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Abstract

We introduce ParK, a new large-scale solver for kernel ridge regression. Our
approach combines partitioning with random projections and iterative optimization
to reduce space and time complexity while provably maintaining the same statistical
accuracy. In particular, constructing suitable partitions directly in the feature
space rather than in the input space, we promote orthogonality between the local
estimators, thus ensuring that key quantities such as local effective dimension and
bias remain under control. We characterize the statistical-computational tradeoff
of our model, and demonstrate the effectiveness of our method by numerical
experiments on large-scale datasets.

1 Introduction

The development of provably accurate and efficient algorithms for learning is key to tackle modern
large-scale applications. Kernel methods [31, 32] provide a natural ground to develop this research
direction. On the one hand they have sound statistical guarantees [7, 32, 33], but on the other hand
their basic implementations are limited to sample size of only a few tens of thousands of points [32,
Chapter 11]. Recent years have witnessed a growing literature introducing algorithmic solutions to
improve efficiency, but also theoretical guarantees that quantify how accuracy is affected.

We next recall a few lines of work relevant to our study. A first line of work is based on exploiting
ideas from optimization and numerical analysis. This includes for example gradient methods [37],
as well as their accelerated [3], stochastic [10], preconditioned [13] and distributed [27] variants. A
second line of work is based on using randomized approaches to reduce the size of the problem to
be solved. This includes Nyström approximations [36], random features [25] and more generally
sketching methods [1]. The theoretical properties of these methods have been recently characterized in
terms of sharp statistical bounds [28, 30]. Finally, a third line of work considers different partitioning
strategies to divide the estimation step in smaller subproblems. This approach is based on splitting
the input space in regions where local estimators are defined [23, 35, 34, 11, 24, 5]. In this context,
the emphasis is typically on allowing the estimation of larger classes of functions. Another form of
partitioning, called divide-and-conquer, is instead based on randomly splitting the training data to
then obtain a global estimator by averaging [38, 20, 14]. In this approach, the focus is primarily on
computational saving. Notably, a number of works have considered combinations of these ideas, see
for example [6, 29, 8, 24, 19].
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In this paper we propose and study a local kernel algorithm, called ParK, combining partitioning with
iterative optimization and sketching. Our goal is to provide an efficient and accurate approximation to
a global kernel ridge regression estimator. The main novelty in ParK is in the form of the considered
partition, that we define in the feature space, rather than in the input space as in traditional partitioning
methods. This allows to promote orthogonality between the local estimators, and thus to control
the local effective dimension and the local bias. Given a partition, local kernel ridge estimators are
computed using sketching and preconditioned conjugate gradient iterations [29]. From a theoretical
point of view, our main contribution is characterizing the statistical properties of ParK, in terms of
conditions on the partition and the choice of the hyper-parameters. Borrowing ideas from subspace
clustering [12], we show that the minimal angle between suitable subspaces induced by the partition
plays a crucial role. Indeed, our analysis shows that, if such an angle is sufficiently large, ParK
can achieve the same accuracy as global kernel ridge regression estimators, with only a fraction of
computations. Our theoretical results are complemented with numerical experiments on very large
datasets, which show that ParK can indeed provide excellent performances, on par and often better
than the best available large-scale kernel methods.

The rest of the paper is organized as follows. In Section 2 we state the problem and recall the basics
of kernel ridge regression. In Section 3 we illustrate our algorithm. In Section 4 we analyze the
prediction error of our method. In Section 5 we present the results of our numerical experiments. In
Section 6 we draw some conclusions and report the main limitations of our work. Additional proofs
and details are collected in Appendix A.

2 Background

Let (xi, yi) with i ∈ [n] = {1, . . . , n} be n pairs of points in X ×Y , where X ⊆ Rd with d ∈ N and
Y ⊆ R. We assume the relation between input points xi and output points yi to be determined by the
noisy evaluations of an unknown function f∗ : X → Y as

yi = f∗(xi) + εi i ∈ [n]. (1)
Based on the samples (xi, yi), we want to estimate the function f∗, searching for solutions in a
suitable hypothesis spaceH as detailed below.

LetH be a reproducing kernel Hilbert space (RKHS), that is, a Hilbert space of functions with inner
product 〈·, ·〉H and symmetric positive definite kernel K : X ×X → R such that Kx = K(x, ·) ∈ H
and f(x) = 〈f,Kx〉H for all f ∈ H, x ∈ X . We recall that, for every RKHS H, there exist a
Hilbert feature space F and a feature map φ : X → F such that K(x, x′) = 〈φ(x), φ(x′)〉F for all
x, x′ ∈ X . The feature map is not unique; in particular, one may take, as we do in all that follows,
F = H and φ(x) = Kx, in which caseH = span φ(X ), where φ(X ) = {φ(x) : x ∈ X}.
Kernel ridge regression (KRR) corresponds to minimizing

min
f∈H

1

n

n∑
i=1

|f(xi)− yi|2 + λ ‖f‖2H , (2)

where λ > 0 and ‖f‖2H = 〈f, f〉H. By the representer theorem [31], the (unique) solution to problem
(2) can be written as

f̂λ(x) =

n∑
i=1

αiK(xi, x), α = (Kn + λnI)
−1
Y, (3)

where α = [α1, . . . , αn]
>, Y = [y1, . . . , yn]

> ∈ Rn, and Kn ∈ Rn×n is the kernel matrix defined
by (Kn)i,j = K(xi, xj) for i, j ∈ [n]. As a consequence, the estimator (3) can be derived restricting
the minimization problem (2) to the finite-dimensional subspace Hn = span{φ(xi) | i ∈ [n]}.
Computing (3) for large n is prohibitively expensive, as space and time complexities are, respectively,
O(n2) and O(n3). The goal of this paper is to provide an algorithm to compute an efficient
approximation to (3).

3 Algorithm

Our method combines diverse techniques, including partitioning, sketching and preconditioned
iterative optimization. We begin focusing on partitioning. While classical partitioning methods
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construct partitions in the input space, the main novelty of our approach is that we construct partitions
in the feature space. Note that, in the case of a universal kernel on a compact input space, every feature
map is injective [32, Lemma 4.55], hence every partition of the input space defines a corresponding
partition of the feature space. Thus, we may see our approach as a generalization of classical input
space partitioning approaches. As will become apparent from our analysis, the performance of a
partitioned kernel estimator depends crucially on two main quantities: the local biases and the local
effective dimensions. Since both quantities are strictly related to the RKHS of choice, constructing
partitions in feature space allows for a more direct control. In particular, promoting orthogonality in
the RKHS metric will generate feature space partitions which tend to minimize both the local biases
and the local effective dimensions. In the next section we start discussing how such partitions can be
defined.

