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ABSTRACT
Talking head generation is a significant research topic that still
faces numerous challenges. Previous works often adopt generative
adversarial networks or regression models, which are plagued by
generation quality and average facial shape problem. Although dif-
fusion models show impressive generative ability, their exploration
in talking head generation remains unsatisfactory. This is because
they either solely use the diffusion model to obtain an intermediate
representation and then employ another pre-trained renderer, or
they overlook the feature decoupling of complex facial details, such
as expressions, head poses and appearance textures. Therefore, we
propose a Facial Decoupled Diffusion model for Talking head gen-
eration called FD2Talk, which fully leverages the advantages of
diffusion models and decouples the complex facial details through
multi-stages. Specifically, we separate facial details into motion
and appearance. In the initial phase, we design the Diffusion Trans-
former to accurately predict motion coefficients from raw audio.
These motions are highly decoupled from appearance, making them
easier for the network to learn compared to high-dimensional RGB
images. Subsequently, in the second phase, we encode the reference
image to capture appearance textures. The predicted facial and
head motions and encoded appearance then serve as the conditions
for the Diffusion UNet, guiding the frame generation. Benefiting
from decoupling facial details and fully leveraging diffusion mod-
els, extensive experiments substantiate that our approach excels in
enhancing image quality and generating more accurate and diverse
results compared to previous state-of-the-art methods.
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Figure 1: Our proposed FD2Talk leverages diffusionmodels to
generate high-quality and diverse talking head videos. This
framework decouples facial information into motion and
appearance, thusmaintainingmotion plausibility, enhancing
texture fidelity, and improving generalization.
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1 INTRODUCTION
Talking head generation is a task that creates a digital representa-
tion of a person’s head and facial movements synchronized with
the audio signal. This technology serves as a cornerstone with far-
reaching applications, including virtual reality, augmented reality,
and entertainment industries such as film production [17, 54, 55].
With the development of deep learning [11, 52, 53], it has recently
attracted numerous researchers and achieved impressive results.

Prevailing methodologies for talking head generation can be
broadly divided into two paradigms. One approach involves using
a GAN-based framework [9, 12, 16, 22, 29, 43], which simultane-
ously optimizes a generator and a discriminator. However, due to
the inherent flaws of GANs themselves and the suboptimal frame-
work designs, this often results in unsatisfactory results, such as
unnatural faces and inaccurate lip movements. The other approach
utilizes regression models [5, 15, 18, 23, 46, 61] to map audio to
facial movements, ensuring better temporal consistency. Nonethe-
less, regression-based methods encounter challenges in generating
natural movements with individualized characteristics, leading to
issues with average facial shapes and less diverse results.

Recently, the rise of diffusion models [21, 32, 39] has marked a
new era in generative tasks. Due to their stable generation process
and relative ease of training, diffusion models offer a promising
avenue for the advancement of talking head technology. While
some previous works [13, 36, 40] have attempted to apply diffu-
sion models to talking head generation, their generated results
still suffer from low image quality, unnaturalness, and insufficient
lip synchronization. We analyze that there are two main issues in
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current methods. 1) Some approaches [27] apply diffusion models
solely to predict facial intermediate representations, such as 3DMM
coefficients. However, they still rely on pre-trained renderers for
rendering the final faces, resulting in low-quality in the generated
images. 2)Other approaches [36, 40] directly generate faces through
pixel-level denoising, globally conditioned on the audio and refer-
ence image. Nevertheless, they overlook the fact that faces contain
rich information, such as expressions, poses, texture, etc. Previ-
ous methods couple these facial details, significantly complicating
denoising generation and yielding unsatisfactory results.

To address the above issues, we propose the Facial Decoupled
Diffusionmodel forTalking head generation, named FD2Talk. Our
FD2Talk leverages the generative advantages of diffusion models to
generate high-quality, diverse and natural talking heads videos. As
illustrated in Fig. 1, the proposed FD2Talk model is a multi-stage
framework that decouples complex facial details into motion and
appearance information. The first phase focuses on motion infor-
mation generation, while the second phase is dedicated to driv-
ing frame synthesis. 1) Motion Generation.Motion information,
including lip movements, expressions, and head poses, is highly
related to the given audio and is more decoupled from facial appear-
ance, making it easier to learn. In the first stage, we design novel
Diffusion Transformers to extract motion-only information, i.e.,
3DMM expression and head pose coefficients, from the raw audio.
Through the denoising process, we generate natural and accurate
motions, thereby enhancing the realism of our final outputs. Addi-
tionally, predicting the head pose coefficients at this stage enables
us to produce more diverse motions compared to previous methods.
2) Frames Generation. Moving on to the second stage, we first
encode the reference image to capture appearance information,
including human identity and texture characteristics. Combining
this appearance information with the previously learned motion,
we obtain a comprehensive facial representation related to the final
RGB faces. Unlike previous methods that utilize a pre-trained face
renderer to render final frames, we design a conditional Diffusion
UNet and utilize motion and appearance as conditions to guide
higher-quality and more natural animated frame generation.

