as many as 500 ◊ 10000 ◊ 256 = 1.28e9 observational and
500 ◊ 100 ◊ (100 + 10) ◊ 256 = 1.408e9 interventional samples are required. To alleviate this problem slightly,
we limit the number of samples generated for each intervention; This limit is usually 500-2000.

A.12 Runtimes

The runtime for di�erent methods on 10-node graphs is as follows. Our proposed method sdi, takes between
4 to 5 hours for training. In comparison, DAG-GNN (Yu et al., 2019) requires between 2 to 3 hours, and
DAG-Notears takes around half an hour. The training time for ICP (Peters et al., 2016) is approximately 4
hours, and the non-linear ICP (Heinze-Deml et al., 2018a) also takes about 4 hours. Additionally, Eaton &
Murphy (2007a) requires approximately 12 hours for training.

A.13 E�ect of regularization

Importance of sparsity regularizer. We use a L1 regularizer on the structure parameters “ to encourage
a sparse representation of edges in the causal graph. In order to better understand the e�ect of the L1
regularizer, we conducted ablation studies on the L1 regularizer. It seems that the regularizer has an small
e�ect on rate of converges and that the model converges faster with the regularizer, This is shown in Figure
12. However, this does not seem to a�ect the final value the model converges to, this is shown in Table 7.
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Figure 11: Left to right, top to bottom Average cross-entropy loss of edge beliefs ‡(“) and Area-
Under-Curve throughout training for the synthetic graphs chainN, jungleN, colliderN and fullN, N=3-13,
grouped by graph size. Error bars represent ±1‡ over PRNG seeds 1-5.

Figure 12: E�ect of sparsity (lsparse) regularizer : On 5 variable, 6 variable and 8 variable Nodes

Importance of DAG regularizer. We use an acyclic regularizer to discourage length-2 cycles in the
learned model. We found that for small models (Æ 5 variables), the acyclic regularizer helps with faster
convergence, without improving significantly the final cross-entropy. This is illustrated for the 3-variable
graphs in Figure 13. However, for graphs larger than 5 variables, the acyclic regularizer starts playing an
important role in encouraging the model to learn the correct structure. This is shown in the ablation study
in Table 7.
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Figure 13: Ablations study results on all possible
3 variable graphs. Graphs show the cross-entropy
loss on learned vs ground-truth edges over training
time. Comparisons of model trained with and
without DAG regularizer (LDAG), showing that
DAG regularizer helps convergence.
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Figure 14: Edge CE loss for 3-variable graphs with
no dropout when training functional parameters,
showing the importance of this dropout.

A.14 Importance of dropout

To train the functional parameters on an observational distribution, one would need sampling adjacency
matrices. One may be tempted to make these “complete directed graph” (all-ones except for a zero diagonal),
to give the MLP maximum freedom to learn any potential causal relations itself. We demonstrate that
functional parameter training cannot be carried out this way, and that it is necessary to “drop out” each edge
(with probability of the current “ value in our experiments) during pre-training of the conditional distributions
of the SCM. We attempt to recover the previously-recoverable graphs chain3, fork3 and confounder3
without dropout, but fail to do so, as shown in Figure 14.

sdi Eaton & Murphy (2007b)
Asia 0 0
chain8 0 0
jungle8 0 0
collider7 0 7
collider8 0.0 7
full8 0.0 1

Table 8: Comparisons: Structured hamming distance (SHD) on learned and ground-truth edges on asia
and various synthetic graphs. Eaton & Murphy (2007b) can not scale to larger variables graphs as shown
in Table 1, hence, we compare to the largest graph that (Eaton & Murphy, 2007b) can scale up to. sdi is
compared to (Eaton & Murphy, 2007b) for collider7, collider8 and full8, (Eaton & Murphy, 2007a)
asserts with 100% confidence a no-edge where there is one (false negative). For comparisons with all other
methods 1.
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Figure 15: Cross-entropy for edge
probability between learned and
ground-truth SCM for Cancer at
varying temperatures.

Figure 16: Cross-entropy for edge probability between learned
and ground-truth SCM. Left: The Earthquake dataset with 6
variables. Right: The Asia dataset with 8 variables
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