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ABSTRACT

Accelerated diffusion models hold the potential to significantly enhance the ef-
ficiency of standard diffusion processes. Theoretically, these models have been
shown to achieve faster convergence rates than the standard O(1/ϵ2) rate of vanilla
diffusion models, where ϵ denotes the target accuracy. However, current theoretical
studies have established the acceleration advantage only for restrictive target distri-
bution classes, such as those with smoothness conditions imposed along the entire
sampling path or with bounded support. In this work, we significantly broaden
the target distribution classes with a new accelerated stochastic DDPM sampler.
In particular, we show that it achieves accelerated performance for three broad
distribution classes not considered before. Our first class relies on the smoothness
condition posed only to the target density q0, which is far more relaxed than the
existing smoothness conditions posed to all qt along the entire sampling path. Our
second class requires only a finite second moment condition, allowing for a much
wider class of target distributions than the existing finite-support condition. Our
third class is Gaussian mixture, for which our result establishes the first accelera-
tion guarantee. Moreover, among accelerated DDPM type samplers, our results
specialized for bounded-support distributions show an improved dependency on
the data dimension d. Our analysis introduces a novel technique for establishing
performance guarantees via constructing a tilting factor representation of the con-
vergence error and utilizing Tweedie’s formula to handle Taylor expansion terms.
This new analytical framework may be of independent interest.

1 INTRODUCTION

Generative modeling is a fundamental task in machine learning, aiming to generate samples out
of a distribution similar to that of training data. Classical generative models include variational
autoencoders (VAE) (Kingma & Welling, 2022), generative adversarial networks (GANs) (Goodfellow
et al., 2014), and normalizing flows Rezende & Mohamed (2015), etc. Recently, diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) have arisen as an appealing
generative model and have received wide popularity due to their excellent performance over a variety
of tasks and applications as summarized in many surveys of diffusion models (Yang et al., 2023;
Croitoru et al., 2023; Kazerouni et al., 2023).

The empirical success of diffusion models has also inspired extensive theoretical studies, aiming to
characterize the convergence guarantee for diffusion models. The convergence rate (i.e., the total
number of steps to attain a target accuracy ε) for standard vanilla Denoising Diffusion Probabilistic
Models (DDPMs) has been established to be O(ε−2) for wide classes of target distributions (Chen
et al., 2023a; Benton et al., 2024a; Conforti et al., 2023) (see Appendix A for a more complete
summary). More recently, various accelerated samplers have been proposed and been shown to
achieve an improved convergence rate of O(ε−1). One such acceleration approach is to redesign the
(stochastic) DDPM reverse process. This includes augmenting the original reverse process with an
additional estimate (Li et al., 2024c), introducing intermediate sampling points along the generation
path (Li et al., 2024a), and employing special Markov-chain Monte-Carlo (MCMC) algorithms
(Huang et al., 2024b). Another acceleration method is to sample with the corresponding probability
ODE (Li et al., 2024c; Chen et al., 2023c; Huang et al., 2024a; Li et al., 2024d).
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Target distribution Q0 Method Num of steps Results
∇ log qt, st L-Lips. ∀t ODE-based O

(√
dL2

ε

)
(Chen et al., 2023c, Thm 3)

∇ log qt L-Lips. ∀t DDPM accl. O
(√

dL2

ε

)
(Huang et al., 2024b, Thm 4.4)†∣∣∂k

ast(x)
∣∣ ≤ L ∀x, t,a

and ∀k ≤ p + 1, Q0

Bounded Support

ODE O
(

d
p+1
p

ε
1
p

)∗

(Huang et al., 2024a, Thm 3.10)†

∇2 log q0 M -Lips. DDPM accl. O
(

d1.5 log1.5 M
ε

)
(This paper, Thm 4)

Q0 Gaussian Mixture DDPM accl. O
(

d1.5N1.5

ε

)
(This paper, Thm 2)

Q0 Bounded Support

DDPM accl. O
(

d3

ε

)∗ (Li et al., 2024c, Thm 4)
(Li et al., 2024a, Thm 2)†

ODE O
(

d3
√
ε

)∗ (Li et al., 2024c, Thm 2)
(Li et al., 2024a, Thm 1)†

ODE O
(

d2

ε

)∗
(Li et al., 2024c, Thm 1)

Q0 Finite Variance DDPM accl. O
(

d1.5

ε

)∗
(This paper, Thm 3)

Table 1: Summary of accelerated convergence results in terms of the number of steps needed to
achieve ε-accuracy in total variation, where d is the dimension. For Gaussian mixture, assume
that N ≤ d. The first 4 rows of this table correspond to the results under those target distributions
with some smoothness conditions imposed, while the last 4 rows correspond to the results under
(possibly) non-smooth targets with finite variance. (∗) Those results correspond to an early-stopped
procedure that compares the sampling distribution to Q1(δ), where W2 (Q0, Q1)

2 ≲ δd. Here the
dependencies on δ are omitted. (†) Those studies are concurrent to our work based on the time that
they were posted on arXiv. Note that this table does not include the studies within two months of the
conference submission, but those are discussed in the related works.

However, existing results on the acceleration guarantee suffer from strong assumptions on the target
distribution. (i) For smooth target distributions, the analyses of Chen et al. (2023c); Huang et al.
(2024a;b) require that all the scores (or their close estimates or both) satisfy certain Lipschitz-smooth
condition along the entire sampling path, i.e., the smoothness condition is posed to the density qt for
all iteration time t. However, such smoothness at intermediate steps is generally restrictive and hard to
verify in practice. (ii) For (possibly) non-smooth targets, the analysis of Li et al. (2024a;c;d) requires
the distribution to have finite support for early-stopped sampling procedures. Such an assumption
is, however, restrictive if compared to that for early-stopped vanilla samplers, where convergence
guarantees have been established only under the assumption of finite variance (Chen et al., 2023a;
Benton et al., 2024a). The above discussions raise the following important open question:

Question 1: Can we obtain an accelerated convergence rate for a much broader set of target
distributions? Namely, for smooth target distributions, can the smoothness condition be imposed
only on the target distribution; and for (possibly) non-smooth targets, can we broaden the target
distribution to only have finite variance?

Further, the existing accelerated diffusion samplers suffer as high dimensional dependencies as
O
(
d3
)

or O
(
d2
)

(Li et al., 2024a;c) for target distributions with bounded support. This motivates us
to explore the following intriguing question:

Question 2: While addressing Question 1 to relax the assumption from finite support to finite variance
for possibly non-smooth distributions, can we achieve a lower dimensional dependency?

This paper will provide affirmative answers to both of the above questions.

1.1 OUR CONTRIBUTIONS

Our main contribution is to provide accelerated convergence results for a significantly wider range
of distributions than those addressed in previous works (see Table 1 (particularly column 1) for a
comparison). To this end, we design a new accelerated stochastic DDPM sampler and develop a
novel analytical technique that characterizes its acceleration guarantees across this broader spectrum
of distributions. Our detailed contributions are summarized as follows.
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Broadening Target Distributions: Inspired by optimization methods, we design a new Hessian-
based accelerated sampler for the stochastic diffusion processes. We show that our accelerated
sampler achieves an accelerated convergence rate of O

(
d1.5 min{d,N}1.5/ε

)
, O

(
d1.5/ε

)
, and

O
(
d1.5 log1.5 M/ε

)
respectively for Gaussian mixtures, any target distributions having finite variance

(with early-stopping), and any target distributions having M -Lipschitz Hessian of log-densities. In
particular, (i) for smoothness Q0 that has p.d.f., the smoothness condition is only imposed on the
log-density of Q0, which is much less restrictive than that imposed on all Qt’s (Chen et al., 2023c;
Huang et al., 2024a;b); (ii) for possibly non-smooth Q0, we only require Q0 to have finite variance
for the early-stopped procedure, which is a much broader class of distributions than those having
bounded support (Li et al., 2024a;c;d); (iii) we provide the first accelerated convergence result for
Gaussian mixture Q0’s.1

For possibly non-smooth targets with bounded support, our sampler improves the dependency of the
convergence rate on d by O

(
d1.5

)
compared with previous accelerated diffusion samplers (Li et al.,

2024a;c).

Novel Analysis Technique: We develop a novel technique for analyzing the accelerated DDPM
process. Our approach features two new elements: (i) characterization of the error incurred at each
discrete step of the reverse process using tilting factor; and (ii) analysis of the mean value of tilting
factor via Tweedie’s formula to handle power terms in the Taylor expansion. Such a technique enables
us to (a) analyze more general distributions beyond those with restrictive distribution assumptions;
(b) tightly identify the dominant term and reduce the dimensional dependency; and (c) handle the
estimation error in accelerated samplers for both score and Hessian estimation. This analytical
framework is different from the main previous theoretical techniques for analyzing the convergence
of diffusion models: (a) the SDE-type analysis for regular diffusion samplers (Chen et al., 2023a;
Benton et al., 2024a; Conforti et al., 2023), (b) any ODE-type analysis (Li et al., 2024d; Huang et al.,
2024a; Gao & Zhu, 2024), and (c) the use of typical sets (Li et al., 2024a;c).

1.2 RELATED WORKS ON ACCELERATED SAMPLING

Here, we focus on the related studies of accelerated samplers. Note that all of these works we discuss
below, only except Chen et al. (2023c;e); Li et al. (2024c), are concurrent to or after ours based on
their posting time on arXiv. In Appendix A, we provide a thorough summary of convergence analysis
of standard samplers as well as other theoretical perspectives of diffusion models.

Accelerated Stochastic Samplers: In Li et al. (2024c), accelerated stochastic variants to the original
DDPM sampler are proposed and analyzed, when there is no estimation error. In Li et al. (2024a), a
new accelerated stochastic sampler are proposed by inserting intermediate sampling points along the
diffusion path. Both algorithms are analyzed only when the target distribution has bounded support
and suffer from large dimensional dependencies. In Huang et al. (2024b), the authors proposed the
RTK-MALA and RTK-ULD algorithms which uses MCMC algorithms, such as the Metropolis-
adjusted Langevin Algorithm or the Underdamped Langevin Dynamics, at each diffusion step. The
analysis is performed under the assumption that all the scores of log qt’s are Lipschitz-smooth. In
comparison, our work substantially broadens the set of target distributions to include those with
unbounded support and with smooth log-density only imposed upon Q0 with a completely different
analytical technique. Our result also improves the dimensional dependencies of accelerated stochastic
samplers in Li et al. (2024a;c) for distributions with bounded support.

Deterministic Samplers: Beyond stochastic samplers, another line of research to achieve an accel-
erated convergence rate is to sample from the corresponding probability flow ordinary differential
equation (PF-ODE). Early work provided polynomial guarantees under rather restrictive Lipschitz
conditions Chen et al. (2023e). Later in Chen et al. (2023c), an accelerated convergence rate was
first derived with the DPUM sampler by mixing the deterministic predictor steps with stochastic
corrector steps. The analysis was performed under the assumption of Lipschitz ∇ log qt’s and st’s.
Note that this assumption is relatively restrictive and hard to verify in practice. After that, for target
distributions having bounded support, Li et al. (2024c) provided the first analysis of a purely deter-
ministic sampler (along with an accelerated deterministic sampler), albeit with a high dimensional
dependency. Recently, under strong assumptions on st’s, Huang et al. (2024a) provided an acceler-
ated rate using the p-th order Runge-Kutta time integrator for ODEs for those target distributions

1Although the technique in Huang et al. (2024a) may be applied to Gaussian mixtures, the authors do not
provide explicit dependencies in their paper. Also, Huang et al. (2024a) is posted on arXiv after our first draft.
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having bounded support. Specifically, for first-order Runge-Kutta methods, it is assumed that the
first two orders of partial derivatives of st’s are uniformly bounded in space and time, which implies
Lipschitz-smoothness of st and its derivative along the entire sampling path. Most recently, Li
et al. (2024d) obtained a linear convergence rate both in d and ε−1 using PF-ODEs as long as st’s
(and their derivatives) are well estimated. However, it is analyzed only on bounded-support targets.
Beyond these works, further acceleration to deterministic samplers is sought in Li et al. (2024a;c) that
gives the convergence rate of O(ε−1/2), which are still performed under bounded-support targets. In
comparison, our work substantially broadens the target distributions to include those with unbounded
support (yet with finite variance) while achieving an accelerated convergence rate.

2 PRELIMINARIES OF DDPM

In this section, we provide the background of the DDPM sampler (Ho et al., 2020).

2.1 FORWARD PROCESS

Let x0 ∈ Rd be the initial data, and let xt ∈ Rd, t ∈ {1, . . . , T} be the latent variables in the diffusion
algorithm. Let Q0 be the initial data distribution, and let Qt be the marginal latent distribution at
time t in the forward process, for all 1 ≤ t ≤ T . In the forward process, white Gaussian noise is
gradually added to the data: xt =

√
1− βtxt−1+

√
βtwt, ∀t ∈ {1, . . . , T}, where wt

i.i.d.∼ N (0, Id).
Equivalently, this can be expressed as a conditional distribution at each time t:

Qt|t−1(xt|xt−1) = N (xt;
√

1− βtxt−1, βtId), (1)

which means that under Q, X0 → X1 → · · · → XT . Here βt ∈ (0, 1) captures the “amount” of
noise that is injected at time t, and βt’s are called the noise schedule. Define

αt := 1− βt, ᾱt :=
∏t

i=1 αi, 1 ≤ t ≤ T.

An immediate result by accumulating the steps is that

Qt|0(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)Id), (2)

or, written equivalently, xt =
√
ᾱtx0+

√
1− ᾱtw̄t, ∀t ∈ {1, . . . , T}, where w̄t ∼ N (0, Id) denotes

the aggregated noise at time t. Intuitively, for large T , since QT |0 ≈ N (0, Id) (which is independent
of x0), it is expected that QT ≈ N (0, Id) when T becomes large, as long as the variance under Q0 is
finite. Finally, since the conditional noises are Gaussian, each Qt(t ≥ 1) is absolutely continuous
w.r.t the Lebesgue measure. Let the corresponding p.d.f. of each Qt be qt(t ≥ 1). Similarly define
qt,t−1, qt|t−1, and qt−1|t for t ≥ 1. In case Q0 is also absolutely continuous w.r.t. the Lebesgue
measure, let q0 be the corresponding p.d.f. of Q0.

2.2 REGULAR REVERSE PROCESS

The goal of the reverse sampling process is to generate samples approximately from the data
distribution Q0. We first draw the latent variable at time T from a Gaussian distribution: xT ∼
N (0, Id) =: PT . Then, to achieve effective sampling, each forward step is approximated by a reverse
sampling step, in which the mean matches the posterior mean of Qt−1|t. Define

µt(xt) :=
1√
αt

(xt + (1− αt)∇ log qt(xt)) . (3)

Here ∇ log qt(x) is called the score of qt, which can be estimated via a training process called
score matching. At each time t = T, T − 1, . . . , 1, the true regular reverse process is defined as
xt−1 = µt(xt)+σtz, where z ∼ N (0, Id). Two choices of σ2

t are commonly used in practice, where
σ2
t = 1− αt or σ2

t = 1−ᾱt−1

1−ᾱt
(1− αt), and similar results are reported for these choices (Ho et al.,

2020). Let Pt be the marginal distributions of xt in the true regular reverse process, and let pt be the
corresponding p.d.f. of Pt w.r.t. the Lebesgue measure.

2.3 METRICS

In case where Q is absolutely continuous w.r.t. the Lebesgue measure, we are interested in measuring
the mismatch between Q and P through the total-variation distance, defined as

TV(Q,P ) := supA⊆B(Rd) |Q(A)− P (A)|
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where B(Rd) contains all Borel-measureable sets in Rd. This metric is commonly used in prior
theoretical studies (Chen et al., 2023a). From Pinsker’s inequality, the total-variation (TV) distance is
upper bounded as TV(Q,P )2 ≤ 1

2KL(Q||P ), where the KL divergence is defined as KL(Q||P ) :=∫
log dQ

dP dQ ≥ 0. Thus, we control the KL divergence when Q is absolutely continuous w.r.t. P .

When q0 does not exist (say, when Q0 has point masses), we use the Wasserstein distance to
measure the mismatch at t = 0, namely W2(Q0, Q1), which is a technique commonly adopted
(Chen et al., 2023a; Benton et al., 2024a). The Wasserstein-2 distance is defined as W2(Q0, Q1) :=√

minΓ∈Π(Q0,Q1)

∫
Rd×Rd ∥x− y∥2 dΓ(x, y), where Π(Q0, Q1) is the set of all joint probability

measures on Rd × Rd with marginal distributions Q0 and Q1, respectively.

3 ACCELERATED DIFFUSION SAMPLER

To generate samples from the data distribution Q0, the idea of DDPM is to design a reverse process
in which each reverse sampling step well approximates the corresponding forward step. Below,
we propose a new accelerated sampler along with a new variance estimator, in which both the
conditional mean and variance of the reverse process match the corresponding posterior quantities.

3.1 ACCELERATED REVERSE PROCESS

At each time t = T, T − 1, . . . , 1, define the true accelerated reverse process as xt−1 = µt(xt) +

Σ
1
2
t (xt)z, where µt is defined in (3), z ∼ N (0, Id), and (cf. Lemma 8)

Σt(xt) :=
1−αt

αt

(
Id + (1− αt)∇2 log qt(xt)

)
. (4)

Let P ′
t be the marginal distributions of xt in the true accelerated reverse process, and let p′t be the

corresponding p.d.f.. Thus, the transition kernel can be written as P ′
t−1|t = N (xt−1;µt(xt),Σt(xt)),

and we let P ′
T := PT = N (0, Id). When (1− αt) is vanishing for large T , Σt(xt) ≻ 0 for all large

T ’s, and thus the conditional Gaussian process is well-defined.2 The above accelerated sampler has
a close relationship to Ozaki’s discretization method to approximate a continuous-time stochastic
process (Ozaki, 1992; Shoji, 1998; Stramer & Tweedie, 1999).

In practice, one has no access to either ∇ log qt or ∇2 log qt. Thus, their estimates, denoted as st and
Ht, are used. Define the estimated accelerated reverse process: xt−1 = µ̂t(xt) + Σ̂

1
2
t (xt)z, where

µ̂t(xt) := xt + (1− αt)st(xt), (5)

Σ̂t(xt) :=
1−αt

αt
(Id + (1− αt)Ht(xt)) . (6)

Here, st can be obtained through score-matching (Song & Ermon, 2019). In Section 3.2, we propose
an estimator for ∇2 log qt, which we refer to as Hessian matching. Let P̂ ′

t be the marginal distributions
of xt in the estimated reverse process with corresponding p.d.f. p̂′t.

3.2 HESSIAN MATCHING ESTIMATOR FOR ACCELERATION

Below we provide a method to obtain Ht(x), which estimates ∇2 log qt(x). Note that

∇2 log qt(x) =
∇2qt(x)
qt(x)

− (∇ log qt(x))(∇ log qt(x))
⊺

=
(

∇2qt(x)
qt(x)

+ 1
1−ᾱt

Id

)
− 1

1−ᾱt
Id − (∇ log qt(x))(∇ log qt(x))

⊺. (7)

Apart from the original score estimate, we require an additional Hessian estimate:

vt(x) := argminvθ:Rd→Rd×d EXt∼Qt

∥∥∥vθ(Xt)−
(

∇2qt(Xt)
qt(Xt)

+ 1
1−ᾱt

Id

)∥∥∥2
F
.