Our two-stage approach not only maintains motion plausibil-
ity and accuracy, but also enhances texture fidelity. Moreover, by
focusing on generating appearance-independent information in the
first stage, we can enhance the generalization ability of our FD2Talk.
This is because we can obtain pure motion coefficients from the
audio signal without being influenced by the portrait domains. The
contribution can be summarized as follows:

• Our proposed FD2Talk is a multi-stage framework that ef-
fectively decouples facial motion and appearance, enabling
accurate motion modeling, superior texture synthesis, and
improved generalization.

• Our approach fully leverages the generative power of diffu-
sion models in both motion and frames generation stages,
thus enhancing the quality of the results.

• Extensive experiments demonstrate that our method excels
at generating accurate and realistic talking head videos,
achieving state-of-the-art performance. By incorporating
head pose modeling, our FD2Talk produces significantly
more diverse results compared to previous methods.

2 RELATEDWORKS
Audio-Driven Talking Head Generation. Previous methods have

attempted to utilize generative adversarial networks [4, 6, 29, 41,
44, 45, 59, 60] and regression models, such as RNN [42], LSTM [18,
46, 61] and Transformer [1, 15] to synthesis talking head videos
based on audio signals. Among GAN-based methods, [29] proposed
a novel lip-synchronization network that generates talking head
videos with accurate lip movements across different identities by
learning from a powerful lip-sync discriminator. [59] disentangled
person identity and speech information through adversarial learn-
ing, leading to improved talking head generation. [44] introduced
a temporal GAN with three discriminators focused on achieving
detailed frames, audio-visual synchronization, and realistic expres-
sions, capable of generating lifelike talking head videos. On the
other hand, in regression-based methods, [18] adopts LSTM for
better temporal consistency using explicit and implicit keypoints
as the intermediate representation. Additionally, [15] proposed a
Transformer-based autoregressive model that encodes long-term
audio context and autoregressively predicts a sequence of animated
3D face meshes. Despite significant progress, the unrealistic results
in GAN-based generation and the average facial shape problem in
regression-based models remain unresolved.

Diffusion Models for Talking Head Generation. Diffusion models
have demonstrated the remarkable ability across multiple gener-
ative tasks, such as image generation [30, 34, 35], image inpaint-
ing [24, 50, 51], and video generation [3, 20, 25]. Recently, some
studies [13, 36, 40] have delved into using diffusion models for talk-
ing head generation. However, these studies still face challenges
in producing natural and accurate faces. On one hand, they [27]
generate intermediate representations using diffusion models but
rely on pre-trained face renderers for synthesizing the final frames.
On the other hand, they [36, 40] globally utilize audio features to
condition the generation of faces, which couples the complex facial
motion and appearance. To fully leverage the advantages of the
diffusion model and disentangle the complex facial information, we
utilize the diffusion model in both motion generation and frame
generation, thereby achieving better performance.

3 METHOD
Given a reference image I ∈ R3×𝐻×𝑊 and a corresponding audio
input, our model is designed to synthesize a realistic talking head
video V ∈ R3×𝐹×𝐻×𝑊 with lip movements synchronized with
the audio signal. Here, the symbols 𝐹 , 𝐻 , and𝑊 denote the frame
numbers, frame height and frame width respectively.

Our FD2Talk framework consists of two stages that decouple
facial information into motion and appearance, thus enhancing the
modeling of facial representation. We employ powerful diffusion
models in both stages, making FD2Talk a fully diffusion-based ap-
proach that produces high-quality talking head results. Specifically,
we start by using Diffusion Transformers to predict expressions
and pose motions from the audio input. In the subsequent stage,
we utilize a Diffusion UNet to generate final RGB images, condi-
tioned on the previously predicted motion information along with
appearance texture information extracted from a reference image.
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3.1 Preliminary Knowledge
3.1.1 3DMorphableModel. To generate high-quality talking heads,
we integrate 3D information into our method, specifically employ-
ing the 3D Morphable Model (3DMM) [10] to decouple the facial
representation from a given face image. This allows us to describe
the 3D face space (3D mesh) using Principal Component Analysis:

S = S(𝜶 , 𝜷) = S̄ + B𝑖𝑑𝜶 + B𝑒𝑥𝑝𝜷 . (1)

Here, S ∈ R3𝑁 (where 𝑁 represents the number of vertices of a
face, and 3 represents the axes 𝑥 , 𝑦, and 𝑧) denotes a 3D face, while
S̄ is the mean shape. 𝜶 ∈ R𝐷𝛼 and 𝜷 ∈ R𝐷𝛽 represent the predicted
coefficients of identity and expression, respectively. B𝑖𝑑 and B𝑒𝑥𝑝
are the PCA bases of identity and expression. Moreover, rotation
coefficients 𝒓 ∈ 𝑆𝑂 (3) and translation coefficients 𝒕 ∈ R3 repre-
sent the head rotation and translation, respectively, collectively
constituting the facial pose coefficients 𝒑 = [𝒓, 𝒕].