3.1 Learning on feature space partitions

For Q ∈ N, we define a partition of φ(X ) as a family {Vq}q∈[Q] of subsets Vq ⊆ φ(X ) such that

φ(X ) =
Q⋃
q=1

Vq Vq ∩ Vk = ∅ q 6= k. (4)

The partition (4) induces a local subsampling of the training set and a local hypothesis space. Namely,
we define

[n]q = {i ∈ [n] : φ(xi) ∈ Vq}, Hq = span{Vq}.

Also, we denote by nq = #[n]q the local subsampling rate.

Voronoi partitions. Notice that so far Vq is an arbitrary subset ofH, and therefore computing the set
[n]q can be arbitrarily difficult (e.g., Vq could be defined using an infinite number of constraints and
be non-computable). For this reason, although our theoretical analysis holds for any partition defined
as in (4), we focus on the special case of Voronoi partitions, where the subsets (also called cells) are
induced by a set of Q centroids {φ(cq)}Qq=1 with cq ∈ X points in the input space. Then, each cell
Vq is uniquely defined as

Vq = {φ(x) : q = arg min
k∈[Q]

‖φ(x)− φ(ck)‖2H},

with ties broken arbitrarily (e.g., by assigning the point to the cell with the smaller q). It is now
possible to identify the set of indices [n]q using the RKHS distance

‖φ(x)− φ(x′)‖2H = K(x, x) +K(x′, x′)− 2K(x, x′), (5)

computing the distance to each centroid and taking the minimum.

We remark that our approach based on directly partitioning the feature space has quite different
implications compared to previous approaches that partition the input space. For example, a Voronoi
partition of the feature space is very different from a Voronoi partition of the input space, since the
pre-image {x ∈ X : φ(x) ∈ Vq} does not need to follow any Voronoi shape. Moving from input
to feature space partitions also opens new computational challenges. For example, we choose to
explicitly represent the cell centroid as φ(cq) so that computing the distance and the assignment of
each point to a centroid is a O(1) operation. If instead we chose a more complex centroid, such
as a cluster barycenter generated by kernel k-means, or an eigenvector computed by kernel PCA,
this complexity might be much larger. As an example, the barycenter of a cluster of m points inH
might not correspond to any single point in X , and therefore cannot be explicitely represented, but
only implicitly as an average of m points inH. Therefore, computing a distance to such a centroid
would be an O(m) operation rather than a O(1). These and more subtle pitfalls appear only when we
consider the more flexible framework of feature space partitions.

Minimal principal angle. Focusing on partitions of Voronoi type, constructing a good partition
is equivalent to choosing a set of centroids that preserve the learning accuracy as much as possible.
As we rigorously show in Section 4, this can be guaranteed by choosing centroids that maximize
the minimal principal angle between subspaces. This quantity frequently appears in the analysis of
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subspace clustering [12], and will be important for us to control both the bias and the variance of
our estimator. The first principal angle between two linear subspaces U and W of a Hilbert space of
inner product 〈·, ·〉 and norm ‖ · ‖ is defined as

∠(U,W ) = min{arccos(〈u,w〉) : u ∈ U,w ∈W, ‖u‖ = ‖v‖ = 1}.

We call θ the minimal first principal angle between the subspacesHq , that is,

θ = min
q 6=k

∠(Hq,Hk). (6)

Once again, for computational reasons we cannot use direct optimization of this quantity inH as our
objective, since the optimal centroid placement might be impossible to express using points from
X . Instead, to promote large principal angles and obtain centroids that are computationally easy to
handle, we consider the following greedy iterative procedure. Let X = {xi : i ∈ [n]}. Then

c1 = argmax
c∈X

K(c, c), cq+1 = arg max
c∈X\{c1,...cq}

SCq(c), (7)

where

SCq(c) = K(c, c)− [K(c, c1), . . . ,K(c, cq)]
>K−1q [K(c, c1), . . . ,K(c, cq)]

is the Schur complement of a new candidate centroid c with respect to the q already selected centroids
{c1, . . . , cq}, and Kq ∈ Rq×q is defined by (Kq)i,j = K(ci, cj). Note that the inversion of Kq can
be efficiently computed using rank-1 updates. This strategy has been originally proposed by [9] with
the goal of maximizing the volume spanned by the points in the feature space, which is achieved
when the angle between all points selected is large as required by our condition. Crucially, it is
also easy to apply to RKHS’s, since computing Schur complements involves only inner products.
Beyond promoting large volume and orthogonality, the Schur complement also has important links
with uncertainty estimation and spectral approximation. In particular, SCq(c) is also equivalent to the
posterior variance of c in a Gaussian process [26], and to the leverage score of c w.r.t. the already
selected point in the context of randomized linear algebra [21].

3.2 Learning local KRR estimators by sketched preconditioned conjugate gradient

For each cell of a partition, a local estimator f̂q can be defined as the solution to the local KRR
problem

min
f∈Hq

1

nq

∑
i∈[n]q

|f(xi)− yi|2 + λq ‖f‖2H (8)

with λq > 0. Given the local estimators f̂q , we then define a global estimator f by

f(x) = f̂q(x) if φ(x) ∈ Vq. (9)

Note that the evaluation of the global estimator at a point needs only one local estimator.

Guidance on how to pick the values λq in (8) will follow from our theoretical analysis. Meanwhile,
we focus on how to efficiently solve the minimization problems (8). Let Xq = {xi ∈ X : i ∈
[n]q} ∈ Rnq×d and Yq = {yi ∈ Y : i ∈ [n]q} ∈ Rnq be the local subsets of input/output points,
and let Knq

∈ Rnq×nq be the local kernel matrix with entries (Knq
)i,j = K(xi, xj) for i, j ∈ [n]q.