In order to train for vt, the following lemma provides an analogy to score matching, which we refer
to as Hessian matching.

2More rigorously, we can project the matrices Σt and Σ̂t onto the space of positive-semi definite (PSD)
matrices for those xt’s where either of these two matrices is not PSD. Since the probability of the events
containing such bad xt’s decreases to zero asymptotically, all theoretical results in this paper, which are derived
in expectation, will not be affected.
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Lemma 1. With the forward process in (1), we have

argminvθ:Rd→Rd×d EXt∼Qt

∥∥∥vθ(Xt)−
(

∇2qt(Xt)
qt(Xt)

+ 1
1−ᾱt

Id

)∥∥∥2
F

= argminvθ:Rd→Rd×d E(X0,W̄t)∼Q0⊗N (0,Id)

∥∥∥vθ(√ᾱtX0 +
√
1− ᾱtW̄t)− 1

1−ᾱt
W̄tW̄

⊺
t

∥∥∥2
F
.

With the Hessian estimate vt using Lemma 1, from (7), an estimate for ∇2 log qt(x) is given by
Ht(x) = vt(x)− 1

1−ᾱt
Id − st(x)s

⊺
t (x). (8)

With the estimator of Ht in (8), the Hessian-based sampler using the ̂̃Σt later in (9) is the same as the
accelerated stochastic sampler in Li et al. (2024c). Yet, our analysis is applicable when estimation
errors exist, whereas in Li et al. (2024c) the estimators are assumed to be perfect for the accelerated
sampler. In the literature, several other estimators have been proposed for higher order derivatives
of log qt(x) (Meng et al., 2021; Lu et al., 2022; Dockhorn et al., 2022). In our paper, we proposed
another method, the Hessian matching method, which can guarantee accurate Hessian estimations
with extra computation resources. Yet, our analysis can be applied to any estimator for Ht as long as
Assumption 3 is satisfied.

4 ACCELERATED CONVERGENCE BOUNDS FOR BROADER TARGETS

In this section, we provide convergence guarantees for the accelerated stochastic samplers for general
Q0. We will first establish our main result for smooth Q0, and then extend it for more general
(possibly non-smooth) Q0. We will also provide a sketch of proof to describe key analysis techniques.

4.1 TECHNICAL ASSUMPTIONS FOR ACCELERATED SAMPLER

We first provide the following four technical assumptions for the accelerated sampler.
Assumption 1 (Finite Second Moment). There exists a constant M2 < ∞ (that does not depend on
d and T ) such that EX0∼Q0 ∥X0∥2 ≤ M2d.
Assumption 2 (Absolute Continuity). Q0 is absolutely continuous w.r.t. the Lebesgue measure, and
thus q0 exists. Also, suppose that q0 is analytic 3 and that q0(x) > 0.

The above Assumptions 1 and 2 are commonly adopted in the literature (Chen et al., 2023a;d).
Assumption 3 (Score and Hessian Estimation Error). The estimates st’s and Ht’s satisfy

1
T

∑T
t=1 EXt∼Qt

∥st(Xt)−∇ log qt(Xt)∥2 ≤ ε2 = Õ(T−2),

1
T

∑T
t=1 EXt∼Qt

∥∥Ht(Xt)−∇2 log qt(Xt)
∥∥2
F
≤ ε2H = Õ(T−1).

Also, suppose that Ht satisfies supℓ≥1

(
EXt∼Qt

∥Ht(Xt)∥ℓ
)1/ℓ

= Õ(1).

The above assumption (Assumption 3) describes the estimation error for both the score and Hessian.
In particular, compared with regular samplers, the score function needs to be estimated at a higher
accuracy in order to achieve acceleration. Such higher accuracy is also required in previous analyses
of ODE samplers (e.g., Li et al. (2024a;d)). The regularity condition on Ht can be satisfied, for
example, when ∥Ht∥ is bounded as Õ(1). As another example, it suffices that ∥Ht(x)∥ has a
polynomial upper bound in x when Qt is sub-exponential. In Lemma 2 (in Appendix C), we provide
sufficient conditions such that the Ht in (8) satisfies Assumption 3.
Assumption 4 (Regular Partial Derivatives). For all t ≥ 1, ℓ ≥ 1, and a ∈ [d]p such that |a| = p ≥ 1,

EXt∼Qt
|∂p

a log qt(Xt)|ℓ = O (1) , EXt∼Qt
|∂p

a log qt−1(µt(Xt))|ℓ = O (1) .

When q0 does not exist, this is required only for t ≥ 2.4

The above regularity assumption (Assumption 4) on the partial derivatives is needed for our analysis
based on Taylor expansion. It is rather soft, and it can be verified on the following two common cases:
(1) when Q0 has finite variance, and (2) when Q0 is Gaussian mixture (see Section 5). Case 1 clearly
covers a broad set of target distributions of practical interest, such as images, and many theoretical
studies of diffusion models have been specially focused on such a distribution (Li et al., 2024a;c).
Case 2 has also been well studied for diffusion models (Chen et al., 2024; Gatmiry et al., 2024).

3Here a function is analytic if its Taylor series converges to the functional value at each point in the domain.
4In the Appendix, we have provided the more general Assumption 5 under which Theorem 1 would hold.

6



Published as a conference paper at ICLR 2025

4.2 ACCELERATED CONVERGENCE BOUNDS

We first define a new noise schedule as follows, which will be useful for acceleration.
Definition 1 (Noise Schedule for Acceleration). For large T ’s, the step-size αt satisfies that

1− αt ≲
log T
T , ∀t ∈ {1, . . . , T}, ᾱT =

∏T
t=1 αt = o

(
T−2

)
.

When q0 does not exist, the upper bound on 1− αt is only required for t ≥ 2.

In Definition 1, the upper bound on 1− αt requires that αt is large enough to control the reverse-step
error, while the upper bound on ᾱT requires that αt is small enough to control the initialization error.
An example of αt that satisfies Definition 1 is the constant step-size: 1− αt ≡ c log T

T , ∀t ≥ 1 with

c > 2. Then, ᾱT =
(
1− c log T

T

)T
= exp

(
T log

(
1− c log T

T

))
= O

(
eT

−c log T
T

)
= o

(
T−2

)
.

Thus, such αt satisfies Definition 1.

The following theorem provides the first convergence result for accelerated diffusion samplers for
general smooth target distributions that have finite second moment (along with some mild regularity
conditions). The complete proof is given in Appendix D.
Theorem 1 (Accelerated Sampler for Smooth Q0). Under Assumptions 1 to 4, with the αt satisfying
Definition 1, we have

KL(Q0||P̂ ′
0) ≲(log T )ε2 + log2 T

T ε2H

+
∑T

t=1(1− αt)
3EXt∼Qt

∑d
i,j,k=1 ∂

3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt).

Theorem 1 characterizes the convergence in terms of KL divergence (and thus TV distance) for
smooth (possibly unbounded) Q0. The bound in Theorem 1 will be further instantiated with explicit
dependency on system parameters for example distributions Q0 in Section 5. To further explain
the upper bound in Theorem 1, the first two terms arise from the score and Hessian estimation
error, and the last term captures the errors accumulated during the reverse steps over t = T, . . . , 1,
which can be further bounded by Õ(T−2) under Assumption 4 (cf. (52)). Thus, when ε2H satisfies
Assumption 3, the upper bound in Theorem 1 can be more explicitly characterized w.r.t. T as
KL(Q0||P̂0) ≲ Õ(T−2) + (log T )ε2 (where the dependency on d will be explicitly characterized
for specific distributions in Section 5). Thus, in order to achieve O(ε2) error in KL divergence, the
number of steps required is O(ε−1). This improves the dependency of the convergence rate on ε of
the regular sampler by a factor of O(ε−1).

We next extend Theorem 1 for smooth Q0 to general Q0 that can be possibly non-smooth and hence
the density function q0 does not exist. Such distributions occur often in practice; for example, when
Q0 has a discrete support such as for images, or when Q0 is supported on a low-dimensional manifold.
For non-smooth Q0, its one-step perturbation Q1 does have a p.d.f. q1, which is further analytic
(Lemma 6). This enables us to apply Theorem 1 on Q1 to obtain the following convergence bound.
Also, we use the Wasserstein distance to measure the perturbation between Q0 and Q1 (Chen et al.,
2023d;a; Lee et al., 2023).
Corollary 1 (General (possibly non-smooth) Q0). Under Assumptions 1, 3 and 4, if the noise
schedule satisfies Definition 1 at t ≥ 2, the distribution P̂ ′

1 satisfies

KL(Q1||P̂ ′
1) ≲(log T )ε2 + log2 T

T ε2H

+
∑T

t=2(1− αt)
3EXt∼Qt

∑d
i,j,k=1 ∂

3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt),

where Q1 is such that W2(Q0, Q1)
2 ≲ (1− α1)d.

In particular, Corollary 1 applies to any general target distribution when the second moment is finite.

4.3 PROOF SKETCH OF THEOREM 1
We next provide a proof sketch of Theorem 1 to describe the idea of our analysis approach. The full
proof is provided in Appendix D. Our approach is very different from previous SDE-type approaches,
which invoke Fokker-Planck equation to express the evolution of p.d.f. and use Girsanov’s Theorem
to bound the divergence, both along the continuous diffusion path. In comparison, we develop a
novel Bayesian approach based on tilting factor representation and Tweedie’s formula to handle
power terms, which is applicable to a much wider class of target distributions, including those having
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infinite support. In particular, compared with Li et al. (2024a;c;d), our approach does not assume that
the target distribution has finite support.

To begin, we decompose the total error as

KL(Q0||P̂ ′
0) ≤ EXT∼QT

[
log qT (XT )

p′
T (XT )

]
︸ ︷︷ ︸

initialization error

+
∑T

t=1 EXt,Xt−1∼Qt,t−1

[
log

p′
t−1|t(Xt−1|Xt)

p̂′
t−1|t(Xt−1|Xt)

]
︸ ︷︷ ︸

estimation error

+
∑T

t=1 EXt,Xt−1∼Qt,t−1

[
log

qt−1|t(Xt−1|Xt)

p′
t−1|t(Xt−1|Xt)

]
︸ ︷︷ ︸

reverse-step error

.

The initialization error can be bounded easily (Lemma 3). Below we focus on the remaining two
terms in five steps.

Step 1: Bounding estimation error (Lemma 4). At each time t = 1, . . . , T , rather than upper-
bounding via typical sets as in Li et al. (2024c), we directly evaluate the expected value of
log(p′t−1|t(xt−1|xt)/p̂

′
t−1|t(xt−1|xt)). This is straightforward since P ′

t−1|t and P̂ ′
t−1|t are Gaus-

sian. We then use Taylor expansion for the log det(·) function and the matrix inverse to identify the
dominant-order terms under the mismatched variance.

Step 2: Tilting factor expression of log-likelihood ratio (Lemmas 5 and 6 and Equation (20)).
With Bayes’ rule, we show that qt−1|t is an exponentially tilted form of p′t−1|t with tilting factor:

ζ ′t,t−1 = (∇ log qt−1(µt)−
√
αt∇ log qt(xt))

⊺(xt−1 − µt)

+ 1
2 (xt−1 − µt)

⊺
(
∇2 log qt−1(µt)− αt

1−αt
Bt(xt)

)
(xt−1 − µt) +

∑∞
p=3 Tp(log qt−1, xt−1, µt).

where Bt(xt) describes the correction due to the modified variance for acceleration (see (14)), and
Tp(f, x, µ) is the p-th order Taylor power term of function f around x = µ. With this tilting factor,
we can upper-bound the reverse-step error as, for each fixed xt,

EXt−1,Xt∼Qt−1,t

[
log

qt−1|t(Xt−1|xt)

p′
t−1|t(Xt−1|xt)

]
≤ EXt,Xt−1∼Qt,t−1 [ζ

′
t,t−1]− EXt∼Qt,Xt−1∼P ′

t−1|t
[ζ ′t,t−1].

For regular DDPMs, there is no control for the variance of the reverse sampling process, and thus
Bt(xt) ≡ 0. In this case, the dominating rate is determined by the expected values of T2. With the
variance correction in our accelerated sampler, the corresponding Bt(xt) enables us to cancel out
the second-order Taylor term (see Lemma 11). As a result, the rate-determining term becomes the
expected values of T3, which decays faster. Thus, the acceleration is achieved.

Step 3: Explicit expression for EXt∼Qt,Xt−1∼P ′
t−1|t

[ζ ′t,t−1] (Lemma 7). Given the Taylor expansion
of ζ ′t,t−1, this step can be reduced to calculating the expected values of the power terms, which are
the Gaussian centralized moments. They are calculated using the classical Isserlis’s Theorem.

Step 4: Explicit expression for EXt,Xt−1∼Qt,t−1
[ζ ′t,t−1] (Lemmas 8 to 10). While Qt|t−1 is

Gaussian, Qt−1|t is not Gaussian in general, rendering the calculation of all moments non-trivial.
To calculate posterior moments, we extend Tweedie’s formula (Efron, 2011) in a non-trivial way.
Whereas the original Tweedie’s formula provides an explicit expression for the posterior mean for
Gaussian perturbed observations, we explicitly calculate the first six centralized posterior moments
and provide the asymptotic order of all higher-order moments, drawing techniques from combinatorics.
The results also justify the expressions of µt and Σt in (3) and (4).

Step 5: Bounding reverse-step error (Lemma 11) In order to employ the moment results for
Taylor expansion, we guarantee that it is valid to change the limit (in the Taylor expansion) and the
expectation operator. Finally, substituting the calculated moments into EXt,Xt−1∼Qt,t−1 [ζ

′
t,t−1]−

EXt∼Qt,Xt−1∼P ′
t−1|t

[ζ ′t,t−1] and noting that higher-order partial derivatives do not affect the rate (by
Assumption 4), we can determine the dominating term and obtain the desirable result.

5 EXAMPLE Q0’S: ACCELERATED CONVERGENCE RATE WITH EXPLICIT
PARAMETER DEPENDENCY

Now, we specialize Theorem 1 and Corollary 1 to several interesting distribution classes, for which
convergence bounds with explicit dependency on system parameters can be derived. The key is to
locate the dependency in the dominating terms in the reverse-step error.
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5.1 GAUSSIAN MIXTURE Q0

We first investigate the case where Q0 is Gaussian mixture. This is a rich class of distributions with
strong approximation power (Bacharoglou, 2010; Diakonikolas et al., 2017). The following theorem
establishes the first accelerated convergence result with explicit dimensional dependencies for such a
distribution class.
Theorem 2 (Accelerated Sampler for Gaussian Mixture Q0). Suppose that Q0 is Gaussian mixture,
whose p.d.f. is given by q0(x0) =

∑N
n=1 πnq0,n(x0), where q0,n is the p.d.f. of N (µ0,n,Σ0,n) and

πn ∈ [0, 1] is the mixing coefficient where
∑N

n=1 πn = 1. Under Assumption 3, if the αt satisfies
Definition 1, we have

KL(Q0||P̂ ′
0) ≲

d3 min{d,N}3 log3 T
T 2 + (log T )ε2 + log2 T

T ε2H .

Therefore, for any Gaussian mixture target Q0 with N ≤ d, it takes the accelerated algorithm
O
(
d1.5N1.5/ε

)
steps to reach convergence under accurate score and Hessian estimation. This is the

first result for accelerated DDPM samplers to achieve an accelerated convergence rate for Gaussian
mixture targets under score and Hessian estimation error. Compared with the results for regular
samplers, the number of convergence steps improves by a factor of O(ε−1).

The proof of Theorem 2 is non-trivial because in order to show that Assumption 4 holds for Gaussian
mixture distributions with any αt according to Definition 1, it is generally difficult to evaluate and
provide an upper bound for all orders of partial derivatives of the logarithm of a mixture density. To
this end, we employ the multivariate Faá di Bruno’s formula (Constantine & Savits, 1996) to develop
an explicit bound (Lemmas 13 and 14).

Below we numerically evaluate the performance of our Hessian-accelerated DDPM when Q0 is
Gaussian mixture. The original accelerator requires calculating the square-root matrix of Σ̂t (see
(4)), which might be computational burdensome. Below, we propose an approximated Hessian-based

accelerated sampler, where µ̂t is still defined in (5) and Σ̂t is replaced by ̂̃Σt(xt) where

Σ̃t(xt) :=
1−αt

αt

(
Id +

1−αt

2 ∇ log qt(xt)
)2

, ̂̃Σt(xt) :=
1−αt

αt

(
Id +

1−αt

2 Ht(xt)
)2

. (9)

With a similar tilting-factor analysis as in Theorem 1, we can verify that the approximated sampler
still achieves an accelerated convergence rate (see Corollaries 2 and 3 and Remark 3).

In Figure 1, we compare the following four accelerated samplers: (1) the regular DDPM sampler
(in blue); (2) our Hessian-accelerated sampler (in red); (3) the accelerated stochastic sampler in Li
et al. (2024a) (in cyan); and (4) the deterministic sampler using PF-ODE, which is analyzed in Li
et al. (2024c;d); Huang et al. (2024a). Here N = 4 and d = 4. The performance is averaged over 30
different trials. In a single trial, 200000 samples are used to estimate the KL divergence. The αt in
(10) is used with c = 4 and δ = 0.001. From the comparison, it is observed that our Hessian-based
sampler achieves the best convergence (at similar computation levels) in non-asymptotic regimes.

Figure 1: Comparison of different accelerated samplers for Gaussian mixture Q0’s. The x-axes are
the number of steps (left) and the computation time of a trial (right), respectively.

5.2 FINITE VARIANCE Q0 WITH EARLY-STOPPING

Next, we specialize Corollary 1 to a special noise schedule, first proposed in Li et al. (2024c):

1− αt =
c log T

T min

{
δ
(
1 + c log T

T

)t
, 1

}
, ∀2 ≤ t ≤ T, (10)

9
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and 1− α1 = δ. Here c and δ satisfy that c > 2 and δec > 1. Intuitively, δ characterizes the amount
of perturbation between Q1 and Q0 (Lemma 12). Note that any noise schedule satisfying the above
condition also satisfies Definition 1 at t ≥ 2 (see (49)), and hence Corollary 1 still holds here.
Theorem 3 (Accelerated Sampler for Q0 with Finite Variance). Under Assumptions 1 and 3, using
the αt defined in (10) with c > 2 and c ≍ log(1/δ), we have

KL(Q1||P̂ ′
1) ≲

d3 log3(1/δ) log3 T
T 2 + (log T )ε2 + log2 T

T ε2H ,

where Q1 is such that W2(Q0, Q1)
2 ≲ δd.

Theorem 3 indicates that for any Q0 having finite variance, it takes the accelerated algorithm
O
(
d1.5 log1.5(1/δ)/ε

)
steps to approximate an early-stopped data distribution Q1 within O(ε2) error

in KL divergence (or O(ε) in TV distance). For early-stopped procedures, this theorem significantly
relaxes the previous assumption on the target distribution that requires Q0 to have bounded support
(Li et al., 2024a;c; Huang et al., 2024a; Li et al., 2024d). Compared to previous accelerated diffusion
samplers for bounded-support targets (Li et al., 2024a;c), our number of convergence steps to achieve
ε-TV distance has improved by a factor of O(d1.5).