3.1.2 Diffusion Model. Diffusion models are formulated as time-
conditional denoising networks that learn the reverse process of a
Markov Chain with a length 𝑇 . Specifically, starting from the clean
signal 𝒙0, the process of adding noise can be denoted as follows:

𝒙𝑡 =
√︁
𝛼𝑡𝒙0 +

√︁
1 − 𝛼𝑡𝜖𝑡 . (2)

Here, 𝜖𝑡 ∼ N(0, 1) denotes random Gaussian noise, while 𝛼𝑡 rep-
resents the hyper-parameter for the diffusion process. 𝒙𝑡 refers to
the noisy feature at step 𝑡 , where 𝑡 ∈ [1, . . . ,𝑇 ]. During inference,
the 𝑇 -step denoising process progressively denoise random Gauss-
ian noise N(0, 1) to estimate the clean signal 𝒙0. In our work, all
diffusion-based models are designed to predict signal itself rather
than noise. Thus, the overall goal can be described as follows:

𝐿 := E𝒙0,𝑡
[
∥𝒙0 − 𝜃 (𝒙𝑡 , 𝑡, 𝒄)∥2

2
]
, (3)

where 𝜃 represents the diffusion model and 𝑐 represents conditional
guiding. We utilize the 𝐿2 error between the estimated signal and
the ground truth 𝒙0.

3.2 Motion Generation with Diffusion
Transformers

Early diffusion-based methods [36, 40] globally utilize audio signals
as a condition for the pixel-level denoising process. However, this
approach combines motion and appearance, making it challenging
for overall training convergence. In contrast, in the first stage, our
method focuses on generating motion-only information from the
audio signal, specifically 3DMM expression and head pose coeffi-
cients. These coefficients exclusively represent facial and head mo-
tion, which are highly decoupled from the appearance textures and
greatly influence lip synchronization and motion diversity. Further-
more, compared to high-dimensional RGB faces, low-dimensional
3DMM coefficients are considerably easier for the model to learn.

To ensure smooth continuity between different frame motions
and fully leverage the diffusion models, we introduce sequence-to-
sequence Diffusion Transformers for generating both expression
and pose coefficients. Meanwhile, to effectively address the one-to-
many mapping problem and accurately predict lip movements and
diverse head poses, we decouple the prediction of expression and
pose coefficients using an Expression Transformer 𝜃𝑒𝑥𝑝 and a Pose
Transformer 𝜃𝑝𝑜𝑠𝑒 , which is illustrated in Fig. 2.

Noisy ExpWav2Vec

Audio Features

Timestep

~

βT-1

Position Encoding
& Embedding

Concatenate
& Projection

Diffusion
Loops

Mask

Cross Attention

Alignment

Raw audio

Sequence βT

Denoised Exp
Sequence β0

Noisy Pose pT-1

Diffusion
Loops

Sequence pT

Denoised Pose
Sequence p0

Lip Expert 3D Mesh

Training: Guide Lip-related Coefficients

Ex
p 

Tr
an

s
θ e

xp

Po
se

 T
ra

ns
θ p

os
e

Figure 2: Pipeline of the motion generation. We decouple the
motion into expression and head poses, both of which are
predicted by our designed DiTs. The audio guides the genera-
tion through cross-attention layers, utilizing an alignment
mask to ensure accurate lip movements. Furthermore, the
pre-trained lip expert also enhances the lip synchronization.

Specifically, we initialize the noisy expression sequence 𝜷𝑇 ∈
R𝐹×𝐷𝛽 and noisy pose sequence 𝒑𝑇 ∈ R𝐹×𝐷𝑝 from random Gauss-
ian noiseN(0, 1), where 𝐹 represents the number of frames aligned
with the final video. We then denoise the 𝜷𝑇 and 𝒑𝑇 conditioned
on audio features through 𝑇 loops to estimate denoised sequence
𝜷0 and 𝒑0. Here, the length of audio clip 𝑨 is aligned with 𝐹 , and
we adopt the state-of-the-art self-supervised pre-trained speech
model, Wav2Vec 2.0 [2], to extract the audio features.

Taking 𝜃𝑝𝑜𝑠𝑒 as an example, at each timestep 𝑡 , we concatenate
the embedding from the timestep and audio features to obtain the
condition 𝑐 . We then project 𝑐 to an intermediate representation
𝜏 (𝑐) ∈ R𝐹×𝐷𝜏 using a linear layer. Then, 𝜏 (𝑐) is fused into 𝜃𝑝𝑜𝑠𝑒 via
the cross-attention layer, where the query (Q) is derived from 𝒑𝑡 ,
while the key (K) and value (V) are obtained from 𝜏 (𝑐). Meanwhile,
we design an alignment mask M to ensure the consistency of
generated coefficients and the audio signal, so that 𝜏 (𝑐) for the 𝑖𝑡ℎ
timestamp attends to𝒑𝑡 at the 𝑗𝑡ℎ timestamp only if 𝑗−𝑘 ≤ 𝑖 ≤ 𝑗+𝑘 .
For FD2Talk, we empirically set 𝑘 = 3. TheM can be denoted as:

M =

{
𝑇𝑟𝑢𝑒, if 𝑗 − 𝑘 ≤ 𝑖 ≤ 𝑗 + 𝑘
𝐹𝑎𝑙𝑠𝑒, otherwise (4)