Following the same ideas to derive (3), one could compute f̂q by

f̂q(x) =
∑
i∈[n]q

(αq)iK(xi, x), αq =
(
Knq

+ λqnqI
)−1

Yq. (10)

This would already result in a smaller computational burden compared to the vanilla KRR estimator
(3): the space and time complexities are now O(maxq∈[Q] nq

2) and O(
∑
q∈[Q] nq

3), potentially with
nq � n. Moreover, an additional saving in time can be obtained by distributing each task (10) over Q
different machines, leading to O(maxq∈[Q] nq

3) time complexity. However, the scaling in nq is still
quadratic and cubical. To improve these dependencies, we solve (10) only approximately, using the
FALKON algorithm proposed in [29]. To this end, we first need to introduce several key ingredients.
While the following constructions hold in general for any set of points, here we adapt them to the
partition setting outlined in the previous section.
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Local Nyström subsampling. For each q ∈ [Q], we consider a subset of mq ≤ nq points

X̃q = {x̃q,1, . . . , x̃q,mq} ⊆ Xq (11)

sampled uniformly at random from Xq. We then define Kmq ∈ Rmq×mq by (Kmq )i,j =
K(x̃q,i, x̃q,j) for i, j ∈ [mq], and Knqmq ∈ Rnq×mq by (Knqmq )i,j = K(xi, x̃q,j) for i ∈ [n]q, j ∈
[mq].

Local Preconditioner. For each q ∈ [Q], we define the local (sketched) preconditioner Bq ∈
Rmq×mq as

BqB
>
q = (

nq
mq

K2
mq

+ λqnqKmq
)−1.

Conjugate gradient descent. We let β̃q,t ∈ Rmq be the t-th iteration of conjugate gradient minimiz-
ing

Lq(β) =
1

nq
‖Knqmq

Bqβ − Yq‖2 + λqβ
>(B>q Kmq

Bq)β. (12)

Finally, we define the local FALKON estimator

f̃q,t(x) =

mq∑
i=1

(Bqβ̃q,t)iK(x̃i, x) q ∈ [Q]. (13)

3.3 ParK

We are now ready to present ParK. Let (φ(cq))
Q
q=1 with cq ∈ X be the centroids of the cells (Vq)

Q
q=1

selected greedily according to (7). We define the ParK estimator as

f t(x) = f̃q,t(x) if φ(x) ∈ Vq. (14)

The algorithm to train the above estimator (see Algorithm 1) consists of three main parts. The first
one greedily identifies the representative points (cq)

Q
q=1 such that (φ(cq))

Q
q=1 are the centroids of the

cells; the second one identifies the subsets of points Xq, Yq associated to each cell; the third one uses
the FALKON algorithm to solve the local minimization problem (12) for each Xq, Yq with q ∈ [Q],
thus deriving the Q local estimators (13). At prediction time, the algorithm first identifies to which
cell the test point belongs, and then proceeds using the local estimator of the selected cell to predict
the output (see Algorithm 2). Note that the RKHS distances in llne 4 of Algorithm 1 and line 1 of
Algorithm 2) are computed using the polarization identity (5).

Algorithm 1 ParK: Train
Require: Training set X = (xi)

n
i=1 ∈ Rn×d, Y = (yi)

n
i=1 ∈ Rn, numbers of local Nyström centers

{mq}Qq=1 ∈ NQ, local regularization parameters {λq}Qq=1 ∈ RQ+, number of local iterations
{tq}Qq=1 ∈ NQ .

1: Initialize [n]q = {} for all q ∈ [Q]

2: Greedily select (φ(cq))
Q
q=1 according to (7)

3: for i = 1, . . . , n do
4: Compute q = argminq∈[Q] ‖φ(xi)− φ(cq)‖

2
H

5: Update [n]q = [n]q ∪ {i}
6: end for
7: for q = 1, . . . , Q do
8: Select Xq = {xi ∈ X : i ∈ [n]q} and Yq = {yi ∈ Y : i ∈ [n]q}
9: Compute f̃q,tq as in eq. (13) using Xq, Yq

10: end for
11: Collect the local estimators f̃q,tq and return the ParK estimator f t as in eq. (14)
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Algorithm 2 ParK: Predict

Require: Test point x ∈ Rd, local estimators {f̃q,t}Qq=1, representatives of partition C = (cq)
Q
q=1

1: Select q = argminq∈[Q] ‖φ(x)− φ(cq)‖
2
H

2: Evaluate f̃q,t(x)

The time complexity of training ParK is O(Q2n log(n)) to compute the centroids, O(Qn) to com-
pute the indices [n]q, and O(tqmqnq) to compute each local estimator. Putting these quantities
together we get O(Q2n log(n) +

∑
q∈[Q] tqmqnq) in time, and O(maxq∈[Q]mq

2) in space. If we
parallelize the training of the local estimators over Q machines, the time complexity further reduces
to O(Q2n log(n) + maxq∈[Q] tqmqnq). In many practical scenarios, we can think Q as O(1). For
example, in all our experiments we take Q = 32 (see Section 5). We compare the complexity of
several KRR solver in Table 1.

Table 1: Computational complexity of some KRR solvers (up to constants). For D&C and ParK, we
report the time complexity on Q parallel machines and the space requirement for each machine.

naive iterative [37] Nyström/RF [36, 25] FALKON [29] D&C [38] ParK
space n2 n2 m2 m2 (n/Q)2 maxqmq

2

time n3 tn2 m2n tmn (n/Q)3 Q2n log(n) + maxq tqmqnq
test n n m m n Q+maxqmq

Space partitioning vs data splitting

We conclude this section commenting on a different yet related distributed approach. As briefly
recalled in the introduction, a straightforward way to decompose the KRR problem is by a simple split
of the training data. For example, one can divide the samples uniformly at random into Q disjoint
subsets of cardinality nq = n/Q. Methods performing such a step are known as divide-and-conquer
[38, 20, 14]. Consisting essentially in a block diagonal approximation of the kernel matrix, the
resulting final estimator is an average of globally subsampled models. Divide-and-conquer methods
are appealing due to the extreme simplicity of the splitting procedure and the direct control of the
subsampling rates nq. However, they can suffer from worse approximation error (see discussion in
[34]), and be expensive at test and evaluation time. On the other hand, partitions present several
potential benefits. First, data splitting is a byproduct of a geometric partition. This opens to the
opportunity of exploiting the structure of the space, for instance enforcing notions of locality or
orthogonality. Consistently, the final estimator is a union of local estimators, as opposed to an average
of global ones. Hence, partitioning may enhance the approximation power of the model, capturing
relevant local correlations [23]. As another consequence, at evaluation time only one local estimator,
instead of the average of all estimators, needs to be called, yielding further computational saving.
These nice properties have motivated a fruitful line of research, notably [23, 34, 24], where the
advantage in the partitioning approach has been studied both in statistical and in computational terms.
In this paper we concentrate on the computational aspects, expanding on theoretical tradeoffs outlined
in [34, 24] and developing [24] with new algorithmic ideas.

4 Theory

To simplify the analysis and better highlight the new ideas in play, we consider the problem (1) in a
fixed design setting [2, 15], where the xi are deterministic and the εi are independent and identically
distributed random variables.