The proof of Theorem 3 involves the following novel elements. (i) Verifying Assumption 4 requires
evaluating and providing an upper bound for all orders of partial derivatives of the logarithm of
a continuous mixture density. Differently from the case of Gaussian (discrete) mixture, here we
can only have an upper bound in expectation (i.e., in Lp(Qt)) (Lemma 15). (ii) The second half of
Assumption 4 requires an upper bound for the one-step perturbed score, which can be shown using
the change-of-variable formula and the data processing inequality for large T (Lemmas 16 and 17).

5.3 Q0 WITH LIPSCHITZ HESSIAN LOG-DENSITY

With the αt in (10), we derive a convergence result when only the log-density of Q0 is smooth.
Theorem 4 (Accelerated Sampler for Smooth Hessian Log-Density). Suppose that ∇2 log q0(x) is
2-norm M -Lipschitz. This means that ∃M > 0 such that∥∥∇2 log q0(x)−∇2 log q0(y)

∥∥ ≤ M ∥x− y∥ , ∀x, y ∈ Rd.

Then, under Assumptions 1 and 3, using the αt in (10) with δ = 1/(M
2
3T

3
2 ) and c ≥ log(M

2
3T

3
2 ),

we have
KL(Q0||P̂ ′

0) ≲
d3(log3 M+log3 T ) log3 T

T 2 + (log T )ε2 + log2 T
T ε2H .

We also provide an accelerated convergence result with linear d dependency when all the
∇2 log qt(x) (t ≥ 0) are 2-norm M -Lipschitz (see Theorem 5 in Appendix G.3).

Theorem 4 provides us with the first accelerated DDPM result with only a smoothness constraint on
log q0, under the score and Hessian estimation error. In words, in order to reach O(ε) TV-distance
when ε2H/T ≲ ε2, the number of steps needed under Lipschitz-Hessian Q0’s is O(d1.5 log1.5 M/ε).
This is different from Chen et al. (2023c); Huang et al. (2024a;b) in which some smoothness
condition is imposed on all ∇ log qt’s (or st’s or both). Compared with Theorem 3, this upper bound
in Theorem 4 is directly over KL(Q0||P̂ ′

0) instead of for some early-stopped distribution. Our results
provide new contributions that complement existing studies by exploring different assumptions of
distributions, which enriches the existing set of distributions studied in the literature.

Our analysis is significantly different from that in (Chen et al., 2023a, Theorem 5). There, the
Poincaré inequality is key to guarantee that the Lipschitz smoothness in ∇ log q0 is preserved when
δ is small, but this inequality may not hold in our case with smoothness only in ∇2 log q0. Instead,
with smooth ∇2 log q0, we expand the tilting factor only to its third-order Taylor polynomial and
directly provide an upper bound with techniques used in proving Theorems 3 and 5.

6 CONCLUSION

In this paper, we have provided accelerated convergence guarantees for a much larger set of target
distributions than in prior literature, including both smooth Q0 and general Q0 with early-stopping.
The accelerated rates are achieved with a new accelerated Hessian-based DDPM sampler using a
novel analysis technique. One future direction is to further shrink the d dependency for general Q0.
It is also interesting to investigate other acceleration schemes to further improve diffusion samplers.
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A RELATED WORKS

Theory on Regular DDPM Samplers: Many works have explored the performance guarantees
of regular DDPM models. Specifically, a number of studies perform analyses under the L∞ score
estimation error (De Bortoli et al., 2021; De Bortoli, 2022). Later, under L2 score estimation error,
Lee et al. (2022) developed polynomial5 bounds for distributions that have Lipschitz scores and
satisfy log-Sobolev inequality. Soon after, Chen et al. (2023d); Lee et al. (2023) concurrently
developed polynomial bounds for those smooth distributions having Lipschitz scores and those
non-smooth distributions having bounded support using early stopping. Later, Chen et al. (2023a)
improved the number of steps for those target distributions with finite second moment. Recently,
the convergence result was further improved to linear dimensional dependency using stochastic
localization (Benton et al., 2024a). In Conforti et al. (2023), by transforming the original process to
the relative-score process, it is shown that linear dimensional dependency can also be achieved for
those target distributions having finite relative Fisher information against a Gaussian distribution. In
all the works above, the analysis technique is to discretize some continuous-time diffusion process
to use SDE-type analyses. In Li et al. (2024c), by carefully design a typical set, polynomial-time
guarantees are obtained directly for the discrete-time samplers under the L2 estimation error for target
distributions having bounded support. Other than the works above, Pedrotti et al. (2023) analyzed a
different sampling scheme (e.g., predictor-corrector), and Bruno et al. (2023); Gao et al. (2023); Gao
& Zhu (2024) analyzed sampling errors using a different error measure (the Wasserstein-2 distance).

Theory on Score Estimation: In order to achieve an end-to-end analysis, several works developed
sample complexity bounds to achieve the L2 score estimation error for a variety of distributions.
To name a few, this includes results for those having bounded support (Oko et al., 2023), Gaussian
mixture (Shah et al., 2023; Gatmiry et al., 2024; Chen et al., 2024), certain families of sub-Gaussian
distributions (Cole & Lu, 2024; Zhang et al., 2024), high-dimensional graphical models (Mei &
Wu, 2023), and those supported on a low-dimensional linear subspace (Chen et al., 2023b). More
recently, Li et al. (2024e) considered the generalizability of the continuous-time diffusion models,
and Wibisono et al. (2024) proposed a regularized score estimator that attains the minimax rate of
estimating the scores.

Other Theoretical Works: Other than the works listed above and in Section 1.2, Gao & Zhu (2024)
studied the ODE convergence for strongly-concave target distributions under Wasserstein-2 error.
Cao et al. (2023) compared the performance of SDE and PF-ODE and investigated conditions where
one might outperform the other. Besides PF-ODE, Cheng et al. (2023); Benton et al. (2024b); Jiao
et al. (2024); Gao et al. (2024) provided guarantees for the closely-related flow-matching model,
which learns a deterministic coupling between any two distributions. Chang et al. (2024) proposed a
novel ODE for sampling from a conditional distribution. Lyu et al. (2024); Li et al. (2024b) provided
convergence guarantees for the more recent consistency models (Song et al., 2023).

Relationship to GENIE (Dockhorn et al., 2022): To obtain higher-order scores, another method
is to use automatic differentiation, as in GENIE (Dockhorn et al., 2022). There, higher-order
score functions are used to accelerate the diffusion sampling process empirically. In particular,
Dockhorn et al. (2022) shows that GENIE achieves better empirical performance than deterministic
samplers such as DDIM (Song et al., 2021). Our paper theoretically justifies the accelerated empirical
performance of Dockhorn et al. (2022) in the regime when the Hessian of log qt is well-estimated.

5By “polynomial” we mean that the number of steps has polynomial dependency on the score estimation
error, along with other parameters.
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B FULL LIST OF NOTATIONS

For any two functions f(d, δ, T ) and g(d, δ, T ), we write f(d, δ, T ) ≲ g(d, δ, T ) (resp. f(d, δ, T ) ≳
g(d, δ, T )) for some universal constant (not depending on δ, d or T ) L < ∞ (resp. L > 0) if
lim supT→∞ |f(d, δ, T )/ g(d, δ, T )| ≤ L (resp. lim infT→∞ |f(d, δ, T )/g(d, δ, T )| ≥ L). We write
f(d, δ, T ) ≍ g(d, δ, T ) when both f(d, δ, T ) ≲ g(d, δ, T ) and f(d, δ, T ) ≳ g(d, δ, T ) hold. Note
that the dependency on δ and d is retained with ≲,≳,≍. We write f(d, δ, T ) = O(g(T )) (resp.
f(d, δ, T ) = Ω(g(T ))) if f(d, δ, T ) ≲ L(d, δ)g(T ) (resp. f(d, δ, T ) ≳ L(d, δ)g(T )) holds for some
L(d, δ) (possibly depending on δ and d). We write f(d, δ, T ) = o(g(T )) if lim supT→∞ |f(d, δ, T )
/g(T )| = 0. We write f(d, δ, T ) = Õ(g(T )) if f(d, δ, T ) = O(g(T )(log g(T ))k) for some constant
k. Note that the big-O notation omits the dependency on δ and d. In the asymptotic when ε−1 → ∞,
we write f(d, ε−1) = O(g(d, ε−1)) if f(d, δ, ε−1) ≲ g(d, δ, ε−1)(log g(ε−1))k for some constant k.
Unless otherwise specified, we write xi(1 ≤ i ≤ d) as the i-th element of a vector x ∈ Rd and [A]ij

as the (i, j)-th element of a matrix A. For a function f(x) : Rd → R, we write ∂if(z) as a shorthand
for ∂

∂xi f(x)
∣∣∣
x=z

, and similarly for higher moments. For matrices A,B, Tr(A) is the trace of A, and

A ⪯ B means that B −A is positive semi-definite. For a positive integer n, [n] := {1, . . . , n}.

C PROOFS OF LEMMAS 1 AND 2
In this section, we provide lemmas and proofs related to Hessian estimation.

C.1 PROOF OF LEMMA 1
The idea is similar to score matching. Define v′θ(x) := vθ(x)− 1

1−ᾱt
Id. For each i, j ∈ [d],

EXt∼Qt

(
vijθ (Xt)−

(
∂2
ijqt(Xt)

qt(Xt)
+
1 {i = j}
1− ᾱt

))2

= EXt∼Qt

(
[v′θ(Xt)]

ij −
∂2
ijqt(Xt)

qt(Xt)

)2

= EXt∼Qt

(
[v′θ(Xt)]

ij
)2 − 2EXt∼Qt

[
[v′θ(Xt)]

ij
∂2
ijqt(Xt)

qt(Xt)

]
+ const

= EXt∼Qt

(
[v′θ(Xt)]

ij
)2 − 2

∫
[v′θ(xt)]

ij∂2
ijqt(xt)dxt + const

where const denotes terms that are independent of θ, and∫
[v′θ(xt)]

ij∂2
ijqt(xt)dxt

=

∫
[v′θ(xt)]

ij

∫
∂2
ijqt|0(xt|x0)dQ0(x0)dxt

=

∫ ∫
qt|0(xt|x0)[v

′
θ(xt)]

ij
∂2
ijqt|0(xt|x0)

qt|0(xt|x0)
dQ0(x0)dxt

(i)
=

∫ ∫
qt|0(xt|x0)[v

′
θ(xt)]

ij
(
∂2
ij log qt|0(xt|x0) + ∂i log qt|0(xt|x0)∂j log qt|0(xt|x0)

)
dQ0(x0)dxt

=

∫ ∫
qt|0(xt|x0)[v

′
θ(xt)]

ij

(
−1 {i = j}

1− ᾱt
+

xi
t −

√
ᾱtx

i
0

1− ᾱt
· x

j
t −

√
ᾱtx

j
0

1− ᾱt

)
dQ0(x0)dxt

(ii)
= E (X0,W̄t)∼Q0⊗N (0,Id)

Xt=
√
ᾱtX0+

√
1−ᾱtW̄t

[
[v′θ(Xt)]

ij

(
−1 {i = j}

1− ᾱt
+

1

1− ᾱt
W̄ i

t W̄
j
t

)]
where (i) follows because for any function f(x) we have ∂2

ij log f(x) =
∂2
ijf(x)

f(x) −
(∂i log f(x))(∂j log f(x)), and (ii) follows because xt =

√
ᾱtx0 +

√
1− ᾱtw̄t. Therefore,

EXt∼Qt

(
vijθ (Xt)−

(
∂2
ijqt(Xt)

qt(Xt)
− 1 {i = j}

1− ᾱt

))2
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= E (X0,W̄t)∼Q0⊗N (0,Id)
Xt=

√
ᾱtX0+

√
1−ᾱtW̄t

(
[v′θ(Xt)]

ij −
(
−1 {i = j}

1− ᾱt
+

1

1− ᾱt
W̄ i

t W̄
j
t

))2

+ const

= E (X0,W̄t)∼Q0⊗N (0,Id)
Xt=

√
ᾱtX0+

√
1−ᾱtW̄t

(
[vθ(Xt)]

ij − 1

1− ᾱt
W̄ i

t W̄
j
t

)2

+ const

and the result follows immediately after we sum up over i, j ∈ [d].

C.2 LEMMA 2 AND ITS PROOF

The following lemma provides sufficient conditions such that the Ht in (8) satisfies Assumption 3.
Lemma 2. Under Assumption 5, with the αt defined in Definition 1, suppose that vt and st satisfy,
as T → ∞,

1
T

∑T
t=1 EXt∼Qt

∥∥∥vt(Xt)−
(

∇2qt(Xt)
qt(Xt)

+ 1
1−ᾱt

Id

)∥∥∥2
F
= Õ(T−1), (11)

max1≤t≤T (1− αt)
−2

√
EXt∼Qt ∥st(Xt)−∇ log qt(Xt)∥4 = Õ(1). (12)

Also suppose that the Ht defined in (8) satisfies supℓ≥1

(
EXt∼Qt

∥Ht(Xt)∥ℓ
)1/ℓ

= Õ(1). Then, the
Ht and the st from score matching (Song & Ermon, 2019) satisfy Assumption 3.

Proof of Lemma 2. The condition on the score estimation error in Assumption 3 is immediately
satisfied using Jensen’s inequality. We next focus on the condition on the Hessian estimation. Recall
that

Ht(x) = vt(x)−
1

1− ᾱt
Id − st(x)s

⊺
t (x).

The goal is to show that Ht is close to ∇2 log qt (i.e., the second relationship in Assumption 3). Given
that ∇2 log qt(x) =

∇2qt(x)
qt(x)

− (∇ log qt(x))(∇ log qt(x))
⊺, the key is to control the error incurred

by st(x)st(x)
⊺, which is

EXt∼Qt

d∑
i,j=1

(
sit(Xt)s

j
t (Xt)− [∇ log qt(Xt)]

i[∇ log qt(Xt)]
j
)2

= EXt∼Qt

d∑
i,j=1

(
(sit(Xt)− [∇ log qt(Xt)]

i)sjt (Xt) + [∇ log qt(Xt)]
i(sjt (Xt)− [∇ log qt(Xt)]

j)
)2

(i)

≤ 2EXt∼Qt

d∑
i,j=1

(sit(Xt)− [∇ log qt(Xt)]
i)2(sjt (Xt))

2 + ([∇ log qt(Xt)]
i)2(sjt (Xt)− [∇ log qt(Xt)]

j)2

= 2EXt∼Qt

[
∥st(Xt)−∇ log qt(Xt)∥2 (∥∇ log qt(Xt)∥2 + ∥st(Xt)∥2)

]
where (i) follows because (a + b)2 = a2 + b2 + 2ab ≤ 2a2 + 2b2. To continue, we use the
Cauchy-Schwartz inequality and obtain

EXt∼Qt ∥st(Xt)s
⊺
t (Xt)− (∇ log qt(Xt))(∇ log qt(Xt))

⊺∥2F

≤ 2

√
EXt∼Qt

∥st(Xt)−∇ log qt(Xt)∥4
√

2EXt∼Qt

[
∥∇ log qt(Xt)∥4 + ∥st(Xt)∥4

]
.

Here the second term has that

E[∥st(Xt)∥4] ≤ 8E[∥st(Xt)−∇ log qt(Xt)∥4] + 8E[∥∇ log qt(Xt)∥4]
≲ E[∥∇ log qt(Xt)∥4].

Therefore,

1

T

T∑
t=1

EXt∼Qt

∥∥Ht(Xt)−∇2 log qt(Xt)
∥∥2
F
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≤ 1

T

T∑
t=1

EXt∼Qt

∥∥∥∥vθ(Xt)−
(
∇2qt(Xt)

qt(Xt)
+

1

1− ᾱt
Id

)∥∥∥∥2
F

+
1

T

T∑
t=1

EXt∼Qt
∥st(Xt)s

⊺
t (Xt)− (∇ log qt(Xt))(∇ log qt(Xt))

⊺∥2F

≲
1

T

T∑
t=1

EXt∼Qt

∥∥∥∥vθ(Xt)−
(
∇2qt(Xt)

qt(Xt)
+

1

1− ᾱt
Id

)∥∥∥∥2
F

+
1

T

T∑
t=1

√
EXt∼Qt ∥st(Xt)−∇ log qt(Xt)∥4

√
EXt∼Qt ∥∇ log qt(Xt)∥4

(ii)
=

1

T

T∑
t=1

EXt∼Qt

∥∥∥∥vθ(Xt)−
(
∇2qt(Xt)

qt(Xt)
+

1

1− ᾱt
Id

)∥∥∥∥2
F

+ Õ


√√√√ 1

T

T∑
t=1

(1− αt)2EXt∼Qt
∥∇ log qt(Xt)∥4


(iii)
=

1

T

T∑
t=1

EXt∼Qt

∥∥∥∥vθ(Xt)−
(
∇2qt(Xt)

qt(Xt)
+

1

1− ᾱt
Id

)∥∥∥∥2
F

+ Õ(T−1)

where (ii) follows from (12) using the fact that 1
T

∑T
t=1

√
at ≤

√
1
T

∑T
t=1 at by Jensen’s inequality,

and (iii) follows under Assumption 5. Combining this with (11), we finally get

1

T

T∑
t=1

EXt∼Qt

∥∥∥∥vt(Xt)−
(
∇2qt(Xt)

qt(Xt)
+

1

1− ᾱt
Id

)∥∥∥∥2
F

= Õ(T−1)

and thus the second relationship in Assumption 3 is satisfied. The proof is now complete.

D PROOF OF THEOREM 1
Instead of Assumption 4, we will prove Theorem 1 under the following more general assumption,
which obviously implies Assumption 4 for any αt.
Assumption 5 (Regular Partial Derivatives+). For all t ≥ 1, ℓ ≥ 1, and a ∈ [d]p such that
|a| = p ≥ 1,

(1− αt)
pℓ/2EXt∼Qt |∂p

a log qt(Xt)|ℓ = Õ
(
(1− αt)

pℓ/2
)
,

(1− αt)
pℓ/2EXt∼Qt |∂p

a log qt−1(µt(Xt))|ℓ = Õ
(
(1− αt)

pℓ/2
)
.

When q0 does not exist, this is required only for t ≥ 2.

To begin the proof of Theorem 1, note that

KL(Q||P̂ ′) = EX0,...,XT∼Q

[
log

q(X0, . . . , XT )

p̂′(X0, . . . , XT )

]
(i)
= EX0,...,XT∼Q

[
log

q0(X0)
∏T

t=1 qt|t−1(Xt|Xt−1)

p̂′(X0, . . . , XT )

]
(ii)
= EX0,...,XT∼Q

[
log

q0(X0)
∏T

t=1 qt|t−1(Xt|Xt−1)

p̂′0(X0)
∏T

t=1 p̂
′
t|t−1(Xt|Xt−1)

]

= EX0∼Q0

[
log

q0(X0)

p̂′0(X0)

]
+

T∑
t=1

EXt−1,Xt∼Qt−1,t

[
log

qt|t−1(Xt|Xt−1)

p̂′t|t−1(Xt|Xt−1)

]

= EX0∼Q0

[
log

q0(X0)

p̂′0(X0)

]
+

T∑
t=1

EXt−1∼Qt−1

[
EXt∼Qt|t−1

[
log

qt|t−1(Xt|Xt−1)

p̂′t|t−1(Xt|Xt−1)

]]
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= KL(Q0||P̂ ′
0) +

T∑
t=1

EXt−1∼Qt−1

[
KL(Qt|t−1(·|Xt−1)||P̂ ′

t|t−1(·|Xt−1))
]
.