In our diffusion process, we directly estimate the original signal.
Therefore, after 𝐿-layer Pose Transformer, we obtain �̃�0. Subse-
quently, we can calculate the single-step denoising result 𝒑𝑡−1:

𝒑𝑡−1 =
√︁
𝛼𝑡−1�̃�0 +

√︃
1 − 𝑎𝑡−1 − 𝜎2

𝑡
√

1 − 𝑎𝑡
(𝒑𝑡 −

√︁
𝑎𝑡 �̃�0) + 𝜎𝑡𝜖,

(5)

where 𝜎𝑡 is the Gaussian covariance at the 𝑡𝑡ℎ timestep.
The Exp Transformer 𝜃𝑒𝑥𝑝 and Pose Transformer 𝜃𝑝𝑜𝑠𝑒 share

the same architecture, and the denoising process for 𝜷𝑡 is identical
to that for 𝒑𝑡 . Therefore, after 𝑇 iterations, we obtain 𝜷0 and 𝒑0 as
the final values for the expression and pose coefficients.
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3.3 Frame Generation with Diffusion UNet
Previous methods primarily employ pre-trained face renderers [31,
47] to generate final RGB faces, whose performance sets an upper
bound on talking face generation. Therefore, we design a condi-
tional Diffusion UNet 𝜃𝑢𝑛𝑒𝑡 to generate the final frame based on
previously predicted 3DMM coefficients, aiming to utilize the diffu-
sion models to achieve diverse and realistic faces generation.

To reduces computational overhead and accelerates convergence,
we introduce a pair of encoder E and decoder D [32] to transition
the frame generation into the latent space. Suppose the downsam-
pling factor is 𝑓 = 𝐻/ℎ =𝑊 /𝑤 , then we can encode the reference
image I into the reference latent code 𝑥 = E(I) ∈ R𝑑×ℎ×𝑤 .

As shown in Fig. 3, we initialize the noisy latent image 𝑱𝑇 ∈
R𝑑×ℎ×𝑤 fromN(0, 1), then we progressively denoise it conditioned
on both reference latent code 𝑥 and 3DMM coefficients 𝜷0 and 𝒑0.
Here, 𝑥 encompasses the appearance texture of the reference image,
while 𝜷0 and 𝒑0 includes the driving facial and head motions.

An intuitive approach is to directly concatenate the 𝑥 , 𝜷0 and 𝒑0
to obtain the conditions. However, we observe that this operation
leads to difficulties in training convergence, because there exists a
gap between the image domain and the motion coefficients domain.
To address the impact of domain gap, we use two cross-attention
layers to introduce these two conditions respectively. Specifically,
both the encoder and decoder of Diffusion UNet consist of two
cross-attention layers, denoted as 𝜙1 and 𝜙2. The coefficients 𝜷0
and 𝒑0 are concatenated, following with a linear projection, to form
the condition for 𝜙1. The calculation of 𝜙1 can be defined as:

𝒎1 = 𝜙1 ({𝜷0,𝒑0}, 𝑱 𝑡 ), (6)

where the query (Q) is from 𝑱 𝑡 , and the key (K) and value (V) are
from the condition {𝜷0,𝒑0}. Then, in the second layer 𝜙2, we utilize
the reference latent code 𝑥 as the condition to guide this process:

𝒎2 = 𝜙2 (𝑥,𝒎1), (7)

where the query (Q) is from 𝒎1, and the key (K) and value (V) are
derived from 𝑥 . Here, the 𝑥 is reshaped into sequence, and positional
encoding is also introduced. This decoupling of conditions enhances
the denoising stability, leading to higher-quality results.

Similar to that in the first stage, at each diffusion timestep 𝑡 ,
we predict 𝑱 0 from 𝑱 𝑡 , and then calculate the corresponding 𝑱 𝑡−1
using the Eq. (5). After 𝑇 iterations, this process generates the
accurate denoised latent image 𝑱 0. The reference latent code and
the denoised latent image are further concatenated as the input of
decoderD, allowing us to generate the RGB imageV𝑖 , which serves
as each frame for the talking head video V = {V𝑖 }𝐹1 . Moreover,
as we denoise in the latent space, we can easily extend to higher-
resolution talking head synthesis by adjusting the downsampling
factor 𝑓 , thereby further enhancing our generation quality.

3.4 Training Strategies
Our training process consists of two stages. In the first stage, we
train the Exp Transformer and Pose Transformer to generate ac-
curate expression and pose coefficients. Using these accurate co-
efficients as a foundation, we then train the Diffusion UNet in the
second stage to generate natural and diverse RGB frames.
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Figure 3: Pipeline of the frame generation. The facial appear-
ance extracted from the reference image and the predicted
motion coefficients are fused within the Diffusion UNet us-
ing distinct cross-attention layers to prevent interference.

3.4.1 Motion Generation Stage. In the first stage, we randomly
extract a video clip along with the corresponding audio clip 𝑨 from
the training set. We utilize the Deep3d [10] method to generate the
expression coefficient sequence 𝜷0 and pose coefficient sequence
𝒑0 from this video clip. 𝜷0 and 𝒑0 also serve as the ground truths.
Then, our Exp Transformer 𝜃𝑒𝑥𝑝 and Pose Transformer 𝜃𝑝𝑜𝑠𝑒 can
be trained using the tuples (𝜷0, 𝑡, 𝐴) and (𝒑0, 𝑡, 𝐴), respectively.