Let L2 = L2(ρ) with ρ = 1
n

∑n
i=1 δxi

. We may identify L2 with Rn endowed with the inner product
〈u,w〉L2 = 1

nu
>w. We define the excess risk of an estimate f̂ of f∗ in problem (1) as

R(f̂) = ‖f̂ − f∗‖2L2 =
1

n

n∑
i=1

|f̂(xi)− f∗(xi)|2. (15)
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We are interested in studying the performance of the estimator f t defined in (14) given a partition (4),
as measured by the excess risk (15). Our theory will suggest how to construct the partition and tune
the regularization in order to get the best learning rate.

4.1 Definitions and assumptions

We start by defining some relevant operators in global and local variants. In view of (3) (and
the fixed design setting), we assume without loss of generality that H = Hn. We define the
covariance operator T : H → H as T = 1

n

∑
i∈[n] φ(xi) ⊗ φ(xi), where, for v, w ∈ H, v ⊗ w

denotes the operator u ∈ H 7→ 〈u, v〉Hw ∈ H. The operator T is standard in the analysis of
kernel methods [7]. We now define the local version of the covariance operator conditioned on
the partitioning (4). Thanks to (10) (and the fixed design setting), we can assume without loss of
generality thatHq = span{φ(xi) : i ∈ [n]q}. The local covariance operator Tq : H → H is defined
as Tq = 1

nq

∑
i∈[n]q φ(xi)⊗ φ(xi). We denote with Pq : H → H the orthogonal projection onto the

subspaceHq. For all q ∈ [Q], we let ρq = nq/n. Recall that we denote by θ the minimal principal
angle between the subspacesHq , as defined in (6).

To measure the capacity of the hypothesis spaces, we will use the standard notion of effective
dimension [7].

Effective dimension. The (global) effective dimension of the spaceH is given by

N (λ) = Tr((T + λ)−1T ) λ > 0.

Consistently, we define the local effective dimension of each spaceHq as

Nq(λq) = Tr((Tq + λq)
−1Tq) λq > 0.

We also define the local maximal degrees of freedom [2] as

N∞,q(λq) = sup
x∈Xq

〈φ(x), (Tq + λq)
−1φ(x)〉H λq > 0,

which gives the bound Nq(λq) ≤ N∞,q(λq) ≤ λ−1q supxK(x, x). The effective dimension is
related to the spectrum decay of the covariance operator, and thus it provides a way to quantify how
many important eigenfunctions the RKHS contains. In this sense, it serves as an implicit number of
parameters for the nonparametric model represented by the RKHS. The interplay between global
and local effective dimensions, hence between global and local model complexity, will play a major
role in our analysis. Similarly, there exist an interplay between a local and a global version of the
maximal degrees of freedom N∞(λ), which is also connected to the coherence of the T operator,
and to the concept of maximal leverage score [2].

We will need a few basic assumptions.

Assumption 1. f∗ ∈ H.

Assumption 2. κ2 = supx∈X K(x, x) <∞.

Assumption 3. The noise variables εi are i.i.d. sub-Gaussian of variance proxy σ2 <∞, i ∈ [n].

Assumption 3 is standard in the analysis of any regression model. In particular, sub-Gaussianity
allows to control the tails of the noise, and therefore to establish bounds in high probability. Bounded
and Gaussian noise are examples, but any variable with sub-Gaussian tail is covered. Assumptions
1 and 2 are instead typical of kernel methods. With Assumption 1, we suppose that the RKHS is a
well specified model. We stick to Assumption 1 for simplicity, but we could easily relax it assuming
the existence of a function in the RKHS with same excess risk as f∗, or considering the excess risk
with respect to the best in class. Assumption 2 allows to provide explicit bound for kernel related
quantities, and ensures in particular that functions in the RKHS are bounded.

4.2 Main results

Our first proposition generalizes the classical bias-variance tradeoff of KRR estimators incorporating
iterative optimization, random projections and feature partitioning. The result is a high probability
bound for the excess risk of our ParK estimator.
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Proposition 1. Let δ ∈ (0, 1). Under the regression model (1) and the assumptions of Section 4.1,
let f tq be the ParK estimator as defined in (14). If for each q ∈ [Q], 0 < λq ≤ κ2,

mq ≥ 5[1 + 14N∞,q(λq)] log(
8κ2

λqδ
), tq ≥ 2 log

(
4σ2

(
‖Pqf∗‖2H λq

)−1/2)
,

then, with probability at least 1− 4δ,

R(f tq ) ≤ 16

Q∑
q=1

‖Pqf∗‖2H λqρq + σ2

Q∑
q=1

Nq(λq) +
√
Nq(λq) log(1/δ) + 2 log(1/δ)

n
.

The proof of Proposition 1 is given in Appendix A.2. The bound consists of a bias and a variance
term. The bias term is an average of local biases, measured by the projection of the target function
onto the local hypothesis spaces, regularized by a local penalization. The variance term is essentially
the ratio between the sum of local effective dimensions and the global sample size. We are going to
control bias and variance in the next two propositions, whose proof is postponed to Appendix A.3.
For the bias, we prove the following generalized Bessel inequality.

Proposition 2. With the definitions of Section 4.1, we have

Q∑
q=1

‖Pqf∗‖2H ≤ (1 +Q2 cos(θ))‖f∗‖2H.

Proposition 2 bounds the possible redundancy of the local projections by the minimal principal angle
between the local subspaces. In particular, if the local subspaces are an orthogonal decomposition of
the global space, the partitioned estimator has no additional local bias. On the other hand, lack of
orthogonality results in a larger bias. Turning to the variance, we obtain the following bound on the
local effective dimensions.

Proposition 3. With the definitions of Section 4.1, for λq = λρ−1q we have

Q∑
q=1

Nq(λq) ≤
(
1 + κ2

cos2(θ)

λ

)
N (λ).

Once again, the minimal principal angle controls the ratio between local and global quantities. Where
there is perfect orthogonality, splitting the hypothesis space does not increase the effective dimension;
otherwise, a price proportional to the minimal principal angle is paid. With the above results in
hand, we can now control the excess risk of the ParK estimator in terms of the global norm of the
target function and the global effective dimension. This allows to compare the performance of our
partitioned method to that of a typical global method.

Theorem 4. Let δ ∈ (0, 1). Under the same assumptions of Proposition 1, let q = argminq∈[Q] ρq,
for 0 < λ ≤ ρqκ2 when λq = λρ−1q for each q ∈ [Q], with probability at least 1− 4δ,

R(f t) ≤ 16(1 +Q2 cos(θ))‖f∗‖2Hλ+
4σ2

n

(
1 + κ2

cos2(θ)

λ

)
N (λ) log(

1

δ
).