Here (i) holds because of the Markov property of the forward process. We explain (ii) below. By
the backward Markov property of the reverse process, for any t ≥ 1, given Xt−1 = xt−1, each of
Xt−2, . . . , X0 is independent with Xt. This implies that

p̂′t|t−1,...,0(xt|xt−1, . . . , x0) = p̂′t|t−1(xt|xt−1), ∀t ≥ 1.

Thus, p̂′(x0, . . . , xT ) = p̂′0(x0)
∏T

t=1 p̂
′
t|t−1(xt|xt−1). In other words, X0, . . . , Xt is also forward

Markov under P̂ ′.

Following from similar arguments,

KL(Q||P̂ ′) = KL(QT ||P̂ ′
T ) +

T∑
t=1

EXt∼Qt

[
KL(Qt−1|t(·|Xt)||P̂ ′

t−1|t(·|Xt))
]
.

Since KL-divergence is non-negative, an upper bound on KL(Q0||P̂ ′
0) is given by

KL(Q0||P̂ ′
0)

= KL(QT ||P̂ ′
T ) +

T∑
t=1

EXt∼Qt

[
KL(Qt−1|t(·|Xt)||P̂ ′

t−1|t(·|Xt))
]

−
T∑

t=1

EXt−1∼Qt−1

[
KL(Qt|t−1(·|Xt−1)||P̂ ′

t|t−1(·|Xt−1))
]

≤ KL(QT ||P̂ ′
T ) +

T∑
t=1

EXt∼Qt

[
KL(Qt−1|t(·|Xt)||P̂ ′

t−1|t(·|Xt))
]

= EXT∼QT

[
log

qT (XT )

p′T (XT )

]
︸ ︷︷ ︸

Term 1: initialization error

+

T∑
t=1

EXt,Xt−1∼Qt,t−1

[
log

p′t−1|t(Xt−1|Xt)

p̂′t−1|t(Xt−1|Xt)

]
︸ ︷︷ ︸

Term 2: estimation error

+

T∑
t=1

EXt,Xt−1∼Qt,t−1

[
log

qt−1|t(Xt−1|Xt)

p′t−1|t(Xt−1|Xt)

]
︸ ︷︷ ︸

Term 3: reverse-step error

. (13)

The last equality holds because p̂′T = p′T .

Next, we bound the above three terms separately in a few steps.

D.1 STEP 0: BOUNDING TERM 1 – INITIALIZATION ERROR

Lemma 3. Suppose ᾱT ↘ 0 as T → ∞. Then, under Assumption 1,

EXT∼QT

[
log

qT (XT )

p′T (XT )

]
≤ 1

2
M2ᾱT d+O

(
ᾱ2
T

)
, as T → ∞.

Remark 1. Under Assumption 1, if the noise schedule satisfies Definition 1, we have

EXT∼QT

[
log

qT (XT )

p′T (XT )

]
= o(T−2).

Proof. See Appendix F.1.

We now introduce the following notation for analyzing the estimation error and the reverse-step error
for the accelerated sampler.
Definition 2 (Big-O in Lr space). For a random variable ZT , we say that ZT (x) = OLr(Q)(1) if

(EX∼Q |ZT (X)|r)1/r = O(1) for all r ≥ 1 as T → ∞.
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One property is that if ZT (x) = OLr(Q)(1) then EX∼Q |ZT (X)| = O(1). Another property is that
if Z1 = OLr(Q)(aT ) and Z2 = OLr(Q)(bT ) for all r ≥ 1, applying Cauchy-Schwartz inequality we
get, for all r ≥ 1,

(E |Z1Z2|r)
1/r ≤

(
EZ2r

1 EZ2r
2

)1/(2r)
= O(aT bT ),

which implies that OLr(Q)(aT )OLr(Q)(bT ) = OLr(Q)(aT bT ). Now, with this notation, the regularity
condition on Ht can be written as

(1− αt) ∥Ht(Xt)∥ = ÕLr(Qt)(1− αt), ∀r ≥ 1.

Also, Assumption 5 can be equivalently written as, ∀r ≥ 1,

(1− αt)
p/2 |∂p

a log qt(Xt)| = ÕLr(Qt)

(
(1− αt)

p/2
)
,

(1− αt)
p/2 |∂p

a log qt−1(µt(Xt))| = ÕLr(Qt)

(
(1− αt)

p/2
)
.

D.2 STEP 1: BOUNDING TERM 2 – SCORE AND HESSIAN ESTIMATION ERROR

We first bound the estimation error, which includes the errors that come from the score and the
Hessian estimation. In particular, Assumption 5 guarantees that all higher Taylor terms are well
controlled in expectation over Xt ∼ Qt.
Lemma 4. Under Assumptions 3 and 5, with the αt satisfying Definition 1, we have

T∑
t=1

EXt,Xt−1∼Qt,t−1

[
log

p′t−1|t(Xt−1|Xt)

p̂′t−1|t(Xt−1|Xt)

]
≲ (log T )ε2 +

log2 T

T
ε2H .

Remark 2. Under Assumption 3, Lemma 4 guarantees that

T∑
t=1

EXt,Xt−1∼Qt,t−1

[
log

p′t−1|t(Xt−1|Xt)

p̂′t−1|t(Xt−1|Xt)

]
= Õ

(
1

T 2

)
.

Proof. See Appendix F.2.

Before we proceed to the reverse-step error, we provide the following lemma to provide an upper
bound when we use the Σ̃t and its estimate according to (9).
Corollary 2. Under the same conditions of Lemma 4, the upper bound in Lemma 4 on the estimation
error still holds with the slightly perturbed Σ̃t provided in (9).

Proof. See Appendix F.3.

D.3 STEP 2: EXPRESSING LOG-LIKELIHOOD RATIO VIA TILTING FACTOR

Next we focus on the reverse-step error for the accelerated process. Recall that Q0 is smooth under
Assumption 2. We introduce the following notations for analysis. Let

At(xt) := (1− αt)∇2 log qt(xt), Bt(xt) := Id − (Id +At(xt))
−1, (14)

which imply that

Σt(xt) =
1− αt

αt
(Id +At(xt)), Σ−1

t (xt) =
αt

1− αt
(Id −Bt(xt)).

Now, with the notation in Definition 2, for each i, j ∈ [d], Aij
t (xt) = ÕLr(Qt) (1− αt) for all r ≥ 1

under Assumption 5. Also, when (1−αt) is small, we can perform Taylor expansion on Bt(·) around
At(·) and obtain, under Assumption 5,

Bt(Xt) = At(Xt) + ÕLr(Qt)

(
(1− αt)

2
)
. (15)
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Remark 3. In general, suppose that we choose P ′
t−1|t whose conditional covariance satisfies

Σ̃t(Xt) =
1− αt

αt

(
Id +At(Xt) + ÕLr(Qt)

(
(1− αt)

2
))

= Σt(Xt) + ÕLr(Qt)

(
(1− αt)

3
)
,

where a small perturbation is added to the covariance matrix. An immediate consequence is that

Σ̃−1
t (Xt) =

αt

1− αt

(
Id −Bt(Xt) + ÕLr(Qt)

(
(1− αt)

2
))

= Σ−1
t (Xt) + ÕLr(Qt) (1− αt) .

Then, with such P ′
t−1|t having a slightly perturbed covariance, the following Lemmas 5 and 7 still

hold with Ãt(xt) and B̃t(xt) such that

Ãt(xt) :=
αt

1− αt
Σ̃t(xt)− Id, B̃t(xt) := Id − (Id + Ãt(xt))

−1.

Note that Ãt(Xt) = At(Xt)+ ÕLr(Qt)

(
(1− αt)

2
)

and B̃t(Xt) = Bt(Xt)+ ÕLr(Qt)

(
(1− αt)

2
)
.

In the following we write µt = µt(xt), At = At(xt), and Bt = Bt(xt) for brevity.
Lemma 5. For any fixed xt ∈ Rd, as long as qt−1 is defined, we have

qt−1|t(xt−1|xt) =
p′t−1|t(xt−1|xt)e

ζ′
t,t−1(xt,xt−1)

EXt−1∼P ′
t−1|t

[eζ
′
t,t−1(xt,Xt−1)]

,

where

ζt,t−1(xt, xt−1) := log qt−1(xt−1)− log qt−1(µt)− (xt−1 − µt)
⊺(
√
αt∇ log qt(xt)), (16)

and

ζ ′t,t−1(xt, xt−1) := ζt,t−1(xt, xt−1)−
αt

2(1− αt)
(xt−1 − µt)

⊺Bt(xt−1 − µt)

= log qt−1(xt−1)− log qt−1(µt)− (xt−1 − µt)
⊺(
√
αt∇ log qt(xt))

− αt

2(1− αt)
(xt−1 − µt)

⊺Bt(xt−1 − µt). (17)

Proof. See Appendix F.4.

In the following we write ζt,t−1 = ζt,t−1(xt, xt−1) and ζ ′t,t−1 = ζ ′t,t−1(xt, xt−1) and omit depen-
dencies on xt and xt−1 for brevity. As we will see, (16) is the tilting factor for the regular diffusion
process. Given the definition of ζ ′t,t−1 in (17), below we analyze log qt−1(x) around x = µt using
Taylor expansion. We first provide the following notations for the Taylor expansion.
Definition 3 (Taylor Expansion). Recall that xi (1 ≤ i ≤ d) denotes the i-th element of a vector x.
Given an analytic function f(x), its Taylor expansion around x = µ is given by

f(x) = f(µ) +

∞∑
p=1

Tp(f, x, µ)

= f(µ) +∇f(µ)⊺(x− µ) +
1

2

d∑
i=1

∂2
iif(µ)(x

i − µi)2 +
1

2

d∑
i,j=1
i ̸=j

∂2
ijf(µ)(x

i − µi)(xj − µj)

+

∞∑
p=3

Tp(f, x, µ)

where, for p ≥ 1, we define

Tp(f, x, µ) :=
1

p!

∑
γ∈Nd:

∑
i γ

i=p

∂p
af(µ)

d∏
i=1

(xi − µi)γ
i

(18)

where in a ∈ [d]p the multiplicity of i (∈ [d]) is γi.
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If we specialize it to the case where f = log qt−1, x = xt−1, and µ = µt, we need the following
lemma to guarantee the validity of Taylor expansion for t ≥ 1.
Lemma 6. Fix t ≥ 1. For any Q0 (not necessarily having a p.d.f. w.r.t. the Lebesgue measure), given
any k ≥ 1 and any vector of indices a ∈ [d]k, qt exists and |∂k

a log qt(xt)| < ∞, ∀xt ∈ Rd (which
possibly depends on T ). Further, qt and log qt are both analytic.

Proof. See Appendix F.5.

Thus, by Assumption 2 and Lemma 6, since log qt−1 is analytic, its Taylor expansion around
xt−1 = µt is equal to (cf. (16))

ζt,t−1 = (∇ log qt−1(µt)−
√
αt∇ log qt(xt))

⊺(xt−1 − µt) +

∞∑
p=2

Tp(log qt−1, xt−1, µt), (19)

and the Taylor expansion of ζ ′t,t−1(xt, xt−1) around xt−1 = µt is (cf. (17))

ζ ′t,t−1 = (∇ log qt−1(µt)−
√
αt∇ log qt(xt))

⊺(xt−1 − µt)

+
1

2
(xt−1 − µt)

⊺

(
∇2 log qt−1(µt)−

αt

1− αt
Bt

)
(xt−1 − µt)

+

∞∑
p=3

Tp(log qt−1, xt−1, µt). (20)

In order to differentiate the second-order terms in (19) and (20), we reserve T2 for (19) and employ
for (20):

T ′
2(log qt−1, xt−1, µt) :=

1

2
(xt−1 − µt)

⊺

(
∇2 log qt−1(µt)−

αt

1− αt
Bt

)
(xt−1 − µt).

Compared with the tilting factor for the regular process in ζt,t−1, an additional term that is related to
Σt (and thus Bt) is introduced in ζ ′t,t−1. From the perspective of Taylor expansion, we can further
control the second-order term in the Taylor expansion of log qt−1 around µt through this extra term,
which improves the accuracy of posterior approximation at each step.

To use Taylor expansion to upper-bound the reverse-step error in (13), we first note that, for any fixed
xt,

EXt−1∼Qt−1|t

[
log

qt−1|t(Xt−1|xt)

p′t−1|t(Xt−1|xt)

]
= EXt−1∼Qt−1|t

[
ζ ′t,t−1 − logEXt−1∼P ′

t−1|t
[eζ

′
t,t−1 ]

]
= EXt−1∼Qt−1|t

[
ζ ′t,t−1

]
− logEXt−1∼P ′

t−1|t
[eζ

′
t,t−1 ]

(i)

≤ EXt−1∼Qt−1|t

[
ζ ′t,t−1

]
+ EXt−1∼P ′

t−1|t

[
− log eζ

′
t,t−1

]
= EXt−1∼Qt−1|t [ζ

′
t,t−1]− EXt−1∼P ′

t−1|t
[ζ ′t,t−1] (21)

where in (i) we use Jensen’s inequality and note that − log(·) is convex. In the remaining steps, we
analyze the expected values of the tilting factor separately.

D.4 STEP 3: CONDITIONAL EXPECTATION OF ζ ′t,t−1 UNDER P ′
t−1|t

With Taylor expansion around the posterior mean, the calculation of the expected values is reduced
to that of all the (centralized) moments. To start, it is useful to examine the rate of 1−αt

αt
. A direct

implication of Definition 1 is that, with some constant C1, since αt ↘ 0 as T → ∞,
(1− αt)

p

αq
t

≤ Cp
1 log

p T/T p

(1− C1 log T/T )
q ≲ (1− αt)

p, ∀p, q ≥ 1, t ≥ 1. (22)

Below, we first calculate the centralized moments under P ′
t−1|t. We employ Isserlis’s Theorem for

our help, which constitutes the main idea in the lemma below. Note that the results in this subsection
hold as long as Q0 has a p.d.f..
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Lemma 7. Fix t ≥ 1. For brevity write Zi = Xi
t−1 − µi

t, ∀i ∈ [d], A = At(xt), and E[·] as a
shorthand for EXt−1∼P ′

t−1|t
[·]. Note that we have Aij

t (xt) = ÕLp(Qt) (1− αt) for all i, j ∈ [d]

under Assumption 5. Thus, the following results hold: ∀p ≥ 1,

E

[∏
i∈a

Zi

]
= 0, ∀a : |a| odd,

E

[∏
i∈a

Zi

]
= ÕLp(Qt)

(
(1− αt)

|a|
2

)
, ∀a : |a| even.

Specifically, for i, j, k, l ∈ [d] all differ, the fourth moment is

E[Z4
i ] = 3

(
1− αt

αt

)2

(1 +Aii)2

E[Z3
i Zj ] = 3

(
1− αt

αt

)2

Aij(1 +Aii)

E[Z2
i Z

2
j ] =

(
1− αt

αt

)2

(1 +Aii)(1 +Ajj) + ÕLp(Qt)((1− αt)
4)

E[Z2
i ZjZk] =

(
1− αt

αt

)2

(1 +Aii)Ajk + ÕLp(Qt)((1− αt)
4)

E[ZiZjZkZl] = ÕLp(Qt)((1− αt)
4).

For i, j, k ∈ [d] all differ, the sixth moment is

E[Z6
i ] = 15

(
1− αt

αt

)3

(1 +Aii)3

E[Z4
i Z

2
j ] = 3

(
1− αt

αt

)3

(1 +Aii)2(1 +Ajj) + ÕLp(Qt)((1− αt)
4)

E[Z2
i Z

2
jZ

2
k ] =

(
1− αt

αt

)3

(1 +Aii)(1 +Ajj)(1 +Akk) + ÕLp(Qt)((1− αt)
4),

and E
[∏

i∈a:|a|=6 Zi

]
= ÕLp(Qt)((1− αt)

4) otherwise. All the rates are under Assumption 5.

Proof. See Appendix F.6.

D.5 STEP 4: CONDITIONAL EXPECTATION OF ζ ′t,t−1 UNDER Qt−1|t

Although each Qt|t−1 is conditionally Gaussian, the posterior Qt−1|t is not Gaussian in general. In
the following, we analyze the posterior centralized moments under Qt−1|t using the idea of Tweedie’s
formula Efron (2011). Then, we apply them to analyze EXt−1∼Qt−1|t [ζt,t−1], again using the Taylor
expansion in (19). Again, the result is more generally applicable to non-smooth Q0 at t ≥ 2 due to
Lemma 6.
Lemma 8. Fix t ≥ 1 such that qt−1 exists. Define x̃t :=

√
αt

1−αt
xt, and

κ(x̃t) := log qt

(
1− αt√

αt
x̃t

)
+

1− αt

2αt
∥x̃t∥2 +

d

2
log (2π(1− αt)) . (23)

Let 1 ≤ i, j, k, l ≤ d, which are possibly equal to each other. The first 3 centralized moments under
Qt−1|t satisfy

EXt−1∼Qt−1|t [Xt−1] = ∇κ = µt

EXt−1∼Qt−1|t [(Xt−1 − µt)(Xt−1 − µt)
⊺] = ∇2κ =

1− αt

αt
Id +

(1− αt)
2

αt
∇2 log qt(xt)

EXt−1,Xt∼Qt−1,t

[
(Xi

t−1 − µi
t)(X

j
t−1 − µj

t )(X
k
t−1 − µk

t )
]
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= EXt∼Qt
[∂3

ijkκ] =
(1− αt)

3

α
3/2
t

EXt∼Qt
[∂3

ijk log qt(Xt)] = Õ((1− αt)
3).

The fourth centralized moment satisfies

EXt−1,Xt∼Qt−1,t

[
(Xi

t−1 − µi
t)(X

j
t−1 − µj

t )(X
k
t−1 − µk

t )(X
l
t−1 − µl

t)
]

= EXt∼Qt
[(∂2

ijκ)(∂
2
klκ) + (∂2

ikκ)(∂
2
jlκ) + (∂2

ilκ)(∂
2
jkκ) + ∂4

ijklκ]

=


3
(

1−αt

αt

)2
+ Õ((1− αt)

3), if i = j = k = l,(
1−αt

αt

)2
+ Õ((1− αt)

3), if i = k ̸= j = l,

Õ((1− αt)
3), otherwise.

Note that all derivatives above are w.r.t. x̃t. All the rates are under Assumption 5.

Proof. See Appendix F.7.

Lemma 8 also justifies the expression of µt and Σt in the diffusion process (i.e., (3) and (4)), which
match the posterior mean and variance, respectively.

Next we turn to calculate the fifth and sixth centralized moment under Qt−1|t, again drawing the idea
of Tweedie’s formula (Efron, 2011). This is a direct extension to Lemma 8.
Lemma 9. Fix t ≥ 1 such that qt−1 exists. Fix xt ∈ Rd. Under Assumption 5, with the same
definitions of x̃t and κ(x̃t) as in Lemma 8, the fifth centralized moment is

EXt−1∼Qt−1|t

[
(Xi

t−1 − µi
t)(X

j
t−1 − µj

t )(X
k
t−1 − µk

t )(X
l
t−1 − µl

t)(X
m
t−1 − µm

t )
]

=
∑

ξ∈({i,j,k,l,m}
2 )

(∂2
ξκ)(∂

3
{i,j,k,l,m}\ξκ) + ∂5

ijklmκ = ÕLp(Qt)((1− αt)
4)

where, given a set A, we define(
A

2

)
:=
{
{a1, a2} : a1, a2 ∈ A, a1 ̸= a2

}
.