For the Exp Transformer 𝜃𝑒𝑥𝑝 , by adding random Gaussian
noise, the 𝜷0 can become 𝜷𝑡 using Eq. (5). The 𝜃𝑒𝑥𝑝 estimates
𝜷0 = 𝜃𝑒𝑥𝑝 (𝜷𝑡 , 𝑡, 𝐴), and the objective can be defined as follows:

L𝑒𝑥𝑝 = E𝜷0,𝑡

[𝜷0 − 𝜃𝑒𝑥𝑝 (𝜷𝑡 , 𝑡, 𝐴)
2

2

]
. (8)

Similar to the 𝜃𝑒𝑥𝑝 , the objective of the Pose Transformer 𝜃𝑝𝑜𝑠𝑒 is:

L𝑝𝑜𝑠𝑒 = E𝒑0,𝑡

[𝒑0 − 𝜃𝑝𝑜𝑠𝑒 (𝒑𝑡 , 𝑡, 𝐴)
2

2

]
. (9)

While the random noise introduced in the diffusion model can
effectively facilitate the diverse generation, it also leads to inaccu-
rate mouth shape generation to some extent. Therefore, we utilize a
pre-trained lip expert [29] to guide this denoising process and gen-
erate more accurate mouth shape. Specifically, we first obtain the
identity coefficients from the reference image, and then calculate
the 3D meshes using these identity coefficients along with the pre-
dicted expression coefficients 𝜷0 via Eq. (1). From these 3D meshes,
we select vertices in the mouth area to represent lip motion [26].
The pre-trained lip expert calculates the cosine similarity between
mouth motion embedding 𝑣 and audio embedding 𝑎 as follows:

𝑃𝑠𝑦𝑛𝑐 =
𝑣 × 𝑎

𝑚𝑎𝑥 (∥𝑣 ∥2 × ∥𝑎∥2, 𝜖)
, (10)

where 𝜖 is a small number for avoiding the division-by-zero. Then,
the 𝜃𝑒𝑥𝑝 minimizes the synchronous loss as follows:

L𝑠𝑦𝑛𝑐 = −log(𝑃𝑠𝑦𝑛𝑐 ). (11)
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Table 1: Comparison with the state-of-the-art methods on HDTF and VoxCeleb dataset. The best results are highlighted in bold,
and the second best is underlined. Our FD2Talk surpasses previous methods in motion diversity and image quality, as well as
offering competitive lip synchronization performance. The data presented in the table are in the order of HDTF / VoxCeleb.

Methods Lip Synchronization Motion Diversity Image Quality
LSE-C ↑ SyncNet ↑ Diversity ↑ Beat Align ↑ FID ↓ PSNR ↑ SSIM ↑

Ground Truth 8.32 / 6.29 7.99 / 5.73 0.256 / 0.307 0.276 / 0.319 — — —
Wav2Lip [29] 10.08 / 8.13 8.06 / 6.40 N./A. / N./A. N./A. / N./A. 22.67 / 23.85 32.33 / 35.19 0.740 / 0.653
MakeItTalk [61] 4.89 / 2.96 3.72 / 2.67 0.238 / 0.260 0.221 / 0.252 28.96 / 31.77 17.95 / 21.08 0.623 / 0.529
SadTalker [57] 6.11 / 4.51 5.19 / 4.88 0.275 / 0.319 0.296 / 0.328 23.76 / 24.19 35.78 / 37.90 0.746 / 0.690
DiffTalk [36] 6.06 / 4.38 4.98 / 4.67 0.235 / 0.258 0.226 / 0.253 23.99 / 24.06 36.51 / 36.17 0.721 / 0.686
DreamTalk [27] 6.93 / 4.76 5.46 / 4.90 0.236 / 0.257 0.213 / 0.249 24.30 / 23.61 32.82 / 33.16 0.738 / 0.692
Ours 7.29 / 5.16 6.63 / 5.66 0.338 / 0.359 0.336 / 0.377 20.96 / 21.89 38.89 / 39.95 0.779 / 0.756

Overall, the first stage optimizes the following loss:

L𝑓 𝑖𝑟𝑠𝑡 = 𝜆𝑒𝑥𝑝L𝑒𝑥𝑝 + 𝜆𝑝𝑜𝑠𝑒L𝑝𝑜𝑠𝑒 + 𝜆𝑠𝑦𝑛𝑐L𝑠𝑦𝑛𝑐 , (12)

where 𝜆𝑒𝑥𝑝 , 𝜆𝑝𝑜𝑠𝑒 and 𝜆𝑠𝑦𝑛𝑐 are the weight factors to control the
three losses in the same numeric scale.