If we consider a model where H is the orthogonal sum of the subspaces Hq, as in [24], then
cos(θ) = 0, and the bound of Theorem 4 simplifies to R(f t) = O(λ‖f∗‖2 + N (λ)n−1). In
particular, setting λ = O(1/

√
n), we obtain the learning rate O(1/

√
n). This is known to be the

optimal rate, in the minimax sense, for global KRR models [7]. Note that, in the orthogonal case, the
constraint λ . ρq translates to the minimal local point requirement nq &

√
n for all q, and hence

to a bound on the partition size, namely Q .
√
n. On the other hand, when the subspaces Hq are

not perfectly orthogonal, our bound manifests a statistical-computational tradeoff, which is however
quantified by the minimal principal angle. Further, the constraints on the local number of Nyström
centers mq , iterations tq of Proposition 1, and the choice λq = λρ−1 with λ = 1/

√
n to achieve the

minimax rate, allows to recover a time complexity of O
(
Q2n log(n) +

∑
q∈[Q] nq

√
nq√
n
log(

nq√
n
)
)

.

8



Analyses of (input space) partitioned kernel estimators have been conducted within different models,
such as Gaussian SVM’s on Voronoi partitions [23], general kernels on clusters [34], and block-
diagonal kernels on arbitrary partitions [24]. In these works, the bounds are established in random
design, for plain [23, 34] or Nyström [24] local KRR estimators. Our result is in fixed design, but
compared to [24] incorporates the additional algorithmic ingredient of iterative optimization. For a
perfectly orthogonal model (cos θ = 0), we recover the result in [24] as a special case (although in
fixed design). In [34], the bias is controlled choosing same λq for all q, while the crucial bound of
Proposition 3 is made as an assumption. Note however that, at least in our proof of Proposition 3, it
is important to choose a differently scaled λq for each cell. Furthermore, our analysis and numerical
tests motivate that partitioning the feature space is key to control both local bias and local effective
dimension. Rather than on computational aspects, [23] focuses on extending statistical optimality for
functions of local smoothness. This theme is also explored in [34, 24]. However, since the proposed
partitioning step is either unsupervised [23, 34] or unspecified [24], improved rates can be obtained
only under oracle assumptions, that is, assuming that the smoothness of the target function is localized
right on the cells of the chosen partition. Partitions adapting to the unknown local smoothness of
the target function can arguably be learned only in a supervised manner. This has been done for
piecewise polynomial regression drawing ideas from multi-resolution analysis [4, 18]. An application
of these ideas for kernel methods is not straightforward due to the usual computational constraints,
but could be subject of future work.

5 Experiments

In this section we study the performance of ParK on some large-scale datasets (n ≈ 106, 107, 109).
In particular we consider dataset where at the moment, because of their cardinality, only a few
solvers can efficiently learn from. For this reason we compare to the global large-scale kernel method
FALKON which has so far being the method that performs the best in terms of time and accuracy
on these datasets [22]. A standard divide-and-conquer method can not run on these datasets (for the
high space complexity), for this reason we compare with a version where each local estimator is a
sketched KRR estimator computed with FALKON. We run two different versions of this algorithm,
D&C-FALK(v1) and D&C-FALK(v2), that differ only in their hyper-parameters choices as specified
later in this section. We also consider a second version of ParK where the centroids of the partition’s
cells are chosen as {φ(cq)}Qq=1 with cq selected uniformly at randomly from the training data X
(referred to as ParK-Uni). For each experiment we report mean and standard deviation on 10 trials.
The experiments are implemented in python using pytorch and the FALKON library [22]. The
experiments run on a machine with 2 Intel Xeon Silver 4116 CPUs and 1 GPU NVIDIA Titan Xp.
The ram of the machine is 256 GB. We perform experiments on the four large-scale datasets TAXI
(n ≈ 109, d = 9, regression), HIGGS (n ≈ 107, d = 28, classification), AIRLINE (n ≈ 106, d = 8,
regression), AIRLINE-CLS (n ≈ 106, d = 8, classification) with the same pre-processing and same
random train/test split used in [22]. We do not cross validate hyper-parameters of the local estimators
of ParK. Instead we use the same used by FALKON in the paper [22] with the following exeptions:
let λ be the global regularization parameters of FALKON and m the number of the Nyström points,
the local estimators of ParK use regularization λq = λρ−1q and mq = mρq as suggested by the
theory. D&C-FALK(v1) also follows the same rule for setting the hyper-parameters of its local
estimators, while D&C-FALK(v2) uses the same of the (v1) version except the number of Nyström
centers which are 3mq in AIRLINE and AIRLINE-CLS, 5mq in HIGGS, and 6mq in TAXI. The
number of centroids used by ParK and D&C-FALK is Q = 32 for all experiments. Performance
for different Q values remains almost identical but worsen in time for higher values. Further, note
that the local estimators of ParK and D&C-FALK are learned sequentially. We report in Table 2 the
errors and times. In particular, for ParK(-Uni) we report the initialization time that include the greedy
algorithm to select the centroids (not for ParK-Uni) and the assignment of the training points to the
corresponding cell, the sequential training times of the local estimators, and the total time of this
pipeline.

We can see that ParK can match the accuracy of the global FALKON estimator with a smaller
computational cost. ParK-Uni requires further less time, at the expense of some loss in accuracy,
confirming that a worse partition can affect generalization, as suggested by our theory. The reason
of the ParK-Uni speedup is twofold. First, the initialization step requires only to assign points to a
set of randomly selected centroids, and second, the local subsets of points have uniform cardinality
(which is usually not the case for normal ParK). D&C-FALK(v1) is the algorithm with with smallest
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Table 2: Accuracy and running time comparison on large-scale datasets.

TAXI n ≈ 109 HIGGS n ≈ 107

ERROR
(RMSE)

TIME (MIN.) ERROR
(1−AUC)

TIME (SEC.)

INIT TRAIN TOTAL INIT TRAIN TOTAL

PARK 312.0±0.2 25±1 39±13 64±13 0.182±0.001 30±2 474±172 504±172

PARK-UNI 315.7±0.6 5±1 13±1 18±1 0.192±0.000 3±1 67±7 70±7

FALKON 311.7±0.1 - - 120±1 0.180±0.001 - - 715±6

D&C-FALK(V1) 356.2±0.2 - - 14±1 0.212±0.000 - - 50±1

D&C-FALK(V2) 327.4±0.1 - - 29±1 0.195±0.000 - - 288±2

AIRLINE n ≈ 106 AIRLINE-CLS n ≈ 106

ERROR
(MSE)

TIME (SEC.) ERROR
(C-ERR)

TIME (SEC.)