Let P k
n be the set that contains all distinct size-k partitions of [n]. Define

part2(A) := {((ai, aj) : {i, j} ∈ p) : p ∈ P 2
|A|}.

The sixth centralized moment is

EXt−1∼Qt−1|t

[
(Xi

t−1 − µi
t)(X

j
t−1 − µj

t )(X
k
t−1 − µk

t )(X
l
t−1 − µl

t)(X
m
t−1 − µm

t )(Xn
t−1 − µn

t )
]

=
∑

(ξ1,ξ2,ξ3)∈part2({i,j,k,l,m,n})

(∂2
ξ1κ)(∂

2
ξ2κ)(∂

2
ξ3κ) + ÕLp(Qt)((1− αt)

4)

=



15
(

1−αt

αt

)3
+ ÕLp(Qt)((1− αt)

4), if i = j = k = l = m = n

3
(

1−αt

αt

)3
+ ÕLp(Qt)((1− αt)

4), if i = k = m = n ̸= j = l(
1−αt

αt

)3
+ ÕLp(Qt)((1− αt)

4), if i = l, j = m, k = n while i, j, k all differ

ÕLp(Qt)((1− αt)
4), otherwise

Again note that all derivatives above are w.r.t. x̃t.

Proof. See Appendix F.8.

The following lemma provides the correct order (in terms of (1− αt)) for all higher-order posterior
centralized moments. In other words, this shows that Qt−1|t has nice Gaussian-like concentration.
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Lemma 10. Fix t ≥ 1 and p ≥ 2. Let a = (a1, . . . , ap) ∈ [d]p be a vector of indices of length p.
Under the same conditions as in Lemma 8, if p is odd,

EXt−1,Xt∼Qt−1,t

[
p∏

i=1

(Xai
t−1 − µai

t )

]
= Õ

(
(1− αt)

p+3
2

)
, ∀a ∈ [d]p. (24)

If p is even,

EXt−1,Xt∼Qt−1,t

[
p∏

i=1

(Xai
t−1 − µai

t )

]
= Õ((1− αt)

p
2 ), ∀a ∈ [d]p. (25)

Proof. See Appendix F.9.

D.6 STEP 5: BOUNDING TERM 3 – REVERSE-STEP ERROR

We are now ready to assemble the respective moments into the final convergence rate. In the following
lemma, we use the results in the previous lemmas to control the difference EXt−1∼Qt−1|t [ζ

′
t,t−1]−

EXt−1∼P ′
t−1|t

[ζ ′t,t−1] in (21).
Lemma 11. Suppose that Assumption 5 holds and that qt−1 exists. Then,

EXt∼Qt

(
EXt−1∼Qt−1|t − EXt−1∼P ′

t−1|t

)
[ζ ′t,t−1]

=
(1− αt)

3

3!α
3/2
t

d∑
i,j,k=1

EXt∼Qt [∂
3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt)] + Õ((1− αt)

4).

Proof. See Appendix F.10.

Therefore, under Assumptions 2 and 5 we combine Lemma 11 and (21) and get

T∑
t=1

EXt−1,Xt∼Qt−1|t

[
log

qt−1|t(Xt−1|Xt)

p′t−1|t(Xt−1|Xt)

]

≲ (1− αt)
3

d∑
i,j,k=1

EXt∼Qt [∂
3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt)]. (26)

This completes the proof of Theorem 1.

Before we end this section, we provide an upper bound of the reverse-step error when the conditional
covariance of P ′

t−1|t is slightly perturbed (see Remark 3).
Corollary 3. Suppose that Assumption 5 holds and that qt−1 exists. Suppose that the conditional
covariance of P ′

t−1|t is slightly perturbed, which satisfies

Σ̃t(xt) =
1− αt

αt
(Id +At(xt) + Ξt(xt)) ,

where Ξt(Xt) = ÕLr(Qt)

(
(1− αt)

2
)

for all r ≥ 1. Then,

T∑
t=1

EXt−1,Xt∼Qt−1|t

[
log

qt−1|t(Xt−1|Xt)

p′t−1|t(Xt−1|Xt)

]
≲ −(1− αt)EXt∼Qt

Tr
((
∇2 log qt−1(µt(Xt))− αt∇2 log qt(Xt)

)
Ξt(Xt)

)
+ (1− αt)

3
d∑

i,j,k=1

EXt∼Qt
[∂3

ijk log qt−1(µt(Xt))∂
3
ijk log qt(Xt)]

= Õ

(
1

T 2

)
.

Proof. See Appendix F.11.
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E PROOF OF COROLLARY 1
Note that q1 always exists and is analytic by Lemma 6. Therefore, it remains to upper-bound the
mismatch between Q0 and Q1. In the following lemma we provide such a common bound in
Wasserstein distance, which is provided only for completeness.
Lemma 12. For any Q0,

W2(Q0, Q1)
2 ≤ (1− α1)(M2 + 1)d.

Remark 4. If 1− α1 = δ, this implies that

W2(Q0, Q1)
2 ≲ δd.

Proof. See Appendix F.12.

The proof of this corollary is thus complete. A consequence of Lemma 12 is that, in order to obtain
convergence guarantees for general distributions, one can view 1− α1 as controlling the mismatch
between Q0 and Q1 (in terms of the Wasserstein distance), and 1 − αt, ∀t ≥ 2 as controlling the
mismatch between Q1 and P̂ ′

1 (in terms of the KL-divergence).

F AUXILIARY PROOFS FOR THEOREM 1 AND COROLLARY 1
In this section, we provide the proofs for those auxiliary lemmas in the proof of Theorem 1 and Corol-
lary 1.

F.1 PROOF OF LEMMA 3
First, note that

qT (xT ) = EX0∼Q0
[qT |0(xT |X0)].

Also note that the function f(x) = x log(x) is convex. Thus, by Jensen’s inequality,

EXT∼QT
[log qT (XT )] =

∫
EX0∼Q0

[qT |0(xT |X0)] logEX0∼Q0
[qT |0(xT |X0)]dxT

≤
∫

EX0∼Q0

[
qT |0(xT |X0) log qT |0(xT |X0)

]
dxT

= EX0∼Q0

[∫
qT |0(xT |X0) log qT |0(xT |X0)dxT

]
.

Since QT |0 is conditional Gaussian N (
√
ᾱTx0, (1− ᾱT )Id), its negative conditional entropy equals∫

qT |0(xT |x0) log qT |0(xT |x0)dxT = −d

2
− d

2
log(2π(1− ᾱT ))

for any x0 ∈ Rd. On the other hand, since P ′
T = N (0, Id),

EXT∼QT
[log p′T (XT )] = −d

2
log(2π)− 1

2
EXT∼QT

∥XT ∥2

where

EXT∼QT
∥XT ∥2 = ᾱTEX0∼Q0

∥X0∥2 + (1− ᾱT )EW̄T∼N (0,Id)

∥∥W̄T

∥∥2
= ᾱTEX0∼Q0 ∥X0∥2 + (1− ᾱT )d.

Putting the two together,

EXT∼QT

[
log

qT (XT )

p′T (XT )

]
= EXT∼QT

[log qT (XT )]− EXT∼QT
[log p′T (XT )]

≤ −d

2
− d

2
log(2π(1− ᾱT )) +

d

2
log(2π) +

1

2

(
ᾱTEX0∼Q0 ∥X0∥2 + (1− ᾱT )d

)
=

1

2
ᾱTEX0∼Q0 ∥X0∥2 −

dᾱT

2
− d

2
log(1− ᾱT ).

When T is large (and thus when ᾱT is small), the Taylor expansion w.r.t. ᾱT around 0 yields

log(1− ᾱT ) = −ᾱT +O
(
ᾱ2
T

)
.
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Therefore,

EXT∼QT

[
log

qT (XT )

p′T (XT )

]
≤ 1

2
ᾱTEX0∼Q0 ∥X0∥2 −

dᾱT

2
− d

2
(−ᾱT ) +O

(
ᾱ2
T

)
≤ 1

2
ᾱTM2d+O

(
ᾱ2
T

)
.

F.2 PROOF OF LEMMA 4
To start, note that both P ′

t−1|t and P̂ ′
t−1|t are Gaussian (yet having different mean and variance).

Thus, for each t = 1, . . . , T ,

log
p′t−1|t(xt−1|xt)

p̂′t−1|t(xt−1|xt)

= log
(
det(Σt)

− 1
2

)
− log

(
det(Σ̂t)

− 1
2

)
− 1

2
(xt−1 − µt)

⊺Σ−1
t (xt−1 − µt) +

1

2
(xt−1 − µ̂t)

⊺Σ̂−1
t (xt−1 − µ̂t)

=
1

2

(
log(det(Σ̂t))− log(det(Σt))

)
+

1

2
(xt−1 − µt)

⊺(Σ̂−1
t − Σ−1

t )(xt−1 − µt)

+
1

2
(xt−1 − µ̂t)

⊺Σ̂−1
t (xt−1 − µ̂t)−

1

2
(xt−1 − µt)

⊺Σ̂−1
t (xt−1 − µt)

=
1

2

(
log(det(Σ̂t))− log(det(Σt))

)
+

1

2
(xt−1 − µt)

⊺(Σ̂−1
t − Σ−1

t )(xt−1 − µt)

+
1

2
(µt − µ̂t)

⊺Σ̂−1
t (xt−1 − µt) +

1

2
(xt−1 − µt)

⊺Σ̂−1
t (µt − µ̂t) +

1

2
(µt − µ̂t)

⊺Σ̂−1
t (µt − µ̂t).

(27)

There are five terms in (27). We first consider the third and the fourth term, for which we have

EXt−1∼Qt−1|t

[
(µt − µ̂t)

⊺Σ̂−1
t (Xt−1 − µt)

]
= (µt − µ̂t)

⊺Σ̂−1
t EXt−1∼Qt−1|t [Xt−1 − µt] = 0,

EXt−1∼Qt−1|t

[
(Xt−1 − µt)

⊺Σ̂−1
t (µt − µ̂t)

]
= EXt−1∼Qt−1|t [Xt−1 − µt]

⊺
Σ̂−1

t (µt − µ̂t) = 0.

Now consider the expectation of the last term in (27). From the definition of Σ̂t in (6), for small 1−αt

we have Σ̂t ≻ 0, and we can define B̂t := Id−(Id+(1−αt)Ht)
−1, and thus Σ̂−1

t = αt

1−αt
(Id−B̂t).

From Taylor expansion, we have B̂t = (1− αt)Ht + ÕLp(Qt)((1− αt)
2). Thus, for each t ≥ 1,

EXt∼Qt

[
(µt(Xt)− µ̂t(Xt))

⊺Σ̂−1
t (Xt)(µt(Xt)− µ̂t(Xt))

]
= (1− αt)EXt∼Qt

[
(st(Xt)−∇ log qt(Xt))

⊺(Id − B̂t(Xt))(st(Xt)−∇ log qt(Xt))
]

= (1− αt)EXt∼Qt

[
(st(Xt)−∇ log qt(Xt))

⊺(Id + (1− αt)Ht(Xt))
−1(st(Xt)−∇ log qt(Xt))

]
≲ (1− αt)EXt∼Qt

∥st(Xt)−∇ log qt(Xt)∥2

where the last line follows from the regularity condition on Ht in Assumption 3. Therefore, the
expectation of the last term in (27) can be bounded as

T∑
t=1

EXt∼Qt

[
(µt(Xt)− µ̂t(Xt))

⊺Σ̂−1
t (Xt)(µt(Xt)− µ̂t(Xt))

]
≲

T∑
t=1

(1− αt)EXt∼Qt
∥st(Xt)−∇ log qt(Xt)∥2

≲ (log T )ε2, (28)

where the last line follows by the score estimation error in Assumption 3.
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Next we turn to the first two terms in (27). First, note that for all i, j ∈ [d], we have (1−αt)H
ij
t (Xt) =

ÕLp(Qt)(1− αt) under Assumption 3. Now, the first term of (27) is given by

log(det(Σ̂t))− log(det(Σt)) = log(det(Id+(1−αt)Ht))− log(det(Id+(1−αt)∇2 log qt(xt))).

When (1− αt) is small, we can use Taylor expansion for the functions det(·) and log(·) to get

log(det(Id + (1− αt)Ht))

= log

(
1 + (1− αt)Tr(Ht) +

(1− αt)
2

2
(Tr(Ht)

2 − Tr(H2
t )) + ÕLp(Qt)((1− αt)

3)

)
= (1− αt)Tr(Ht) +

(1− αt)
2

2
(Tr(Ht)

2 − Tr(H2
t ))−

(1− αt)
2

2
Tr(Ht)

2 + ÕLp(Qt)((1− αt)
3)

= (1− αt)Tr(Ht)−
(1− αt)

2

2
Tr(H2

t ) + ÕLp(Qt)((1− αt)
3).

Similar expression can be obtained for log(det(Id + (1− αt)∇2 log qt(xt))). Thus, the first term in
(27) is equal to

log(det(Σ̂t))− log(det(Σt))

= (1− αt)
(
Tr(Ht)− Tr(∇2 log qt(xt))

)
− (1− αt)

2

2

[
Tr(H2

t )− Tr((∇2 log qt(xt))
2)
]

+ ÕLp(Qt)((1− αt)
3).

For the second term in (27), we first take expectation over xt−1 and get

EXt−1∼Qt−1|t

[
(Xt−1 − µt)

⊺(Σ̂−1
t − Σ−1

t )(Xt−1 − µt)
]
= Tr

(
(Σ̂−1

t − Σ−1
t )Σt

)
.

To proceed, note that

(Id + (1− αt)Ht)
−1 (iii)

= Id − (1− αt)Ht + (1− αt)
2H2

t + ÕLp(Qt)((1− αt)
3). (29)

To see (iii), we write St as the true inverse of Id+(1−αt)Ht. Its existence is guaranteed if (1−αt)
is small. Since

(Id + (1− αt)Ht)(Id − (1− αt)Ht + (1− αt)
2H2

t ) = Id + ÕLp(Qt)((1− αt)
3),

we have

(Id + (1− αt)Ht)(Id − (1− αt)Ht + (1− αt)
2H2

t − St) = ÕLp(Qt)((1− αt)
3)

which implies that St = Id − (1 − αt)Ht + (1 − αt)
2H2

t + ÕLp(Qt)((1 − αt)
3). This shows the

validity of (iii). Therefore,

Tr
(
(Σ̂−1

t − Σ−1
t )Σt

)
= Tr(Σ̂−1

t Σt − Id)

= Tr

([
Id − (1− αt)Ht + (1− αt)

2H2
t + ÕLp(Qt)((1− αt)

3)
]

[
Id + (1− αt)∇2 log qt(xt)

]
− Id

)
= (1− αt)

[
Tr(∇2 log qt(xt))− Tr(Ht)

]
+ (1− αt)

2
[
Tr(H2

t )− Tr(Ht∇2 log qt(xt))
]
+ ÕLp(Qt)((1− αt)

3).

Adding this to the first term of (27) and taking expectation over Xt ∼ Qt (noting Assumption 5 here),
we get

EXt−1,Xt∼Qt−1,t

[ (
log(det(Σ̂t(Xt)))− log(det(Σt(Xt)))

)
+ (Xt−1 − µt(Xt))

⊺(Σ̂−1
t (Xt)− Σ−1

t (Xt))(Xt−1 − µt(Xt))
]

=
(1− αt)

2

2
EXt∼Qt

[
Tr(Ht(Xt)

2)− 2Tr(Ht(Xt)∇2 log qt(Xt)) + Tr((∇2 log qt(Xt))
2)
]
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+ Õ((1− αt)
3)

(iv)
=

(1− αt)
2

2
EXt∼Qt

∥∥Ht(Xt)−∇2 log qt(Xt)
∥∥2
F
+ Õ((1− αt)

3),

where (iv) follows because for two symmetric matrices A and B,

Tr(A2)− 2Tr(AB) + Tr(B2) = Tr(A2)− Tr(AB)− Tr(BA) + Tr(B2)

= Tr((A−B)(A−B)) = Tr((A−B)⊺(A−B)) = ∥A−B∥2F .

Thus, following from Assumption 3,

T∑
t=1

EXt−1,Xt∼Qt−1,t

[ (
log(det(Σ̂t(Xt)))− log(det(Σt(Xt)))

)
+ (Xt−1 − µt(Xt))

⊺(Σ̂−1
t (Xt)− Σ−1

t (Xt))(Xt−1 − µt(Xt))
]
≲

log2 T

T
ε2H . (30)

Here εH is the Hessian estimation error. Combining (28) and (30) yields the desired result for the
accelerated estimation error, which is in the order Õ(1/T 2).

F.3 PROOF OF COROLLARY 2
Given the perturbed Σ̃t in (9), following the definition in (14), we define, ∀p ≥ 1,

Ãt := (1− αt)∇2 log qt(xt) +
(1− αt)

2

4
(∇2 log qt(xt))

2

= (1− αt)

(
∇2 log qt(xt) +

1− αt

4
∇2 log qt(xt)

)
,

B̃t := Id −
1− αt

αt
Σ̃−1

t = Id − Ãt + Ã2
t + ÕLp(Qt)((1− αt)

3)

H̃t := Ht +
1− αt

4
Ht.

Note that under Assumption 3,

(1− αt)
∥∥∥H̃t

∥∥∥ ≲ (1− αt) ∥Ht∥+ (1− αt)
2 ∥Ht∥2 = ÕLr(Qt)(1− αt), ∀r ≥ 1.

Then, the rest of the proof Lemma 4 still holds with ∇2 log qt(xt) and Ht replaced by ∇2 log qt(xt)+
1−αt

4 ∇2 log qt(xt) and H̃t. The proof is complete by noting that

EXt∼Qt

∥∥∥∥H̃t(Xt)−
(
∇2 log qt(Xt) +

1− αt

4
∇2 log qt(Xt)

)∥∥∥∥2
F

≲ (1 + (1− αt))EXt∼Qt

∥∥Ht(Xt)−∇2 log qt(Xt)
∥∥2
F

≲ ε2H .

F.4 PROOF OF LEMMA 5
By Bayes’ rule, for any xt−1 given fixed xt, we have

qt−1|t(xt−1|xt)

∝ qt−1(xt−1) exp

(
−
∥∥xt −

√
αtxt−1

∥∥2
2(1− αt)

)

∝ qt−1(xt−1)p
′
t−1|t(xt−1|xt) exp

(
1

2
(xt−1 − µt)

⊺Σ−1
t (xt−1 − µt)−

∥∥xt−1 − xt/
√
αt

∥∥2
2(1− αt)/αt

)

= qt−1(xt−1)p
′
t−1|t(xt−1|xt) exp

(
αt

2(1− αt)
(xt−1 − µt)

⊺(Id −Bt)(xt−1 − µt)−
∥∥xt−1 − xt/

√
αt

∥∥2
2(1− αt)/αt

)
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(by Equation (14))

∝ p′t−1|t(xt−1|xt) exp

(
ζt,t−1(xt, xt−1)−

αt

2(1− αt)
(xt−1 − µt)

⊺Bt(xt−1 − µt)

)
,

where the last line follows from the definition of ζt,t−1(xt, xt−1) in (16). Now, with the definition of
ζ ′t,t−1(xt, xt−1) in (17), we have

qt−1|t(xt−1|xt) =
p′t−1|t(xt−1|xt)e

ζ′
t,t−1(xt,xt−1)

EXt−1∼P ′
t−1|t

[eζ
′
t,t−1(xt,Xt−1)]

.