3.4.2 Frame Generation Stage. We utilize the pre-trained [14] en-
coder E and decoder D as the foundation for learning in the latent
space. Given that the input channel for the decoder in our method
is 2 × 𝑑 , we opt to substitute the first convolution layer of the de-
coder. Subsequently, we fine-tune both the encoder and decoder
using frames from the training set. Specifically, in each iteration,
we randomly select two frames 𝐹1 and 𝐹2 from a single video and
then calculate the reconstruction loss as follows:

L𝑟𝑒𝑐 = ∥𝐹2 − D([E(𝐹1), E(𝐹2)])∥2
2 . (13)

Meanwhile, we introduce the perceptual loss [56] to enforce E and
D to accurately reconstruct the frames in the image space:

L𝑝𝑒𝑟 = ∥𝜙 (𝐹2) − 𝜙 (D([E(𝐹1), E(𝐹2)]))∥1 , (14)

where 𝜙 represents the perceptual feature extractor [56]. Then the
overall objective of encoder E and decoder D can be defined as:

L𝑒&𝑑 = 𝜆𝑟𝑒𝑐L𝑟𝑒𝑐 + 𝜆𝑝𝑒𝑟L𝑝𝑒𝑟 , (15)

where 𝜆𝑟𝑒𝑐 and 𝜆𝑝𝑒𝑟 control the numeric scales.
During the training of Diffusion UNet𝜃𝑢𝑛𝑒𝑡 , we randomly extract

a video clip along with its corresponding audio clip. The first frame
from this video clip serves as the reference image I. Utilizing the
trained encoder E, we obtain the reference latent code 𝑥 , as well as
the ground truths for each latent image 𝑱 0. Subsequently, we employ
the trained Exp Transformer and Pose Transformer to acquire the
𝜷0 ∈ R𝐹×𝐷𝛽 and �̃�0 ∈ R𝐹×𝐷𝑝 . Different from the sequence-to-
sequence Diffusion Transformer in the first stage, our Diffusion
UNet generate each RGB frames one by one, so we extract the
coefficient 𝜷 ∈ R𝐷𝛽 and �̃� ∈ R𝐷𝑝 for each frame. The training of
our Diffusion UNet is facilitated by a tuple denoted as (𝑱 0, 𝑡, 𝜷, �̃�, 𝑥).
Specifically, we add the random Gaussian noise on 𝑱 0 to obtain the
noisy latent image 𝑱 𝑡 at the 𝑡-th timestep. We then optimize 𝜃𝑢𝑛𝑒𝑡
using the following objective function:

L𝑠𝑒𝑐𝑜𝑛𝑑 = E𝑱 0,𝑡

[𝑱 0 − 𝜃𝑢𝑛𝑒𝑡 (𝑱 𝑡 , 𝑡, 𝜷, �̃�, 𝑥)
2

2

]
. (16)

4 EXPERIMENTS
4.1 Experimental Setup

Datasets. We use HDTF [58] and VFHQ [49] datasets to train
our FD2Talk. HDTF is a large in-the-wild high-resolution and high-
quality audio-visual dataset that consists of about 362 different
videos spanning 15.8 hours. The resolution of the face region in the
video generally reaches 512 × 512. VFHQ is a large-scale video face
dataset, which contains over 16000 high-fidelity clips of diverse
interview scenarios. However, since VFHQ lacks audio components,
it is exclusively utilized during the second phase of training. All
videos are clipped into small fragments and cropped [37] to obtain
the face region. Then we use Deep3d [10], a single-image face
reconstruction method, to recover the facial image and extract
the relevant coefficients. Both HDTF and VFHQ are split 70% as
the training set, 10% as the validation set, and 20% as the testing
set. Moreover, we introduce VoxCeleb [28] to further evaluate our
method, which contains over 100𝑘 videos of 1251 subjects.

Implementation Detail. We train the model on video frames with
256 × 256 resolution. In the first stage, the 6-layer Exp Transformer
and Pose Transformer are trained with a batch size of 1 and a
generated sequence length of 25. In the second stage, we first fine-
tune the pre-trained [14] encoder and decoder, and then train the
Diffusion UNet with a batch size of 32, and the resolution of the
latent image is 64×64. The two-stage framework is trained with the
Adam [8] optimizer separately and can be inferred in an end-to-end
fashion. The diffusion step is set to 1000 and 50 during training
and inference, respectively. Our two-stage model is trained for
approximately 8 and 32 hours using 8 NVIDIA 3090 GPUs.

Baselines. We compare our method with several previous meth-
ods of audio-driven talking head generation, includingWav2Lip [29],
MakeItTalk [61], SadTalker [57], DiffTalk [36], and DreamTalk [27].
We provide a reference image and audio signal as input for all meth-
ods. Note that Wav2Lip requires additional videos to offer head
pose information, so we also fixed the head pose of our method for
a fair comparison in quantitative evaluation.

Evaluation Metrics. To evaluate the superiority of our proposed
method, we consider three aspects: 1) Lip synchronization is as-
sessed using two metrics: LSE-C [29] and SyncNet [7]. LSE-C mea-
sures the confidence score of perceptual differences in mouth shape
from Wav2Lip, while the SyncNet score assesses the audio-visual
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Figure 4: Qualitative comparison with several state-of-the-art methods. Our FD2Talk achieves superior lip synchronization
compared to previous methods while preserving naturalness and high image quality. By leveraging diffusion models for
predicting head motion, our generated results also exhibit enhanced motion diversity.

synchronization quality. 2) Motion diversity is evaluated by ex-
tracting head motion feature embeddings using Hopenet [33] and
calculating their standard deviations. Additionally, we use the Beat
Align Score [38] to measure alignment between the audio and gen-
erated head motions. 3) Generated image quality is assessed using
widely recognized metrics: FID [19], PSNR, and SSIM [48].