INIT TRAIN TOTAL INIT TRAIN TOTAL

PARK 0.760±0.005 6±1 71±9 77±10 31.5±0.2% 9±1 55±6 64±6

PARK-UNI 0.766±0.006 1±1 32±3 33±3 31.6±0.2% 2±1 22±2 24±2

FALKON 0.758±0.005 - - 334±2 31.5±0.2% - - 391±5

D&C-FALK(V1) 0.834±0.005 - - 27±1 33.2±0.1% - - 20±1

D&C-FALK(V2) 0.799±0.005 - - 96±1 32.2±0.1% - - 73±1

training time but achieve significantly worse performance using the same rule to choose the number
of Nyström points of ParK. For this reason, in D&C-FALK(v2) we increase the number of centroid
to improve the performance, but the error of the method still results higher than the others with a
training time now higher than ParK.

6 Conclusions and limitations.
In this paper we have proposed a new algorithm for large scale kernel ridge regression. Our method
integrates and jointly exploits three previously uncombined algorithmic strategies, namely partitions,
sketching and (preconditioned) iterative optimization. Distinctively from traditional partitioned
methods, we have introduced the idea of partitioning the feature space, which allows to directly
control and resolve the localization of the kernel model. We have presented a simple analysis that
characterizes the statistical-computational trade-off of a partitioned kernel estimator by the interplay
of intuitive quantities. Moreover, we have demonstrated that our algorithm performs favourably
against a state-of-the-art large scale global method.

The main theoretical limitation of our work is the lack of a result connecting the proposed partitioning
algorithm to the properties of the resulting partition. This seems to be a common gap in the literature of
partitioned kernel methods, where partitions are often assumed to be given or, if explicitly constructed,
are not statistically characterized. While our construction is theoretically motivated by the analysis
and practically validated by the experiments, an actual guarantee is missing. In particular, one
could try to prove that the proposed greedy procedure would actually find a maximally orthogonal
decomposition of the hypothesis space, under suitable assumptions. From an algorithmic point
of view, we point out that the computational cost of the greedy algorithm limits the choice of the
partition size. Indeed, large partitions accelerate the training step, but increase the initialization time.
We remark, however, that our model is flexible enough to include cheaper partitioning options. For
example, our experiments show that uniformly chosen partitions can still produce good results.
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A Appendix

A.1 Relevant operators

We define operators in global, local and subsampled variants. The global definitions are standard in
the analysis of kernel methods [7]. In view of (3), we assume without loss of generality thatH = Hn.
Recall that L2 = L2(ρ) with ρ = 1

n

∑n
i=1 δxi , and that we identify L2 with Rn with inner product

〈u,w〉L2 = 1
nu
>w.

Global operators:

• S : H → L2 Sf(x) = 〈f, φ(x)〉H the sampling operator
• S∗ : L2 → H S∗w = 1

n

∑
i∈[n] wi φ(xi) the out-of-sample extension operator

• T : H → H T = S∗S = 1
n

∑
i∈[n] φ(xi)⊗ φ(xi) the covariance operator

We now define local versions of the operators above, conditioned on the partitioning (4). Thanks
to (10), we can assume without loss of generality that Hq = span{φ(xi) : i ∈ [n]q}. Let L2

q =

L2(ρ(· | Vq)) with ρ(· | Vq) = 1
nq

∑
i∈[n]q δxi . We identify L2

q with Rnq endowed with the inner
product 〈u,w〉L2

q
= 1

nq
u>w.

Local operators:

• Sq : H → L2
q Sqf(x) = 〈f, φ(x)〉H

• S∗q : L2
q → H S∗qw = 1

nq

∑
i∈[n]q wi φ(xi)

• Tq : H → H Tq = S∗qSq =
1
nq

∑
i∈[n]q φ(xi)⊗ φ(xi)

The orthogonal projection Pq : H → H onto the subspaceHq is given by

Pq = S+
q Sq,

where + denotes the Moore–Penrose pseudoinverse. Let ρq = ρ(Vq) = nq/n. We observe that

T =
∑
q

Tqρq, (16)

namely, the global covariance is an average of local covariances. Based on the local subsampling
(11), we further introduce the following operators.

Subsampled local operators:

• S̃q : H → Rmq S̃qf = 1√
mq

(〈f, φ(x̃q,i)〉)
mq

i=1

• S̃∗q : Rmq → H S̃∗qw = 1√
mq

∑mq

i=1 wiφ(x̃q,i)

A.2 Controlling the excess risk

In this section we prove Proposition 1. Both the Euclidean norm of vectors and the spectral norm of
matrices are denoted by ‖ · ‖.

From global to local excess risk. Note that another way to write the excess risk (15) is

R(f̂) = ‖T 1/2(f̂ − f∗)‖2H.
Define now a local version of the above risk on the cells of the partition (4) as

Rq(f̂q) = ‖Sq(f̂q − f∗)‖2L2
q
. (17)

Lemma 1. For every f defined as in (9),

R(f) =
Q∑
q=1

Rq(f̂q)ρq.
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Proof. We have

R(f) = ‖f − f∗ ‖2L2

=
∑
q∈[Q]

∑
i∈[n]q

|f(xi)− f∗(xi)|2

=
∑
q∈[Q]

∑
i∈[n]q

|f̂q(xi)− f∗(xi)|2

=
∑
q∈[Q]

∑
i∈[n]q

|Sq f̂q(xi)− Sqf∗(xi)|2

=
∑
q∈[Q]

‖Sq(f̂q − f∗)‖2L2
q
ρq.

Lemma 2. The local excess risk (17) can be rewritten as

Rq(f̂q) = ‖T 1/2
q (f̂q − Pqf∗)‖2H.

Proof. Since Sq = SqS
+
q Sq = SqPq , we have

‖Sq(f̂q − f∗)‖2L2
q
= ‖Sq(f̂q − Pqf∗)‖2L2

q

= 〈Sq(f̂q − Pqf∗), Sq(f̂q − Pqf∗)〉L2
q

= 〈Tq(f̂q − Pqf∗), (f̂q − Pqf∗)〉H
= ‖T 1/2

q (f̃q,t − Pqf∗)‖2H.