F.5 PROOF OF LEMMA 6
Recall Equation (2). Let Q̃0 denote the distribution of

√
ᾱtx0, and let g(z) denote the p.d.f. (w.r.t.

the Lebesgue measure) of the distribution of
√
1− ᾱtw̄t. Note that g is a scaled version of the unit

Gaussian p.d.f., and
∫
z∈Rd g(z)dz = 1 < ∞. Now, for any event A ⊆ B(λ),

Qt(A) =

∫
x∈A

∫
x̃0∈Rd

g(x− x̃0)dQ̃0(x̃0)dx =

∫
x̃0∈Rd

(∫
x∈A

g(x− x̃0)dx

)
dQ̃0(x̃0)

by Fubini’s theorem. If A has Lebesgue measure 0, by continuity of g(x) we get
∫
x∈A

g(x− x̃0)dx =

0, and thus Qt(A) = 0. This shows that Qt is absolutely continuous w.r.t. the Lebesgue measure,
and its p.d.f. exists, denoted as qt.

Now, since any order of derivative of the Gaussian p.d.f. is bounded away from infinity and Q̃0 is a
probability measure, we can invoke the dominated convergence theorem here to change the order of
derivative and integral as

∂k
aqt(x) = ∂k

a

∫
x̃0∈Rd

g(x− x̃0)dQ̃0(x̃0) =

∫
x̃0∈Rd

∂k
ag(x− x̃0)dQ̃0(x̃0). (31)

Thus, for any k ≥ 1 and any vector of indices a ∈ [d]k, we have∣∣∂k
aqt(x)

∣∣ ≤ sup
x∈Rd

∣∣∂k
ag(x)

∣∣ ∫
x̃0∈Rd

dQ̃0(x̃0) = sup
x∈Rd

∣∣∂k
ag(x)

∣∣ < ∞.

This also implies that the Taylor term |Tk(qt, x, µ)| < ∞ for any x and µ, and

qt(x) =

∫
x̃0∈Rd

g(x− x̃0)dQ̃0(x̃0)
(i)
=

∫
x̃0∈Rd

lim
p→∞

p∑
k=0

Tk(g(x− x̃0), x, µ)dQ̃0(x̃0)

(ii)
= lim

p→∞

∫
x̃0∈Rd

p∑
k=0

Tk(g(x− x̃0), x, µ)dQ̃0(x̃0)

(iii)
= lim

p→∞

p∑
k=0

Tk(qt, x, µ)

where (i) follows because (scaled) Gaussian density is analytic, (ii) follows from dominated conver-
gence theorem and the fact that g is a Gaussian density and has an upper bound independent of x̃0,
and (iii) follows from (31). This shows that qt is analytic.

Finally, since ∂k
a log qt is a smooth function of qt, ∂

1qt, . . . , ∂
kqt, we have ∂k

a log qt(xt) < ∞
(possibly depending on T ) for all k ≥ 1 and fixed (finite) xt ∈ Rd. Also, log qt is analytic because
log(·) is analytic and qt(xt) > 0, ∀xt ∈ Rd.

F.6 PROOF OF LEMMA 7
The result follows directly from Isserlis’s Theorem, which says that

E

[
n∏

i=1

Zi

]
=
∑
p∈P 2

n

∏
{i,j}∈p

E[ZiZj ] =
∑
p∈P 2

n

∏
{i,j}∈p

Cov(Zi, Zj)
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since each Zi is centered. Here P 2
n is the set that contains all distinct size-2 partitions of [n]. For

example, P 2
4 = {({1, 2}, {3, 4}), ({1, 3}, {2, 4}), ({1, 4}, {2, 3})}. Thus, since At = ÕLp(Q)(1−

αt) under Assumption 5,

E

[
n∏

i=1

Zi

]
= 0, if n is odd

E

[
n∏

i=1

Zi

]
= ÕLp(Qt)

((
1− αt

αt

)n
2

)
= ÕLp(Qt)

(
(1− αt)

n
2

)
, if n is even.

More specifically, following from Isserlis’s Theorem, the fourth moment is

E[ZiZjZkZl] = Cov(Zi, Zj)Cov(Zk, Zl)+

Cov(Zi, Zk)Cov(Zj , Zl) + Cov(Zi, Zl)Cov(Zj , Zk), ∀i, j, k, l ∈ [d].

Here Cov(Zi, Zj) =
1−αt

αt
(1 {i = j}+(1−αt)A

ij). The fourth moment result follows immediately
by plugging into the formula. Turning to the sixth moment, we note that we are interested only in the
coefficients for the terms that grow at a rate ÕLp(Qt)((1− αt)

3). Since the sixth moment consists
of sum of product terms in which three covariance matrices are multiplied (giving us a rate at least
ÕLp(Qt)((1− αt)

3)), at least one product term in the sum must take covariance values only on the
diagonal of the matrix. Therefore, only E[Z6

i ], E[Z4
i Z

2
j ], and E[Z2

i Z
2
jZ

2
k ] with i, j, k all differ satisfy

this requirement, and we immediately get the desired result from Isserlis’s Theorem.

F.7 PROOF OF LEMMA 8
We first fix xt and will take expectation at the end. Note that qt|t−1(xt|xt−1) =

1
(2π(1−αt))d/2

exp
(
−∥xt−

√
αtxt−1∥2

2(1−αt)

)
. Following from the idea of Tweedie Efron (2011), we have

qt−1|t(xt−1|xt)

=
qt−1(xt−1)

qt(xt)
qt|t−1(xt|xt−1)

=
qt−1(xt−1)

qt(xt)
qt|t−1(xt|0) exp

( √
αt

1− αt
x⊺
t xt−1 −

αt

2(1− αt)
∥xt−1∥2

)
=
(
qt−1(xt−1)e

− αt
2(1−αt)

∥xt−1∥2
)
exp

( √
αt

1− αt
x⊺
t xt−1 − log qt(xt) + log qt|t−1(xt|0)

)
=: f(xt−1) exp

(
x⊺
t−1x̃t − κ(x̃t)

)
(32)

where we have used the definitions of x̃t and κ(x̃t) in (23). This shows that xt−1 is a conditional
exponential family given x̃t. Thus, the first moment can be found as (cf. Prop. 11.1 in Moulin &
Veeravalli (2018))

0 = ∇x̃t

∫
qt−1|t(xt−1|xt)dxt−1 = ∇x̃t

∫
f(xt−1) exp

(
x⊺
t−1x̃t − κ(x̃t)

)
dxt−1

=

∫
f(xt−1)∇x̃t

exp
(
x⊺
t−1x̃t − κ(x̃t)

)
dxt−1

=

∫
f(xt−1) exp

(
x⊺
t−1x̃t − κ(x̃t)

)
(xt−1 −∇x̃tκ(x̃t)) dxt−1

=

∫
f(xt−1) exp

(
x⊺
t−1x̃t − κ(x̃t)

)
xt−1dxt−1 −∇x̃t

κ(x̃t)

which implies that
EXt−1∼Qt−1|t [Xt−1] = ∇κ. (33)

For the second moment,

0 = ∂2
ij

∫
qt−1|t(xt−1|xt)dxt−1
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=

∫
f(xt−1)

∂

∂x̃j
t

(
exp

(
x⊺
t−1x̃t − κ(x̃t)

) (
xi
t−1 − ∂iκ(x̃t)

) )
dxt−1

=

∫
f(xt−1) exp

(
x⊺
t−1x̃t − κ(x̃t)

) (
(xi

t−1 − ∂iκ(x̃t))(x
j
t−1 − ∂jκ(x̃t))− ∂2

ijκ(x̃t)
)
dxt−1

which yields

EXt−1∼Qt−1|t [(Xt−1 − µt)(Xt−1 − µt)
⊺] = ∇2κ =

1− αt

αt
Id +

(1− αt)
2

αt
∇2 log qt(xt). (34)

Below, we write x = xt−1 and κ = κ(x̃t) for brevity. We remind readers that all derivatives are w.r.t.
x̃t instead of x = xt−1. For the third moment,

0 = ∂3
ijk

∫
qt−1|tdx =:

∫
f(x) exp (x⊺x̃t − κ)D3(x, x̃t)dx

where

D3(x, x̃t) = exp (−x⊺x̃t + κ) ∂k

(
exp (x⊺x̃t − κ)

(
(xi − ∂iκ)(x

j − ∂jκ)− ∂2
ijκ
) )

= (xk − ∂kκ)
(
(xi − ∂iκ)(x

j − ∂jκ)− ∂2
ijκ
)

+ (−∂2
ikκ)(x

j − ∂jκ) + (−∂2
jkκ)(x

i − ∂iκ)− ∂3
ijkκ. (35)

Now, for any function fn(x̃t) and 1 ≤ i ≤ d,∫
f(x) exp (x⊺x̃t − κ) fn(x̃t)(x

i − ∂iκ)dx = 0

by the first moment result (33). Thus, we get

EXt−1∼Qt−1|t

[
(Xi

t−1 − µi
t)(X

j
t−1 − µj

t )(X
k
t−1 − µk

t )
]
= ∂3

ijkκ,

and by Assumption 5, EXt∼Qt [∂
3
ijkκ] = Õ((1− αt)

3).

For the fourth moment, we have

0 = ∂4
ijkl

∫
qt−1|tdx =:

∫
f(x) exp (x⊺x̃t − κ)D4(x, x̃t)dx

where

D4(x, x̃t) = exp (−x⊺x̃t + κ) ∂l

(
exp (x⊺x̃t − κ) ((xi − ∂iκ)(x

j − ∂jκ)(x
k − ∂kκ)

− ∂2
ijκ(x

k − ∂kκ)− ∂2
ikκ(x

j − ∂jκ)− ∂2
jkκ(x

i − ∂iκ)− ∂3
ijkκ)

)
= (xi − ∂iκ)(x

j − ∂jκ)(x
k − ∂kκ)(x

l − ∂lκ) + ∂l

(
(xi − ∂iκ)(x

j − ∂jκ)(x
k − ∂kκ)

)
− ∂2

ijκ(x
k − ∂kκ)(x

l − ∂lκ)− ∂3
ijlκ(x

k − ∂kκ) + ∂2
ijκ∂

2
klκ

− ∂2
ikκ(x

j − ∂jκ)(x
l − ∂lκ)− ∂3

iklκ(x
j − ∂jκ) + ∂2

ikκ∂
2
jlκ

− ∂2
jkκ(x

i − ∂iκ)(x
l − ∂lκ)− ∂3

jklκ(x
i − ∂iκ) + ∂2

jkκ∂
2
ilκ

− ∂3
ijkκ(x

l − ∂lκ)− ∂4
ijklκ (36)

and

∂l

(
(xi − ∂iκ)(x

j − ∂jκ)(x
k − ∂kκ)

)
= −∂2

ilκ(x
j − ∂jκ)(x

k − ∂kκ)− ∂2
jlκ(x

i − ∂iκ)(x
k − ∂kκ)− ∂2

klκ(x
i − ∂iκ)(x

j − ∂jκ).

Using the first and second moment results in (33) and (34), we get

EXt−1∼Qt−1|t

[
(Xi

t−1 − µi
t)(X

j
t−1 − µj

t )(X
k
t−1 − µk

t )(X
l
t−1 − µl

t)
]
=

(∂2
ijκ)(∂

2
klκ) + (∂2

ikκ)(∂
2
jlκ) + (∂2

ilκ)(∂
2
jkκ) + ∂4

ijklκ.

And the fourth moment result follows directly by applying (34) to each of the terms and taking the
expectation over Xt ∼ Qt. The rate follows from Assumption 5 (cf. Definition 2).
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F.8 PROOF OF LEMMA 9
The proof continues the idea of Lemma 8. The idea is to use the inductive relationship (provided in
the proof of Lemmas 8 and 10):

D5(x, x̃t) = exp (−x⊺x̃t + κ) ∂m

(
exp (x⊺x̃t − κ)D4(x, x̃t)

)
= (xm − ∂mκ)D4(x, x̃t) + ∂mD4(x, x̃t)

D6(x, x̃t) = exp (−x⊺x̃t + κ) ∂n

(
exp (x⊺x̃t − κ)D5(x, x̃t)

)
= (xn − ∂nκ)D5(x, x̃t) + ∂nD5(x, x̃t).

Let P k
ℓ be the set that contains all distinct size-k partitions of [ℓ]. We use the definitions:(

A

k

)
:=
{
{a1, . . . , ak} : a1, . . . , ak ∈ A, a1, . . . , ak all differ

}
, k ≤ |A|

partk(A) := {((ai, aj) : {i, j} ∈ p) : p ∈ P k
|A|}.

Recall the formula for D4 in (36), which can be abbreviated as (here |a| = 4):

D4(x, x̃t) =
∏
i∈a

(xi − ∂iκ)−
∑

b∈(a2)

∂2
bκ

∏
i∈a\b

(xi − ∂iκ) +
∑

(b,c)∈part2(a)

∂2
bκ∂

2
cκ

−
∑
i∈a

∂3
a\{i}κ(x

i − ∂iκ)− ∂4
aκ.

Also recall the definition of f(x) in Lemma 8 and that
∫
f(x)ex

⊺x̃t−κDp(x, x̃t)dx = 0, through
which we can find the expected p-th moments of EXt−1∼Qt−1|t

[∏
i∈a(X

i
t−1 − µi

t)
]
. For reference,

the first four moments are∫
f(x) exp (x⊺x̃t − κ) (xi − ∂iκ)dx = 0∫
f(x) exp (x⊺x̃t − κ) (xi − ∂iκ)(x

j − ∂jκ)dx = ∂2
ijκ = ÕLp(Qt)(1− αt)∫

f(x) exp (x⊺x̃t − κ) (xi − ∂iκ)(x
j − ∂jκ)(x

k − ∂kκ)dx = ∂3
ijkκ = ÕLp(Qt)((1− αt)

3)∫
f(x) exp (x⊺x̃t − κ) (xi − ∂iκ)(x

j − ∂jκ)(x
k − ∂kκ)(x

l − ∂lκ)dx

= (∂2
ijκ)(∂

2
klκ) + (∂2

ikκ)(∂
2
jlκ) + (∂2

ilκ)(∂
2
jkκ) + ∂4

ijklκ = ÕLp(Qt)((1− αt)
2)

where we note that ∂k
aκ = ÕLp(Qt)((1− αt)

k) for all k ≥ 3.

We can calculate D5 as (with |a| = 5):

D5(x, x̃t) = (xa5 − ∂a5
κ)D4(x, x̃t) + ∂a5

D4(x, x̃t)

=
∏
i∈a

(xi − ∂iκ)−
∑

b∈(a2)

∂2
bκ

∏
i∈a\b

(xi − ∂iκ)−
∑

b∈(a2)

∂3
a\bκ

∏
i∈b

(xi − ∂iκ)

+
∑
i∈a

(b,c)∈part2(a\{i})

∂2
bκ∂

2
cκ(x

i − ∂iκ)

−
∑
i∈a

∂4
a\{i}κ(x

i − ∂iκ) +
∑

b∈(a2)

∂2
bκ∂

3
a\bκ− ∂5

aκ.

Therefore,

EXt−1∼Qt−1|t

 ∏
i∈a:|a|=5

(Xi
t−1 − µi

t)


34



Published as a conference paper at ICLR 2025

=
∑

b∈(a2)

∂2
bκ∂

3
a\bκ+

∑
b∈(a2)

∂3
a\bκ∂

2
bκ−

∑
b∈(a2)

∂2
bκ∂

3
a\bκ+ ∂5

aκ

=
∑

b∈(a2)

∂2
bκ∂

3
a\bκ+ ∂5

aκ = ÕLp(Qt)((1− αt)
4).

Now we turn to calculate D6 (and let |a| = 6):

D6(x, x̃t) = (xa6 − ∂a6
κ)D5(x, x̃t) + ∂a6

D5(x, x̃t)

=
∏
i∈a

(xi − ∂iκ)−
∑

b∈(a2)

∂2
bκ

∏
i∈a\b

(xi − ∂iκ)−
∑

b∈(a3)

∂3
a\bκ

∏
i∈b

(xi − ∂iκ)

−
∑

b∈(a2)

∂4
a\bκ

∏
i∈b

(xi − ∂iκ) +
∑

b∈(a2)
(c,e)∈part2(a\b)

∂2
cκ∂

2
eκ
∏
i∈b

(xi − ∂iκ) +
∑
i∈a

fn(κ)(xi − ∂iκ)

−
∑

(b,c,e)∈part2(a)

∂2
bκ∂

2
cκ∂

2
eκ+

∑
b∈(a2)

∂2
bκ∂

4
a\bκ+

∑
(b,c)∈part3(a)

∂3
bκ∂

3
cκ− ∂6

aκ.

Here fn(κ) is a function of κ which does not depend on x. Note that fn does not affect the expected
value because EXt−1∼Qt−1|t [Xt−1 − µt] = 0. Therefore, we have

EXt−1∼Qt−1|t

 ∏
i∈a:|a|=6

(Xi
t−1 − µi

t)


=
∑

b∈(a2)

∂2
bκ

 ∑
(c,e)∈part2(a\b)

∂2
cκ∂

2
eκ+ ∂4

a\bκ

+
∑

b∈(a3)

∂3
a\bκ∂

3
bκ

+
∑

b∈(a2)

∂4
a\bκ∂

2
bκ−

∑
b∈(a2)

(c,e)∈part2(a\b)

∂2
bκ∂

2
cκ∂

2
eκ

+
∑

(b,c,e)∈part2(a)

∂2
bκ∂

2
cκ∂

2
eκ−

∑
b∈(a2)

∂2
bκ∂

4
a\bκ−

∑
(b,c)∈part3(a)

∂3
bκ∂

3
cκ+ ∂6

aκ

=
∑

b∈(a2)

∂2
bκ∂

4
a\bκ+

∑
(b,c)∈part3(a)

∂3
bκ∂

3
cκ+

∑
(b,c,e)∈part2(a)

∂2
bκ∂

2
cκ∂

2
eκ+ ∂6

aκ

=
∑

(b,c,e)∈part2(a)

∂2
bκ∂

2
cκ∂

2
eκ+ ÕLp(Qt)((1− αt)

5).

The proof is now complete.