4.2 Qualitative Comparison
We compare our method with previous state-of-the-art methods
qualitatively. The results are visualized in Fig. 4. While Wav2Lip
can generate accurate lip movements, it falls short in producing
high-quality images due to blurriness issues in the mouth region.
Moreover, Wav2Lip focuses solely on animating the lips, neglect-
ing other facial areas and resulting in a lack of motion diversity.
MakeItTalk and SadTalker attempt to address some weaknesses of
Wav2Lip, such as enhancing motion diversity. However, they still
struggle to synthesize detailed facial features like apple cheeks and
teeth due to generative limitations in GANs and regression models.
For diffusion-based methods, DiffTalk combines appearance and

motion during denoising, leading to inaccurate lip movement gener-
ation. DreamTalk, on the other hand, neglects head pose modeling
and still relies on pre-trained render models, resulting in synthe-
sized results with unreasonable head poses and slightly distorted
facial regions. In contrast, our FD2Talk fully leverages powerful dif-
fusion models in both stages and effectively separates appearance
and motion information. These operations result in accurate lip
movements, diverse head poses, and high-quality, lifelike talking
head videos.

4.3 Quantitative Comparison
We further quantitatively analyze the comparison between FD2Talk
and previous state-of-the-art methods in lip synchronization, mo-
tion diversity, and image quality, on HDTF and VoxCeleb datasets.

Our approach surpasses MakeItTalk, SadTalker, DiffTalk, and
DreamTalk in terms of lip synchronization. We attribute this im-
provement to the alignment mask used during cross-attention in
the Exp and Pose Transformer. This mask enables the predicted
coefficients consistency with the corresponding audio signal. Addi-
tionally, the accurate lip movements are further enhanced by the lip
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Reference Generation Frames

Figure 5: Our FD2Talk demonstrates strong generalization
when applied to out-of-domain portraits. We generate each
talking head video using the same audio but different portrait
domains, which significantly diverge from training data.

synchronization loss with a well-pretrained lip expert. It is worth
noting that although Wav2Lip achieves the highest lip accuracy, it
neglects the overall naturalness and diversity of the results.

When considering the three metrics of image quality, i.e., FID,
PSNR, and SSIM, our approach significantly outperforms previous
methods, which can be attributed to two aspects: 1) Our method
maximizes the potential of diffusion models to generate more nat-
ural results compared to previous works using GANs, regression
models, or partial diffusion models. 2) We disentangle complex
facial information through two stages, enabling accurate motion
prediction, and the creation of natural, high-fidelity appearance
textures, ultimately resulting in superior and high-quality results.

Moreover, our work surpasses previous methods in the diversity
of head motions and achieves the best performance in Diversity
and Beat Align Score. This achievement is attributed to our Pose
Transformer, which predicts the head pose coefficients through
the denoising process. The introduced random noise facilitates the
generation of richer and more diverse pose results compared to
previous methods.

4.4 Generalization Performance
We also test the generalization of our FD2Talk model for out-of-
domain portraits. As demonstrated in Fig. 5, whether the provided
faces are paintings, cartoon portraits, or oil paintings, our FD2Talk
can animate them using audio signals, ensuring lip synchronization
while preserving the appearance details of the reference face with
high fidelity, thus enhancing image quality. Moreover, the generated
results include rich head poses, demonstrating excellent motion
diversity as expected. This generalization ability stems from the
decoupling of facial representation. In the first stage, we focus on
generating appearance-independent motion information, which is
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Figure 6: The visualization results of: 1) Utilizing a single DiT
to predict expressions and head poses jointly; 2) Concate-
nating the two conditions of UNet; and 3) Our full FD2Talk
model. We can observe that using a single DiT makes the
results less diverse and synchronized, while concatenating
two conditions leads to distorted and unnatural faces.

solely linked to the audio signal and remains robust across various
portrait domains.

4.5 Ablation Studies
4.5.1 Decoupling Expressions and Head Poses. In the first stage,
we decouple the Diffusion Transformers for the prediction of ex-
pressions and poses to address the one-to-many mapping issue. We
compare this approach with a baseline where a Diffusion Trans-
former is used to jointly predict expression and pose coefficients.
As shown in Tab. 2 and Fig. 6, this baseline exhibits a noticeable de-
crease in lip synchronization and motion diversity. This is because
lip movements are heavily influenced by facial expressions but
have little correlation with head pose. On the other hand, motion
diversity is closely related to predicted pose coefficients. Jointly
learning these coefficients leads to mutual interference and makes
training more challenging. Therefore, we choose to decouple the
prediction of expression and pose coefficients using Exp and Pose
Transformers, respectively.