From FALKON to Nyström local estimators. We now control the local excess risk of each local
estimator f̃q,t as defined in (13) with the exact local Nyström estimator defined by

f̃q(x) =

mq∑
i=1

(α̃q)iK(x̃i, x), α̃q = argmin
α∈Rmq

1

nq
‖Knqmq

α− Yq‖2 + λqα
>Kmq

α. (18)

Adapting the analysis of [29] to fixed design and local setting we derive the following lemma.

Lemma 3. Let δ ∈ (0, 1], the Nyström centers in f̃q,t be selected uniformly at random from Xq,
nq,mq, t ∈ N. If 0 ≤ λq ≤ κ2 and

mq ≥ 5[1 + 14N∞,q(λq)] log(
8κ2

λqδ
), (19)

then, with probability 1− 2δ,

Rq(f̃q,t)1/2 ≤ Rq(f̃q)1/2 + 6σκ ‖Pqf∗‖H log(
1

δ
)e−

t
2 .

Proof. We follow the proof of Theorem 1 and Lemma 11 of [29], replacing the operators S, S∗, C
in [29] with our local operators Sq, S∗q , Tq. Note that in fixed design we do not have population
operators, hence we can upper bound deterministically quantities that in random design require
concentration arguments. Moreover, we upper bound the quantity ‖Yq‖√

nq
(our equivalent of ν̂ in

Theorem 1 of [29]) as follows. Recalling (1), we have

‖Yq‖√
nq

=
1
√
nq

√∑
i∈[n]q

(f∗(xi) + εi)2 ≤
1
√
nq

√2
∑
i∈[n]q

f∗(xi)2 +

√
2
∑
i∈[n]q

ε2i

 . (20)

Exploiting Assumption 1, for every x ∈ Xq we have f∗(x) = 〈f∗,Kx〉 = 〈Pqf∗,Kx〉. Thus,
Assumption 2 gives

sup
x∈Xq

| 〈Pqf∗,Kx〉H | ≤ sup
x∈X
‖Pqf∗‖H ‖Kx‖H ≤ κ ‖Pqf∗‖H . (21)
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Let ε̂ = [εi]i∈[n]q ∈ Rnq , Then, by Assumption 3, using Lemma 19 of [17] we obtain that, with
probability at least 1− δ,

‖ε̂‖ ≤ σ√nq log(
1

δ
). (22)

Plugging (21) and (22) in (20) we conclude the proof.

We now control the local excess risk of each local exact Nyström estimator f̃q as defined in (18).
Adapting the analysis of [28] locally to fixed design we derive the following lemma.

Lemma 4. Let δ ∈ (0, 1], the Nyström centers in f̃q be selected uniformly at random from Xq,
nq,mq, t ∈ N. If 0 ≤ λq ≤ κ2 and

mq ≥ [2 + 3N∞,q(λq)] log(
8κ2

λqδ
),

then, with probability 1− 2δ,

Rq(f̃q)1/2 ≤ 3 ‖Pqf∗‖H
√
λq +

σ
√
nq

√
Nq(λq) +

√
Nq(λq) log(

1

δ
) + 2 log(

1

δ
).

Proof. We follow the proof of Theorem 2 and Proposition 2 of [28], replacing the operators S, S∗, C
in [28] with our local operators Sq, S∗q , Tq . As for the proof of Lemma 3, concentration inequalities
for empirical operators are replaced by deterministic bounds. Further we need to control the sample
error in Lemma 4 of [28] with a different concentration argument. Let Ŷq =

‖Yq‖√
nq

. The sample error
in fixed design is ∥∥∥(Tq + λq)

1/2S∗q (Ŷq − SqPqf∗)
∥∥∥
H
.

In view of (1) we have∥∥∥(Tq + λq)
1/2S∗q (Ŷq − SqPqf∗)

∥∥∥
H

=
1
√
nq

∥∥∥(Tq + λq)
1/2S∗q (ε̂)

∥∥∥
H
,

where ε̂ = [εi]i∈[n]q ∈ Rnq . Now using Assumption 3, Remark 2.2 of [16] and the definition of local
effective dimension, we obtain, with probability at least 1− δ,

1
√
nq

∥∥∥(Tq + λq)
1/2S∗q (ε̂)

∥∥∥
H
≤ σ
√
nq

√
Nq(λq) +

√
Nq(λq) log(

1

δ
) + 2 log(

1

δ
),

which concludes the proof.

We are now ready to prove Proposition 1.

Proof of Proposition 1 From Lemmas 3 and 4 we know that, under their respective assumptions
and for a value of mq as in (19), with probability 1− 4δ,

Rq(f̃q,t)1/2 ≤ 3 ‖Pqf∗‖H
√
λq +

σ
√
nq

√
Nq(λq) +

√
Nq(λq) log(

1

δ
) + 2 log(

1

δ
)

+ 6σκ ‖Pqf∗‖H log(
1

δ
)e−

t
2 .

We consider now a number of iterations t such that 6σκ ‖Pqf∗‖H log( 1δ )e
− t

2 ≤ ‖Pqf∗‖H
√
λq , that

is

t ≥ 2 log

(
6σκ log(1/δ)√

λq

)
.

Under the above constraint on t we can rewrite the upper bound on the risk

Rq(f̃q,t)1/2 ≤ 4 ‖Pqf∗‖H
√
λq +

σ
√
nq

√
Nq(λq) +

√
Nq(λq) log(

1

δ
) + 2 log(

1

δ
).

We can now collect the local excess risk bounds above for all q ∈ [Q] using Lemmas 1 and 2,
concluding the proof.
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A.3 Controlling the partition

In this section we prove Propositions 2 and 3. With a slight abuse of notation, the operator norm on
H is denoted by ‖ · ‖H.

Proof of Proposition 2. We have∑
q

‖Pqf∗‖2H =
∑
q

〈Pqf∗, Pqf∗〉H =
∑
q

〈f∗, Pqf∗〉H = 〈f∗,
∑
q

Pqf∗〉H ≤ ‖
∑
q

Pq‖H‖f∗‖2H.

Now, let Uq : H → Rnq such that U∗qUq = Pq , UqU∗q = Inq
, and define

U = [U1, . . . , UQ]
> : H → Rn.

Then
∑
q Pq = U∗U , and

‖
∑
q

Pq‖H = ‖U∗U‖H = ‖UU∗‖,

Let W = UU∗. Then W ∈ Rn×n is built as

W =

U1U
∗
1 · · · U1U

∗
Q

...
. . .

...
UQU

∗
1 · · · UQU

∗
Q

 =

 In1 · · · W1,Q

...
. . .

...
WQ,1 · · · InQ

.