F.9 PROOF OF LEMMA 10
We fix xt first and will take the expectation at the end. We first introduce some notations used in the
proof. We write x = xt−1 and κ = κ(x̃t). Given a set of indices A, define its bipartition as

bipart(A) := {(B,C) : A = B ⊔ C}

where B and C are both sets of indices (and therefore the order of indices within each of B and C does
not matter). Here ⊔ refers to the disjoint union of the two sets (which is only defined when the two sets
are disjoint). Next, given a set B, define allpart≥2(B) as a set containing all partitions of B such that
there are at least 2 elements in each part of the partition. As an example, allpart≥2({1, 2, 3, 4}) =
{{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}, and {{1}, {2, 3, 4}} /∈ allpart≥2({1, 2, 3, 4})
despite the fact that it is a valid partition. For each partition b ∈ allpart≥2(B), define

∂bκ :=
∏
ξ∈b

∂|ξ|
aξ
κ.
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Here note that ξ is also a set, and ∂bκ is well defined since the order of indices to take partial
derivative with does not matter. Define

D0(x, x̃t) := 1

Dp(x, x̃t) := exp (−x⊺x̃t + κ) ∂ap

(
exp (x⊺x̃t − κ)Dp−1(x, x̃t)

)
for all p ≥ 1. We again remind readers that all derivatives are w.r.t. x̃t instead of x = xt−1.

By working out the derivative, a direct implication of the definition of Dp is a recursive relationship:

Dp(x, x̃t) = (xap − ∂ap
κ)Dp−1(x, x̃t) + ∂ap

Dp−1(x, x̃t).

Also, if we unroll the recursion of Dp, we get

Dp(x, x̃t) = exp (−x⊺x̃t + κ) ∂ap

(
exp (x⊺x̃t − κ)Dp−1(x, x̃t)

)
= exp (−x⊺x̃t + κ) ∂ap

(
exp (x⊺x̃t − κ) exp (−x⊺x̃t + κ)

∂ap−1

(
exp (x⊺x̃t − κ)Dp−2(x, x̃t)

))
= exp (−x⊺x̃t + κ) ∂2

ap,ap−1

(
exp (x⊺x̃t − κ)Dp−2(x, x̃t)

)
= exp (−x⊺x̃t + κ) ∂p

ap,...,a1

(
exp (x⊺x̃t − κ)

)
and thus

0 = ∂p
a1,...,ap

∫
qt−1|tdx =

∫
f(x)∂p

a1,...,ap

(
exp (x⊺x̃t − κ)

)
dx

=

∫
f(x) exp (x⊺x̃t − κ)Dp(x, x̃t)dx (37)

where we recall the definition of f(x) back in (32).

In the following, we present the entire proof into two parts. In part 1, we inductively show that each
Dp(x, x̃t) satisfies a particular polynomial form. In part 2, we inductively show that this polynomial
form results in the desired rates.

Part 1 of the proof of Lemma 10: The first step toward proving the desired results is to obtain the
form of Dp for all p ≥ 2. Now, we aim to show inductively that

Dp(x, x̃t) =

p∏
i=1

(xai−∂ai
κ)−

∑
(B,C)∈bipart([p])

∑
b∈allpart≥2(B)

dp(b, C)(∂bκ)
∏
c∈C

(xac−∂ac
κ) (38)

where dp(b, C) is a constant from combinatorics, which is possibly 0 and which only depends on p.
From Lemma 8, the bases cases have been established that (cf. (35) and (36))

D2(x, x̃t) = (xi − ∂iκ)(x
j − ∂jκ)− ∂2

ijκ

D3(x, x̃t) = (xi − ∂iκ)(x
j − ∂jκ)(x

k − ∂kκ)

− ∂2
ijκ(x

k − ∂kκ)− ∂2
ikκ(x

j − ∂jκ)− ∂2
jkκ(x

i − ∂iκ)− ∂3
ijkκ

D4(x, x̃t) = (xi − ∂iκ)(x
j − ∂jκ)(x

k − ∂kκ)(x
l − ∂lκ)

− ∂2
ijκ(x

k − ∂kκ)(x
l − ∂lκ)− ∂2

ikκ(x
j − ∂jκ)(x

l − ∂lκ)− ∂2
jkκ(x

i − ∂iκ)(x
l − ∂lκ)

+ ∂l((x
i − ∂iκ)(x

j − ∂jκ)(x
k − ∂kκ))− ∂3

ijkκ(x
l − ∂lκ)− ∂3

ijl(x
k − ∂kκ)

− ∂3
ikl(x

j − ∂jκ)− ∂3
jkl(x

i − ∂iκ) + ∂2
ijκ∂

2
klκ+ ∂2

ikκ∂
2
jlκ+ ∂2

jkκ∂
2
ilκ− ∂4

ijklκ.

In particular, each term of Dp (p = 2, 3, 4) is in the form of either
∏p

i=1(x
ai − ∂ai

κ) or
(∂bκ)

∏
c∈C(x

ac − ∂ac
κ), where |ξ| ≥ 2, ∀ξ ∈ b, and (⊔ξ∈bξ) ⊔ C = [p]. Therefore, D2, D3, D4

all satisfy the hypothesis (38).
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Turning to the inductive step, we suppose that Dk satisfies (38), i.e.,

Dk(x, x̃t) =

k∏
i=1

(xai − ∂aiκ)−
∑

(B,C)∈bipart([k])

∑
b∈allpart≥2(B)

dk(b, C)(∂bκ)
∏
c∈C

(xac − ∂acκ).

Then, using the recursive relationship, we have

Dk+1(x, x̃t)

= (xak+1 − ∂ak+1
κ)Dk(x, x̃t) + ∂ak+1

Dk(x, x̃t)

=

k+1∏
i=1

(xai − ∂ai
κ)︸ ︷︷ ︸

T1

−
∑

(B,C)∈bipart([k])

∑
b∈allpart≥2(B)

dk(b, C)(∂bκ)
∏
c∈C

(xac − ∂ac
κ)(xak+1 − ∂ak+1

κ)

︸ ︷︷ ︸
T2

− ∂ak+1

(
−

k∏
i=1

(xai − ∂ai
κ)

)
︸ ︷︷ ︸

T3

−
∑

(B,C)∈bipart([k])

∑
b∈allpart≥2(B)

dk(b, C)(∂bκ)

(
∂ak+1

∏
c∈C

(xac − ∂ac
κ)

)
︸ ︷︷ ︸

T4

−
∑

(B,C)∈bipart([k])

∑
b∈allpart≥2(B)

dk(b, C)
(
∂ak+1

(∂bκ)
) ∏
c∈C

(xac − ∂ac
κ)

︸ ︷︷ ︸
T5

= T1 − T2 − T3 − T4 − T5

where we define each term as T1, . . . , T5. Now we discuss these terms separately:

1. T1 (and only T1) is in the form
∏k+1

i=1 (x
ai − ∂ai

κ).

2. T2 is a summation of individual terms: (∂bκ)
∏

c∈C(x
ac − ∂ac

κ)(xak+1 − ∂ak+1
κ). Here

b ∈ allpart≥2(B) and (B,C) ∈ bipart([k]). Thus, by definition of bipart and allpart≥2,
for each ξ ∈ b, |ξ| ≥ 2 and (⊔ξ∈bξ) ⊔ C = [k]. Therefore, k + 1 /∈ B ⊔ C and

(⊔ξ∈bξ) ⊔ C ⊔ {k + 1} = [k] ⊔ {k + 1} = [k + 1].

This implies that each individual term of T2 is in the form of (∂bκ)
∏

c∈C2
(xc−∂cκ) where

b ∈ allpart≥2(B2), such that B2 := B and C2 := C ⊔ {k + 1}. Here C2 is well defined
because k + 1 /∈ C. Since (B2, C2) ∈ bipart([k + 1]),

T2 =
∑

(B,C)∈bipart([k+1])

∑
b∈allpart≥2(B)

d2(b, C)(∂bκ)
∏
c∈C

(xac − ∂acκ)

for some constant d2(b, C).

3. T3 is the derivative of product, which is a summation of individual terms:
(∂2

aj ,ak+1
κ)
∏d

i=1
i ̸=j

(xai−∂ai
κ), j = 1, . . . , k. Therefore, for each j = 1, . . . , k, each term is

of the form (∂bκ)
∏

c∈C3
(xac−∂ac

κ) where b ∈ allpart≥2(B3), such that B3 := {j, k+1}
and C3 := [k] \ {j}. Since (B3, C3) ∈ bipart([k + 1]),

T3 =
∑

(B,C)∈bipart([k+1])

∑
b∈allpart≥2(B)

d3(b, C)(∂bκ)
∏
c∈C

(xac − ∂acκ)

for some constant d3(b, C).

4. T4 is a summation of individual terms: (∂bκ)
(
∂ak+1

∏
c∈C(x

ac − ∂ac
κ)
)

where b ∈
allpart≥2(B) and (B,C) ∈ bipart([k]). Now,

(∂bκ)

(
∂ak+1

∏
c∈C

(xac − ∂acκ)

)
= −(∂bκ)(∂

2
aj ,ak+1

κ)
∏
i∈C
i̸=c

(xai − ∂aiκ)
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= −(∂b4κ)
∏
i∈C4

(xai − ∂aiκ)

where b4 := b⊔{k+1, c} and C4 := C \ {c}. Here b4 is well defined because k+1, c /∈ b.
Define B4 := [k + 1] \ C4, and we have b4 ∈ allpart≥2(B4). Since (B4, C4) is a valid
partition of [k + 1], we have

T4 =
∑

(B,C)∈bipart([k+1])

∑
b∈allpart≥2(B)

d4(b, C)(∂bκ)
∏
c∈C

(xac − ∂ac
κ)

for some constant d4(b, C).

5. T5 is a summation of individual terms:
(
∂ak+1

(∂bκ)
)∏

c∈C(x
ac − ∂acκ), where b ∈

allpart≥2(B) and (B,C) ∈ bipart([k]). From definition of ∂bκ,

∂ak+1
(∂bκ) = ∂ak+1

∏
ξ∈b

∂|ξ|
aξ
κ

 =
∑
ξ∈b

(
∂|ξ|+1
aξ,ak+1

κ
)∏

ζ∈b
ζ ̸=ξ

∂|ζ|
aζ
κ =

∑
ξ∈b

∂bξκ

where, for each ξ ∈ b, we have defined a new partition bξ such that k + 1 is added to the
ξ in the partition b. Formally, define bξ := b \ ξ ⊔ {ξ ⊔ {k + 1}}, which is well defined
because ξ /∈ (b \ ξ) and k+ 1 /∈ B. Define B5 := B ⊔ {k+ 1} and C5 := C, and note that
(B5, C5) is a valid partition of [k + 1]. Since |ζ| ≥ 2, ∀ζ ∈ b, we have |ζ ′| ≥ 2, ∀ζ ′ ∈ bξ.
Since b ∈ allpart≥2(B), we have bξ ∈ allpart≥2(B5) for all ξ ∈ b. Therefore, for any
fixed C(= C5)∑

b∈allpart≥2(B)

dk(b, C)
(
∂ak+1

(∂bκ)
)
=

∑
b∈allpart≥2(B)

∑
ξ∈b

dk(b, C)∂bξκ

=
∑

b5∈allpart≥2(B5)

d5(b5, C)∂b5κ

for some constant d5(b5, C), and thus

T5 =
∑

(B,C)∈bipart([k+1])

∑
b∈allpart≥2(B)

d5(b, C)(∂bκ)
∏
c∈C

(xac − ∂acκ).

Finally, letting

dk+1(b, C) :=

5∑
j=2

dj(b, C)

for each b ∈ allpart≥2(B) and C such that (B,C) ∈ bipart([k + 1]), we have shown that if
Dk(x, x̃t) is in the form of (38), Dk+1(x, x̃t) is also in this form. Thus, claim (38) is valid for all
p ≥ 2.

Part 2 of the proof of Lemma 10: First, we remind readers of the definition of κ(x̃t) in (23). Also,
the partial derivatives within the expectation over Xt ∼ Qt do not affect the rate by Assumption 5.
Note that ∇κ = µt from direct differentiation. From (37) and (38), for fixed xt, we have

EXt−1∼Qt−1|t

[
p∏

i=1

(Xai
t−1 − µai

t )

]

= Õ

 sup
(B,C)∈bipart([p])
b∈allpart≥2(B)

∂bκ(x̃t)EXt−1∼Qt−1|t

[∏
c∈C

(Xac
t−1 − µac

t )

]
= Õ

(
sup

(B,C)∈bipart([p])

(
sup

b∈allpart≥2(B)

∂bκ(x̃t)

)
EXt−1∼Qt−1|t

[∏
c∈C

(Xac
t−1 − µac

t )

])
. (39)
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We first consider the term supb∈allpart≥2(B) ∂bκ(x̃t). Given a partition b ∈ allpart≥2(B), direct
differentiation yields

∂|ξ|
aξ
κ =

1− αt

αt
+

(1− αt)
2

αt
∂2
aξ

log qt(xt) = Õ(1− αt), if |ξ| = 2 and ξ1 = ξ2

∂|ξ|
aξ
κ =

(1− αt)
|ξ|

α
|ξ|/2
t

∂
|ξ|
ξ log qt(xt) = Õ((1− αt)

|ξ|), for all other ξ.

Since by definition ∂bκ =
∏

ξ∈b ∂
|ξ|
aξ κ and ⊔ξ∈bξ = B, the slowest rate of ∂bκ (as a function of B)

is determined by the partition b containing the most number of equal pairs. The slowest rate is

sup
b∈allpart≥2(B)

∂bκ(x̃t) =

{
Õ
(
(1− αt)

(|B|−1)/2(1− αt)
3
)
= Õ

(
(1− αt)

(|B|+5)/2
)

if |B| is odd
Õ
(
(1− αt)

|B|/2) if |B| is even

To proceed, we will again use induction to find the overall rate. From Lemma 8, base cases have been
established that

EXt−1,Xt∼Qt−1,t

[
2∏

i=1

(Xai
t−1 − µai

t )

]
= Õ (1− αt) , ∀a ∈ [d]2

EXt−1,Xt∼Qt−1,t

[
3∏

i=1

(Xai
t−1 − µai

t )

]
= Õ

(
(1− αt)

3
)
, ∀a ∈ [d]3

EXt−1,Xt∼Qt−1,t

[
4∏

i=1

(Xai
t−1 − µai

t )

]
= Õ

(
(1− αt)

2
)
, ∀a ∈ [d]4.

These rates satisfy (24) and (25) when p = 2, 3, 4. Now we turn to the inductive step. Suppose k ≥ 4
is even. For purpose of induction, suppose (24) and (25) hold for all p = 2, . . . , k. Then, following
(39), for p = k + 1 (odd number), we have

EXt−1,Xt∼Qt−1,t

[
k+1∏
i=1

(Xai
t−1 − µai

t )

]

= O

(
sup

(B,C)∈bipart([k+1])
|B| odd, |C| even

(1− αt)
(|B|+5)/2(1− αt)

|C|/2

+ sup
(B,C)∈bipart([k+1])

|B| even, |C| odd

(1− αt)
|B|/2(1− αt)

(|C|+3)/2

)

= O
(
(1− αt)

(k+1)/2+5/2 + (1− αt)
(k+1)/2+3/2

)
= O

(
(1− αt)

(k+1)/2+3/2
)
.

Then, for p = k + 2 (even number), we have

EXt−1,Xt∼Qt−1,t

[
k+2∏
i=1

(Xai
t−1 − µai

t )

]

= O

(
sup

(B,C)∈bipart([k+2])
|B| odd, |C| odd

(1− αt)
(|B|+5)/2(1− αt)

(|C|+3)/2

+ sup
(B,C)∈bipart([k+1])

|B| even, |C|even

(1− αt)
|B|/2(1− αt)

|C|/2

)

= O
(
(1− αt)

(k+2)/2+4 + (1− αt)
(k+2)/2

)
= O

(
(1− αt)

(k+2)/2
)
.

These show the validity of the claims (24) and (25). The proof is now complete.
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F.10 PROOF OF LEMMA 11
Before analyzing the rate of each moment, we need to guarantee the validity of exchanging the
limit (in the Taylor expansion) and the expectation operator. Intuitively, this is achievable under
Assumption 5, where the Taylor series is absolutely convergent in expectation due to its Gaussian-like
moments. Specifically, since log qt−1 is analytic, all its partial derivatives exist. Following from the
Taylor expansion of ζ ′t,t−1 in (20),

lim
k→∞

∣∣∣∣∣E Xt∼Qt

Xt−1∼P ′
t−1|t

[ζ ′t,t−1]− E Xt∼Qt

Xt−1∼P ′
t−1|t

[
T1(log qt−1, Xt−1, µt) + T ′

2(log qt−1, Xt−1, µt)

+

k∑
p=3

Tp(log qt−1, Xt−1, µt)

]∣∣∣∣∣
≤ lim

k→∞
E Xt∼Qt

Xt−1∼P ′
t−1|t

∣∣∣∣∣ζ ′t,t−1 − T1(log qt−1, Xt−1, µt)− T ′
2(log qt−1, Xt−1, µt)

−
k∑

p=3

Tp(log qt−1, Xt−1, µt)

∣∣∣∣∣
≤ lim

k→∞
E Xt∼Qt

Xt−1∼P ′
t−1|t

 ∞∑
p=k+1

|Tp(log qt−1, Xt−1, µt)|


(i)

≤ lim
k→∞

lim inf
ℓ→∞

ℓ∑
p=k+1

E Xt∼Qt

Xt−1∼P ′
t−1|t

|Tp(log qt−1, Xt−1, µt)|

(ii)
= 0.

Here (i) follows from Fatou’s lemma, and (ii) is because, under Assumption 5 and Lemma 7, we
have E Xt∼Qt

Xt−1∼Pt−1|t

|Tp(log qt−1, Xt−1, µt)| = Õ
(
T−p/2

)
, and thus the infinite sum is convergent

for all (k, ℓ) such that 1 ≤ k < ℓ < ∞ since
∞∑
p=1

E Xt∼Qt

Xt−1∼P ′
t−1|t

|Tp(log qt−1, xt−1, µt)| = Õ

( ∞∑
p=1

1

p!
· dp

T p/2

)
< ∞.

The proof for E Xt∼Qt
Xt−1∼Qt−1|t

is similar due to its Gaussian-like concentration of all centralized

moments (see Lemma 10). Thus, we are able to exchange the infinite sum and the expectation under
either P ′

t−1|t ×Qt or Qt−1,t.

Next, we put together the rates of the conditional moments. We use abbreviated notations as
Tp = Tp(log qt−1, Xt−1, µt). To investigate the dominant term, we analyze the expected difference
of the first 8 moments in the Taylor expansion (20) separately. First, for any fixed xt,

EXt−1∼Qt−1|t [T1] = 0 = EXt−1∼P ′
t−1|t

[T1] .

Also, for T ′
2, note that for any random variable Z (regardless of its distribution) with EZ = 0 and

Cov(Z) = Σ, the mean of the quadratic form (with fixed matrix Ξ) is

E[Z⊺ΞZ] = E[Tr (Z⊺ΞZ)] = Tr (ΞΣ) .

This implies that, for any fixed xt,

EXt−1∼P ′
t−1|t

[T ′
2] =

1

2
EXt−1∼P ′

t−1|t

[
(Xt−1 − µt)

⊺

(
∇2 log qt−1(µt)−

αt

1− αt
Bt

)
(Xt−1 − µt)

]
=

1

2
Tr

((
∇2 log qt−1(µt)−

αt

1− αt
Bt

)
Σt

)
=

1

2
EXt−1∼Qt−1|t

[
(Xt−1 − µt)

⊺

(
∇2 log qt−1(µt)−

αt

1− αt
Bt

)
(Xt−1 − µt)

]
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= EXt−1∼Qt−1|t [T
′
2].

