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A APPENDIX

A.1 EXPERIMENTAL DETAILS

We run experiments on 4 MuJoCo environments: Half-Cheetah, Walker, Hopper and Humanoid and
on 6 Atari games: Boxing, Breakout, Freeway, Gopher, Pong and Seaquest. Our code with the exact
configurations we use to reproduce the experiments is available as open source2. We use QWR as
described in Algorithm 2 with the following hyper-parameters:

• We set n_iterations to 100 on MuJoCo and on Atari we stop on each game after
reaching 100K interactions with the environment (episodes are limited to 2000 interactions
during training).
• We set n_critic_steps to 3000 and update_frequency to 100, so the Q target

network is updated 30 times in each epoch.
• We set n_actor_steps to 3000 as well.
• The number of samples is 8 by default and the margin is 3, see Section 4.2 for ablations and

discussion of those values.

When training the networks, we use the Adam optimizer. Learning rate for the critic is set to 5e− 4
and for the actor it is set to 1e− 4 for all our experiments. We use the standard architectures for deep
networks. In MuJoCo experiments we use a multi-layer perceptron with two layers 256 neurons each
and ReLU activations. In Atari experiments we use the same convolutional architectures as Mnih
et al. (2013a).

A.2 FORMAL ANALYSIS OF AWR WITH LIMITED DATA

Since sample efficiency is one of the key challenges in deep reinforcement learning, it would be
desirable to have better tools to understand why any RL algorithm – for instance AWR – is sample
efficient or not. This is hard to achieve in the general setting, but we identify a key simplifying
assumption that allows us to solve AWR analytically and identify the source of its problems.

The assumption we introduce, called state-determines-action, concerns the content of the replay
buffer D of an off-policy RL algorithm. The replay buffer contains all state-action pairs that the
algorithm has visited so far during its interactions with the environment. We say that a replay buffer
D satisfies the state-determines-action assumption when for each state s in the buffer, there is a
unique action that was taken from it, formally:

for all (s, a), (s′, a′) ∈ D : s = s′ =⇒ a = a′.

This assumption may seem limiting and indeed – it might not true in many experimental runs of
RL algorithms. Even a random policy starting from the same state could violate the assumption the
second time it collects a trajectory. But in the case of limited data, when only a few trajectories
are collected, this assumption may hold, at least for a large subset of the replay buffer. This makes
it relevant to the study of sample efficiency – we argue that an algorithm that does not perform
well under this assumption will rarely be sample-efficient. We believe that good performance under
the state-determines-action assumption is also necessary for RL algorithms to scale well to larger
real-world settings. As the Greek philosopher Heraclitus said, no man ever steps in the same river
twice. In real world the same state is never visited twice to give a chance to take different actions.

A simplifying assumption like state-determines-action is useful only if it indeed simplifies the analysis
of RL algorithms. We show that in case of AWR it does even more – it allows us to analytically
calculate the final policy that the algorithm produces. In the case of AWR, it turns out that the
resulting policy yields no improvement over the sampling policy.

While AWR achieves very good results after longer training, it is not very sample efficient, as noted
in the future work section of (Peng et al., 2019). To address this problem, let us analyze a single loop
of actor training in AWR:

πi+1
D ← argmax

π
Es,a∼D

[
log π(a|s) exp

(
1

β
(Rs,a
D − V

i
D(s))

)]
(6)
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For simplicity, let us denote

αs,a
D = exp

(
1

β
(Rs,a
D − V

i
D(s))

)
(7)

so the above update can be written as:

πi+1
D ← argmax

π
Es,a∼D [log π(a|s)αs,a

D ] (8)

How this update acts on a replay buffer that satisfies the state-determines-action assumption? It turns
out that we can answer this question analytically using the following theorem.
Theorem 1. Let a replay buffer D ⊆ S ×A satisfy the state-determines-action assumption and let
πD be a policy distribution that clones the behaviour from D, i.e., that assigns to each state s from D
the action a such that (s, a) ∈ D with probability 1. Then, under the AWR update, πi+1

D ← πD.

Proof. (For discrete action spaces.) By definition of the AWR update rule, πi+1
D ←

argmaxπ Es,a∼D[log π(a|s)αs,a
D ]. Recall that the number αs,a

D is non-negative as it is an expo-
nent of another number. Thus the value log π(a|s)αs,a

D can be at most 0, since the logarithm of a
probability is negative or 0. The policy πD assigns probability 1 to the action a in state s, so it does
reach the value 0 and therefore reaches argmaxπ as required.

As we can see from the above theorem, the AWR update rule will insist on cloning the action taken
in the replay buffer as long as it satisfies the state-determines-action assumption. In a deterministic
environment, the new policy πD will not add any new data to the buffer, only replay a trajectory
already in it. So the whole AWR loop will end with the policy πD, which yields no improvement.

How come AWR works so well in practice, even with not-that-many interactions? First of all, note
that for the above effect to occur in practice, the neural network used for AWR actor must be large
enough and trained long enough to memorize the data from the replay buffer. Even when this is the
case, the policy it learns must be allowed to express distributions that assign probability 1 to a single
action. This holds for environments with discrete actions, but it is not true when using Gaussian
distributions with fixed variance in continuous action spaces. But even in that case, using an algorithm
that corrects this problem leads to improved sample efficiency, as we show below.