4.5.2 Conditions of Diffusion UNet. In the second stage, the pre-
dicted motion information and encoded appearance texture are
passed through distinct cross-attention layers to guide the Diffusion
UNet. We verify its effectiveness by comparing it with a baseline
where we directly concatenate these two conditions and guide the
denoising process. As demonstrated in Tab. 2 and Fig. 6, concate-
nating motion and appearance leads to a decrease in each metric,
particularly image quality, as we can observe the distortion in faces.
We analyze that appearance textures constitute image-domain in-
formation, which is much higher than coefficient-domain motion.
Therefore, decoupling them using two distinct cross-attention lay-
ers can significantly enhance the robustness of overall diffusion
models and ensure convergence.
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Table 2: Ablation studies on the 1) Decoupling of Diffusion Transformers and 2) Conditions of the Diffusion UNet.

Settings Lip Synchronization Motion Diversity Image Quality
LSE-C ↑ SyncNet ↑ Diversity ↑ Beat Align ↑ FID ↓ PSNR ↑ SSIM ↑

Single Diffusion Transformer 3.11 3.08 0.193 0.189 22.06 37.66 0.761
Concatenate UNet Conditions 4.79 4.66 0.249 0.251 30.79 29.91 0.523
Full (Our FD2Talk) 7.31 6.26 0.322 0.331 21.32 38.10 0.776

Table 3: Ablation studies of lip synchronization. w/o align-
ment: We remove the alignment mask in DiTs. w/o L𝑠𝑦𝑛𝑐 : We
eliminate the constraint from the pre-trained lip expert.

Settings Lip Synchronization
LSE-C ↑ SyncNet ↑

w/o alignment 4.66 3.97
w/o L𝑠𝑦𝑛𝑐 5.35 4.63
Full (Our FD2Talk) 7.31 6.26

Table 4: User studies results.

Methods Lip Sync Motion Diversity Image Quality
Wav2Lip 24.9% 1.2% 2.1%
MakeItTalk 3.6% 2.7% 3.5%
SadTalker 16.8% 23.6% 17.8%
DiffTalk 12.9% 8.1% 16.5%
DreamTalk 15.2% 10.6% 8.5%
Ours 26.6% 53.8% 51.6%

4.5.3 Ablation Studies of Lip Synchronization. In FD2Talk, we en-
sure lip synchronization from two aspects: 1) Aligning the audio
and motions during cross-attention. When we integrate au-
dio features into the network, an alignment maskM is designed
to ensure the consistency of generated coefficients and audio. To
assess its significance, we conduct an experiment by removing
the M. As indicated in Tab. 3, the absence of M notably affects
lip synchronization. Our analysis demonstrates that without M,
the motion generation in each timestamp is misled by audio from
other unrelated timestamps. 2) Guided with the pre-trained lip
expert. During the training of Exp Transformer, we utilize a pre-
trained lip expert to constrain the lip-related coefficients using
L𝑠𝑦𝑛𝑐 . Here, we remove it to compare the effectiveness of L𝑠𝑦𝑛𝑐 .
As shown in Tab. 3, when the model is trained without L𝑠𝑦𝑛𝑐 , lip
synchronization significantly drops. We attribute this to the fact
that the coefficients are generated through a denoising process,
which means introduced random noise may lead to inaccurate lip
shapes. Fig. 7 also shows that utilizing the alignment mask and
training with L𝑠𝑦𝑛𝑐 result in much better lip synchronization for
the generated faces.

4.6 User Studies
We conduct user studies with 20 participants to evaluate the perfor-
mance of all methods. We generate 30 test videos covering different
genders, ages, styles, and expressions. For each method, partici-
pants are required to choose the best one based on three metrics: 1)
lip synchronization, 2) head motion diversity, and 3) overall image
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Figure 7: Comparison of 1) w/o AM: without alignment mask,
2) w/o LE: training without lip expert, and 3) full FD2Talk.
We can notice that both the alignment mask and pre-trained
lip expert can enhance lip synchronization of our model.

quality. As demonstrated in Tab. 4, our work outperforms previ-
ous methods across all aspects, particularly in motion diversity
and image quality. We attribute this to the decoupling of motion
and appearance, as well as adopting diffusion models to generate
higher-quality frames.

5 CONCLUSION
Talking head generation is an important research topic that still
faces great challenges. Considering the issues of previous works,
such as reliance on generative adversarial networks (GANs), re-
gression models, and partial diffusion models, and neglecting the
disentangling of complex facial representation, we propose a novel
facial decoupled diffusion model, called FD2Talk, to generate high-
quality, natural, and diverse results. Our FD2Talk fully leverages
the strong generative ability of diffusion models and decouples the
high-dimensional facial information into motion and appearance.
We firstly utilize Diffusion Transformers to predict the accurate
3DMM expression and head pose coefficients from the audio sig-
nal, which serves as the decoupled motion-only information. Then
these motion coefficients are fused into the Diffusion UNet, along
with the appearance texture extracted from the reference image, to
guide the generation of final RGB frames. Extensive experiments
demonstrate that our approach surpasses previous methods in gen-
erating more accurate lip movements and yielding higher-quality
and more diverse results.
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