 .
Thus, for a = [a1, . . . , aQ] ∈ Rn, aq ∈ Rnq , we have

‖UU∗‖ = ‖W‖
= ‖I + (W − I)‖
= 1 + λmax(W − I)
= 1 + max

‖a‖=1
a>(W − I)a

= 1 + max
‖a‖=1

∑
q

a>q (Wq,q − Inq
)aq +

∑
q,k:q 6=k

a>q (Wq,k − 0)ak

= 1 + max
‖a‖=1

∑
q

a>q 0aq +
∑

q,k:q 6=k

a>q Wq,kak

= 1 + max
‖a‖=1

∑
q,k:q 6=k

a>q Wq,kak

≤ 1 +
∑

q,k:q 6=k

max
‖a‖=1

a>q Wq,kak.

Now we can bound ∑
q,k:q 6=k

max
‖a‖=1

a>q Wq,kak ≤ Q2 max
q,k:q 6=k

max
‖a‖=1

a>q Wq,kak,

and reparameterizing aq = βqbq , βq ≥ 0, bq ∈ Rnq , we get

max
‖a‖=1

a>q Wq,kak = max
‖b1‖=···=‖bQ‖=1

β2
1+···+β

2
Q=1

βqβkb
>
q Wq,kbk

= max
β2
1+···+β2

Q=1
βqβk max

‖b1‖=···=‖bQ‖=1
b>q Wq,kbk

= max
β2
1+···+β2

Q=1
βqβk max

‖bq‖=‖bk‖=1
b>q Wq,kbk

= max
β2
1+···+β2

Q=1
βqβk cos(∠(Hq,Hk))

≤ cos(θ).

Putting all together, we finally obtain

‖
∑
q

Pq‖H ≤ 1 +Q2 cos(θ),

which completes the proof.
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Proof of Proposition 3. Let T̃q = PqTPqρ
−1
q , and let Mq = (T̃q + λq)

1/2(Tq + λq)
−1(T̃q + λq)

1/2.
Then ∑

q

Nq(λq) =
∑
q

Tr(Sq(Tq + λq)
−1S∗q )

=
∑
q

Tr(Sq(T̃q + λq)
−1/2Mq(T̃q + λq)

−1/2S∗q )

=
∑
q

Tr(Mq(T̃q + λq)
−1/2S∗qSq(T̃q + λq)

−1/2)

≤ sup
q
‖Mq‖H

∑
q

Tr((T̃q + λq)
−1/2S∗qSq(T̃q + λq)

−1/2)

= sup
q
‖Mq‖H

∑
q

Tr(Sq(T̃q + λq)
−1S∗q ),

where in the third and last equalities we used the cyclic property of the trace, and in the fourth step
we applied Holder’s inequality. We first bound the trace. We have

(T̃q + λq)
−1 = λ−1q (T̃q + λq − T̃q)(T̃q + λq)

−1

= λ−1q (I − T̃q(T̃q + λq)
−1)

= λ−1q (I − PqS∗SPqρ−1q (PqS
∗SPqρ

−1
q + λq)

−1)

= λ−1q (I − PqS∗SPq(PqS∗SPq + λqρq)
−1)

= λ−1q (I − PqS∗(SPqS∗ + λqρq)
−1SPq)

� λ−1q (I − PqS∗(SS∗ + λqρq)
−1SPq).

where the fifth equality follows from the Woodbury identity. Thus, multiplying by Sq from the left
and by S∗q from the right, we get

Sq(T̃q + λq)
−1S∗q � λ−1q (SqS

∗
q − SqPqS∗(SS∗ + λqρq)

−1SPqS
∗
q )

= λ−1q (SqS
∗
q − SqS∗(SS∗ + λqρq)

−1SS∗q )

= λ−1q (Sq(I − S∗(SS∗ + λqρq)
−1S)S∗q )

= λ−1q (Sq(I − (T + λqρq)
−1T )S∗q )

= λ−1q (Sq(T + λqρq)
−1(T + λqρq − T )S∗q )

= Sq(T + λqρq)
−1S∗qρq,

where again the fourth equality follows from the Woodbury identity. Therefore,

Tr(Sq(T̃q + λq)
−1S∗q ) ≤ Tr(Sq(T + λqρq)

−1S∗qρq) = Tr((T + λqρq)
−1Tqρq).

Setting λq = λρ−1q and using (16) we obtain∑
q

Tr(Sq(T̃q + λq)
−1S∗q ) ≤ Tr((T + λ)−1

∑
q

Tqρq) = Tr((T + λ)−1T ) = N (λ).

We next bound ‖Mq‖H. The operators Tq +λq and T̃q +λq are invertible, hence Mq shares the same
spectrum as (Tq + λq)

−1/2(T̃q + λq)(Tq + λq)
−1/2, and in particular

‖Mq‖H = ‖(Tq + λq)
−1/2(T̃q + λq)(Tq + λq)

−1/2‖H.

Now, let

T q : H → H T q =
1

n

∑
φ(xi)/∈Vq

φ(xi)⊗ φ(xi).

Then T = Tqρq + T q , and

T̃q = PqTqPq + PqT qPqρ
−1
q = Tq + PqT qPqρ

−1
q .
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Therefore,

‖Mq‖H = ‖(Tq + λq)
−1/2(Tq + λq + PqT qPqρ

−1
q )(Tq + λq)

−1/2‖H
= ‖I + ρ−1q (Tq + λq)

−1/2(PqT qPq)(Tq + λq)
−1/2‖H

≤ 1 + ρ−1q ‖Tq + λq)
−1/2‖H‖PqT qPq‖H‖Tq + λq)

−1/2‖H
≤ 1 + ρ−1q λ−1/2q ‖PqT qPq‖Hλ−1/2q

= 1 + 1
λqρq
‖PqT qPq‖H.

For λq = λρ−1q , we get
‖Mq‖H ≤ 1 + 1

λ‖PqT qPq‖H.
Finally,

‖PqT qPq‖H ≤
1

n

∑
φ(xi)/∈Vq

‖Pqφ(xi)‖2H

=
1

n

∑
φ(xi)/∈Vq

‖φ(xi)‖2H cos2(∠(φ(xi),Hq))

≤ 1

n

∑
φ(xi)/∈Vq

sup
i
‖φ(xi)‖2H cos2(min

k 6=q
∠(Vq,Hq))

= sup
i
‖φ(xi)‖2H cos2(min

k 6=q
∠(Vq,Hq))

1

n
(n− nq)

≤ sup
i
‖φ(xi)‖2H cos2(min

k 6=q
∠(Vq,Hq)),

which leads to the desired bound.
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