A.2.1 CONTINUOUS ACTION SPACES

Note that this theorem is also useful in the case of learning continuous policies. For instance, a
Gaussian policy with parameterized variance can learn to decrease the variance to be arbitrarily close
to zero, in the limit approaching the distribution defined in the theorem. While the theorem still holds,
the notions of AWR and the proof need to be clarified in the continuous setting. First of all, let us
clarify the notation of Equation 8:

πi+1
D ← argmax

π
Es,a∼D [log π(a|s)αs,a

D ]

For discrete actions, π(a|s) is a discrete probability distribution, so π(a|s) is non-zero for some
action a. For continuous distributions π(a|s) may be 0, making the values undefined in that strict
sense (and taking the expectation over D doesn’t change that as D is a finite set). The way to work
around this problem is to let π(a|s) be a probability density function instead.

The notions of Theorem 1 must also be clarified in this case: the distribution that assigns probability
1 to a single action does not have a probability density function, but the Dirac delta can be used as
its probability density in a generalized way. There is a need to also modify the proof of Theorem 1,
as we cannot anymore rely on log π(a|s) ≤ 0, as probability density functions can take arbitrarily
large values. But any standard probability density function π(a|s) can be improved by increasing
the density at a and decreasing it everywhere else. So the maximum can only be realized when
π(a|s) =∞, as for the Dirac delta.

To clarify the above considerations in more specific terms, let us consider the common practical case
where we only consider π that are probability density functions of the Gaussian distribution. In that
case, each π(·|s) is characterized by σ(s) and µ(s) of the Gaussian in state s, that is

π(a|s) = 1

σ
√
2π
e−

1
2 (
a−µ
σ )2
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and

log π(a|s) = log(
1

σ
√
2π

) + log(e−
1
2 (
a−µ
σ )2) =

= − log(σ
√
2π)− 1

2
(
a− µ
σ

)2.

This is maximized by choosing µ = a and reducing σ towards 0: at σ = e−n we get

log π(a|s) = − log(σ
√
2π)− 1

2
(
a− µ
σ

)2 =

= − log(
√
2πe−n)− 0 =

= n− log
√
2π,

which approaches infinity as we increase n. This corresponds to a sequence of Gaussian distributions
with mean at the action a and variance decreasing towards 0, converging to the Dirac delta, which
assigns the whole probability mass to a single action.

A.3 FORMAL ANALYSIS OF QWR WITH LIMITED DATA

To see how QWR performs under limited data, we are going to formulate a positive theorem showing
that it achieves the policy improvement that AWR aims for even in a limited data setting. Note
that this time we allow replay buffers that do not not necessarily satisfy the state-determines-action
assumption. But, for clarity, we make a simplifying assumption that the replay buffer has been
sampled by a single policy µ.

Recall the QWR update rule:

πi+1
D ← argmax

π
Es∼DEa∼µ(·|s)

[
log π(a|s) exp

(
1

β
(Qµ(s,a)− V̂µ(s))

)]
(9)

where V̂µ(s) = Ea∼µ(·|s)Qµ(s,a) and D is the set of states in the replay buffer.

Let π?µ(a|s) ∝ µ(a|s) exp
(

1
β

(
Rs,a
µ − Vµ(s)

))
, where Vµ is the state value function of µ. This

is the policy optimizing the expected improvement over the sampling policy µ, subject to a KL
constraint – the same as in Equation 36 in Peng et al. (2019).

Since π?µ is the target policy resulting from the AWR derivation, we know from Peng et al. (2019)
that AWR will update towards this policy in the limit, when the replay buffer is large enough. But
from Theorem 1 we know that it will fail to perform this update when the state-determines-action
assumption holds. Below we show that QWR will perform the same desirable update for any replay
buffer, as long as we restrict the attention to states in the buffer.
Theorem 2. LetD ⊆ S be a finite sample from dµ(s) - the undiscounted state distribution of a policy
µ(a|s). Let Qµ be the state-action value function for µ, so Qµ(s,a) = Rs,a

µ for any state and action.
Then, under the QWR actor update, πi+1

D = π?µ|D - the policy π?µ restricted to the set of states D.

Proof. From the definition of V̂µ(s) we have V̂µ(s) = Ea∼µ(·|s)Qµ(s,a) = Vµ(s). Since
Qµ(s,a) = Rs,a

µ ,

πi+1
D ← argmax

π
Es∼DEa∼µ(·|s)

[
log π(a|s) exp

(
1

β
(Rs,a

µ − Vµ(s))
)]

. (10)

We can now change the measure using the definition of π?:

πi+1
D ← argmax

π
Es∼DEa∼π?(·|s) log π(a|s). (11)

The inner expectation, up to a normalizing constant, is the negative cross-entropy between π? and π.
Since cross-entropy between two distributions is minimized when the distributions are equal, and
our optimization problem can be solved for every state from D separately, the optimum is reached at
π = π?µ|D.
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As we can see, the QWR update rule reaches the desired target policy even under limited data.
This stands in contrast to AWR, which requires repeating states in the replay buffer, as shown in
Theorem 1.

A.4 MULTI-STEP TARGETS

To make the training of the Q-value network more efficient, we implement an approach inspired by
widely-used multi-step Q-learning (Mnih et al., 2016). We consider targets for the Q-value network
computed over multiple different time horizons:

Q?µ,t(s1,a1) =

t∑
i=1

γi−1ri + γtEa′1,...,a
′
n∼µ(·|st+1)F ({Qµ(st+1,a

′
1), ..., Qµ(st+1,a

′
n)}) (12)

where si, ai, ri are the states, actions and rewards in a collected trajectory, respectively. We aggregate
those multi-step targets using a truncated TD(λ) estimator (Sutton & Barto, 2018, p. 236):

Q?µ(s,a) = (1− λ)
T∑
t=1

λt−1Q?µ,t(s,a) (13)
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