Using Lemmas 7 and 8, the rate for T3 is

EXt∼Qt

(
EXt−1∼Qt−1|t − EXt−1∼P ′

t−1|t

)
[T3(log qt−1, Xt−1, µt)]

= EXt−1,Xt∼Qt−1,t [T3(log qt−1, Xt−1, µt)]

=
(1− αt)

3

3!α
3/2
t

d∑
i,j,k=1

EXt∼Qt
[∂3

ijk log qt−1(µt(Xt))∂
3
ijk log qt(Xt)].

Using Lemmas 7 and 10, and when the partial derivatives satisfy Assumption 5, the rate for T5, T7,
and Tp(p ≥ 8) can also be determined:

EXt∼Qt

(
EXt−1∼Qt−1|t − EXt−1∼P ′

t−1|t

)
[T5(log qt−1, Xt−1, µt)]

= EXt−1,Xt∼Qt−1,t
[T5(log qt−1, Xt−1, µt)]

= Õ((1− αt)
4),

EXt∼Qt

(
EXt−1∼Qt−1|t − EXt−1∼P ′

t−1|t

)
[T7(log qt−1, Xt−1, µt)]

= EXt−1,Xt∼Qt−1,t [T7(log qt−1, Xt−1, µt)]

= Õ((1− αt)
5),

EXt∼Qt

(
EXt−1∼Qt−1|t − EXt−1∼P ′

t−1|t

)
[Tp(log qt−1, Xt−1, µt)]

= Õ((1− αt)
4), ∀p ≥ 8.

The remaining orders are T4 and T6. The following proof will draw from the results in Lemmas 7
to 9. Fix p ≥ 1. Write Zi = Xi

t−1 − µi
t and Aij = [At]

ij for i, j ∈ [d]. For T4, let i, j, k, l ∈ [d] all
differ, and the difference (in expectation) of each term of T4 is

EXt−1∼Qt−1|t [Z
4
i ]− EXt−1∼P ′

t−1|t
[Z4

i ]

= 3

(
1− αt

αt

)2

+ 6
(1− αt)

3

α2
t

∂2
ii log qt(xt)− 3

(
1− αt

αt

)2

(1 +Aii)2 + ÕLp(Qt)

(
(1− αt)

4
)

= −3

(
1− αt

αt

)2

(Aii)2 + ÕLp(Qt)

(
(1− αt)

4
)
,

EXt−1∼Qt−1|t [Z
3
i Zj ]− EXt−1∼P ′

t−1|t
[Z3

i Zj ]

= 3
(1− αt)

3

α2
t

∂2
ij log qt(xt)− 3

(
1− αt

αt

)2

Aij(1 +Aii) + ÕLp(Qt)

(
(1− αt)

4
)

= −3

(
1− αt

αt

)2

AijAii + ÕLp(Qt)

(
(1− αt)

4
)
,

EXt−1∼Qt−1|t [Z
2
i Z

2
j ]− EXt−1∼P ′

t−1|t
[Z2

i Z
2
j ]

=

(
1− αt

αt

)2

+
(1− αt)

3

α2
t

(
∂2
ii log qt(xt) + ∂2

jj log qt(xt)
)
−
(
1− αt

αt

)2

(1 +Aii)(1 +Ajj)

+ ÕLp(Qt)

(
(1− αt)

4
)

= −
(
1− αt

αt

)2

AiiAjj + ÕLp(Qt)

(
(1− αt)

4
)
,

EXt−1∼Qt−1|t [Z
2
i ZjZk]− EXt−1∼P ′

t−1|t
[Z2

i ZjZk]

=
(1− αt)

3

α2
t

∂2
jk log qt(xt)−

(
1− αt

αt

)2

(1 +Aii)Ajk + ÕLp(Qt)

(
(1− αt)

4
)

= − (1− αt)
2

α2
t

AiiAjk + ÕLp(Qt)

(
(1− αt)

4
)
,
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EXt−1∼Qt−1|t [ZiZjZkZl]− EXt−1∼P ′
t−1|t

[ZiZjZkZl] = ÕLp(Qt)

(
(1− αt)

4
)
.

Recall from (14) that At = (1− αt)∇2 log qt(xt) = ÕLp(Qt)(1− αt) under Assumption 5. Hence,
many low-order terms above are cancelled, and we get(

EXt−1∼Qt−1|t − EXt−1∼P ′
t−1|t

)
[T4(log qt−1, Xt−1, µt)] = ÕLp(Qt)

(
(1− αt)

4
)
.

Now we turn to T6. Let i, j, k ∈ [d] all differ, and the difference (in expectation) of each lowest-order
term of T6 is

EXt−1∼Qt−1|t [Z
6
i ]− EXt−1∼P ′

t−1|t
[Z6

i ]

= 15

(
1− αt

αt

)3

− 15

(
1− αt

αt

)3

(1 +Aii)3 + ÕLp(Qt)((1− αt)
4),

EXt−1∼Qt−1|t [Z
4
i Z

2
j ]− EXt−1∼P ′

t−1|t
[Z4

i Z
2
j ]

= 3

(
1− αt

αt

)3

− 3

(
1− αt

αt

)3

(1 +Aii)2(1 +Ajj) + ÕLp(Qt)((1− αt)
4),

EXt−1∼Qt−1|t [Z
2
i Z

2
jZ

2
k ]− EXt−1∼P ′

t−1|t
[Z2

i Z
2
jZ

2
k ]

=

(
1− αt

αt

)3

−
(
1− αt

αt

)3

(1 +Aii)(1 +Ajj)(1 +Akk) + ÕLp(Qt)((1− αt)
4).

Also, by Lemmas 7 and 9, the rest of the terms already satisfy ÕLp(Qt)((1−αt)
4) under Assumption 5.

The low-order terms cancel in the same way as for T4, and thus,(
EXt−1∼Qt−1|t − EXt−1∼P ′

t−1|t

)
[T6(log qt−1, Xt−1, µt)] = ÕLp(Qt)((1− αt)

4).

Therefore, the lowest order term above is T3, whose order is ÕLp(Qt)((1− αt)
3). The proof is now

complete.

F.11 PROOF OF COROLLARY 3
The proof is very similar to Lemma 11 and (21), except with a perturbed covariance matrix. We
employ the notations Ãt and B̃t from Remark 3. Here we have that Ãt(Xt) = At(Xt) + Ξt(Xt),
and thus, ∀r ≥ 1,

B̃t(Xt) = Bt(Xt) + ÕLr(Qt)

(
(1− αt)

2
)
= At(Xt) + ÕLr(Qt)

(
(1− αt)

2
)

= (1− αt)∇2 log qt(Xt) + ÕLr(Qt)

(
(1− αt)

2
)
.

Compare with the proof of Lemma 11, the only difference is the expected difference of T ′
2. Since

Ãt(Xt) = At(Xt) + ÕLr(Qt)

(
(1− αt)

2
)

and B̃t(Xt) = Bt(Xt) + ÕLr(Qt)

(
(1− αt)

2
)
, the

expected differences of all higher order Tp’s have the same rate as the non-perturbed case.

Now, for any fixed xt and r ≥ 1,

EXt−1∼P ′
t−1|t

[T ′
2]

=
1

2
EXt−1∼P ′

t−1|t

[
(Xt−1 − µt)

⊺

(
∇2 log qt−1(µt)−

αt

1− αt
B̃t

)
(Xt−1 − µt)

]
=

1

2
Tr

((
∇2 log qt−1(µt)−

αt

1− αt
B̃t

)
Σ̃t

)
,

and, from Lemma 8,

EXt−1∼Qt−1|t [T
′
2]

=
1

2
EXt−1∼Qt−1|t

[
(Xt−1 − µt)

⊺

(
∇2 log qt−1(µt)−

αt

1− αt
B̃t

)
(Xt−1 − µt)

]
=

1

2
Tr

((
∇2 log qt−1(µt)−

αt

1− αt
B̃t

)
Σt

)
.
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Thus, (
EXt−1∼Qt−1|t − EXt−1∼P ′

t−1|t

)
[T ′

2(log qt−1, Xt−1, µt)]

=
1

2
Tr

((
∇2 log qt−1(µt)−

αt

1− αt
B̃t

)(
Σt − Σ̃t

))
= −1− αt

2αt
Tr

((
∇2 log qt−1(µt)−

αt

1− αt
B̃t

)
Ξt

)
= −1− αt

2αt
Tr
((
∇2 log qt−1(µt)− αt∇2 log qt(Xt)

)
Ξt

)
+ ÕLr(Qt)

(
(1− αt)

4
)
.

Note that here the first term is in the order ÕLr(Qt)

(
(1− αt)

3
)

under Assumption 5 since Ξt(Xt) =

ÕLr(Qt)

(
(1− αt)

2
)
. Therefore, under the perturbed case,

EXt∼Qt

(
EXt−1∼Qt−1|t − EXt−1∼P ′

t−1|t

)
[ζ ′t,t−1]

= −1− αt

2αt
EXt∼QtTr

((
∇2 log qt−1(µt(Xt))− αt∇2 log qt(Xt)

)
Ξt(Xt)

)
+

(1− αt)
3

3!α
3/2
t

d∑
i,j,k=1

EXt∼Qt [∂
3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt)]

+ Õ((1− αt)
4).

The final result can be achieved using (21). The proof is complete.

F.12 PROOF OF LEMMA 12
From (1), the forward process at the first step is

x1 =
√
α1x0 +

√
1− α1w1

where w1 ∼ N (0, Id) is independent of Q0. Thus,

EX1∼Q1,X0∼Q0 ∥X1 −X0∥2 = EW1∼N (0,Id),X0∼Q0

∥∥√1− α1W1 + (
√
αt − 1)X0

∥∥2
(i)
= EW1∼N (0,Id)

∥∥√1− α1W1

∥∥2 + EX0∼Q0
∥(
√
αt − 1)X0∥2

(ii)

≤ (1− α1)d+ (
√
α1 − 1)2M2d

(iii)

≤ (1− α1)(M2 + 1)d

where (i) follows from independence, (ii) follows from Assumption 1, and (iii) follows be-
cause (

√
z − 1)2 ≤ 1 − z for all z ∈ [0, 1]. The proof is complete since W2(Q0, Q1)

2 ≤
EX1∼Q1,X0∼Q0

∥X1 −X0∥2 by the definition of Wasserstein-2 distance.

G PROOF OF THEOREMS 2 TO 4 AND 5
In this section, we instantiate Theorem 1 (along with Corollary 1) to provide upper bounds that have
explicit parameter dependency for a number of interesting distribution classes. In order to obtain an
upper bound that explicitly depends on system parameters, we need only to provide an explicit bound
on the reverse-step error, which is the main topic that we address in the following subsections.

G.1 PROOF OF THEOREM 2
We first introduce some relevant notations. Given that Q0 is Gaussian mixture, the p.d.f. of qt at each
time t ≥ 1 can be calculated as

qt(x) =

∫
x0∈Rd

qt|0(x|x0)

N∑
n=1

πnq0,n(x0)dx0

=

N∑
n=1

πn

∫
x0∈Rd

qt|0(x|x0)q0,n(x0)dx0 =:

N∑
n=1

πnqt,n(x).

Since the convolution of two Gaussian density is still Gaussian, we have that qt,n is the p.d.f. of
N (µt,n,Σt,n), where µt,n :=

√
ᾱtµ0,n and Σt,n := ᾱtΣ0,n + (1 − ᾱt)Id. Note that Σt,n has full

rank.
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G.1.1 CHECKING ASSUMPTION 4
We first verify Assumption 4 for Gaussian mixture Q0 for any αt that satisfies Definition 1. The
intuition is that its Gaussian-like tail (for all t ≥ 0) is sufficient to control all higher-order derivatives
of log qt.

In the following, Lemma 13 provides an upper bound on any order of partial derivative of a Gaussian
mixture density for any fixed xt, as long as each mixture component is well controlled. This
directly implies that the partial derivatives are also well controlled in expectation, and thus we verify
Assumption 4 for Gaussian mixture in Lemma 14.
Lemma 13. Let g(x|z) be the conditional Gaussian p.d.f. of N (µz,Σz). Define q(x) :=∫
g(x|z)dΠ(z), where Π(z) is a mixing distribution (and denote Z its support). Suppose b :=

supz∈Z ∥µz∥ < ∞, and suppose the following conditions on Σz hold for all z ∈ Z:

1. There exist u, U ∈ R such that u ≤ det(Σz) ≤ U ;

2. There exists V ∈ R such that
∥∥Σ−1

z

∥∥ ≤ V ;

3. There exists w ∈ R such that supz∈Z,i,j∈[d]2

∣∣∣[Σ− 1
2

z ]ij
∣∣∣ ≤ w.

Then,∣∣∂k
a log q(x)

∣∣ ≤ min

{
CkBk

d2k max {w, 1}k

uk/2
Ukek

V
2 (∥x∥2+b2), Bk

d2k max {w, 1}k

uk/2
|polyk(x)|

}
,

where Bk is the Bell number, C is some constant, and polyk(x) is some k-th order polynomial in x.

Proof. See Appendix H.1.

Lemma 14. When Q0 is Gaussian mixture (see Theorem 2), Assumption 4 is satisfied.

Proof. See Appendix H.2.

G.1.2 EXPRESSING ∂3
ijk log qt

Now we continue from Theorem 1 to work for an explicit dependency on d. We first calculate the
second partial derivative of its log-p.d.f. as

∇2 log qt(x)

=
1

q2t (x)

(
qt(x)

(∑
n

πnqt,n(x)
(
Σ−1

t,n(x− µt,n)(x− µt,n)
⊺Σ−1

t,n − Σ−1
t,n

))

−

(∑
n

πnqt,n(x)Σ
−1
t,n(x− µt,n)

)(∑
n

πnqt,n(x)Σ
−1
t,n(x− µt,n)

)⊺)
. (40)

Now write zt,n(x) := Σ−1
t,n(x − µt,n). Note that ∂kz

i
t,n = [Σ−1

t,n]
ik, and that ∂kqt,n(x) =

qt,n(x)(−zkt,n(x)). We can rewrite (40) as

∂2
ij log qt(x) =

1

q2t (x)

(
qt(x)

N∑
n=1

πnqt,n(x)
(
zit,n(x)z

j
t,n(x)− [Σ−1

t,n]
ij
)

︸ ︷︷ ︸
N1

−

(∑
n

πnqt,n(x)z
i
t,n(x)

)(∑
n

πnqt,n(x)z
j
t,n(x)

)
︸ ︷︷ ︸

N2

)
.

To calculate the third partial derivative of its log-p.d.f., we need first to calculate the partial derivative
of N1 and N2. The derivative for N1 is given by

∂k

N∑
n=1

πnqt,n(x)
(
zit,n(x)z

j
t,n(x)− [Σ−1

t,n]
ij
)

44



Published as a conference paper at ICLR 2025

=

N∑
n=1

πnqt,n(x)(−zkt,n(x))
(
zit,n(x)z

j
t,n(x)− [Σ−1

t,n]
ij
)

+

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

ikzjt,n(x) + πnqt,n(x)[Σ
−1
t,n]

jkzit,n(x),

and the derivative for term N2 is given by

∂k

(
N∑

n=1

πnqt,n(x)z
i
t,n(x)

N∑
n=1

πnqt,n(x)z
j
t,n(x)

)

=

N∑
n=1

πnqt,n(x)
(
(−zkt,n(x))z

i
t,n(x) + [Σ−1

t,n]
ik
) N∑
n=1

πnqt,n(x)z
j
t,n(x)

+

N∑
n=1

πnqt,n(x)z
i
t,n(x)

N∑
n=1

πnqt,n(x)
(
(−zkt,n(x))z

j
t,n(x) + [Σ−1

t,n]
jk
)
.

Combining these, the derivative for the numerator is

∂k(qt(x)N1 − N2) = ∂k(qt(x))N1 + qt(x)∂k(N1)− ∂k(N2)

= −
N∑

n=1

πnqt,n(x)z
k
t,n(x)

N∑
n=1

πnqt,n(x)
(
zit,n(x)z

j
t,n(x)− [Σ−1

t,n]
ij
)

+ qt(x)

(
N∑

n=1

πnqt,n(x)(−zkt,n(x))
(
zit,n(x)z

j
t,n(x)− [Σ−1

t,n]
ij
)

+ πnqt,n(x)[Σ
−1
t,n]

ikzjt,n(x) + πnqt,n(x)[Σ
−1
t,n]

jkzit,n(x)

)

−
N∑

n=1

πnqt,n(x)
(
(−zkt,n(x))z

i
t,n(x) + [Σ−1

t,n]
ik
) N∑
n=1

πnqt,n(x)z
j
t,n(x)

−
N∑

n=1

πnqt,n(x)z
i
t,n(x)

N∑
n=1

πnqt,n(x)
(
(−zkt,n(x))z

j
t,n(x) + [Σ−1

t,n]
jk
)

= −qt(x)

N∑
n=1

πnqt,n(x)z
i
t,n(x)z

j
t,n(x)z

k
t,n(x)−

N∑
n=1

πnqt,n(x)z
k
t,n(x)

N∑
n=1

πnqt,n(x)z
i
t,n(x)z

j
t,n(x)

+
N∑

n=1

πnqt,n(x)z
j
t,n(x)

N∑
n=1

πnqt,n(x)z
i
t,n(x)z

k
t,n(x) +

N∑
n=1

πnqt,n(x)z
i
t,n(x)

N∑
n=1

πnqt,n(x)z
j
t,n(x)z

k
t,n(x)

+ qt(x)

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

ijzkt,n(x) +

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

ij
N∑

n=1

πnqt,n(x)z
k
t,n(x)

+ qt(x)

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

ikzjt,n(x)−
N∑

n=1

πnqt,n(x)[Σ
−1
t,n]

ik
N∑

n=1

πnqt,n(x)z
j
t,n(x)

+ qt(x)

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

jkzit,n(x)−
N∑

n=1

πnqt,n(x)z
i
t,n(x)

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

jk.

Since

∂3
ijk log qt(x) = ∂k

(
qt(x)N1 − N2

q2t (x)

)
=

1

q3t (x)

(
∂k(qt(x)N1 − N2)qt(x) + 2(qt(x)N1 − N2)

N∑
n=1

πnqt,n(x)z
k
t,n(x)

)
,
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we get

q3t (x)∂
3
ijk log qt(x)

= −q2t (x)

N∑
n=1

πnqt,n(x)z
i
t,n(x)z

j
t,n(x)z

k
t,n(x) + qt(x)

N∑
n=1

πnqt,n(x)z
k
t,n(x)

N∑
n=1

πnqt,n(x)z
i
t,n(x)z

j
t,n(x)

+ qt(x)

N∑
n=1

πnqt,n(x)z
j
t,n(x)

N∑
n=1

πnqt,n(x)z
i
t,n(x)z

k
t,n(x)

+ qt(x)

N∑
n=1

πnqt,n(x)z
i
t,n(x)

N∑
n=1

πnqt,n(x)z
j
t,n(x)z

k
t,n(x)

− 2

(∑
n

πnqt,n(x)z
i
t,n(x)

)(∑
n

πnqt,n(x)z
j
t,n(x)

)(
N∑

n=1

πnqt,n(x)z
k
t,n(x)

)

+ q2t (x)

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

ijzkt,n(x)− qt(x)

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

ij
N∑

n=1

πnqt,n(x)z
k
t,n(x)

+ q2t (x)

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

ikzjt,n(x)− qt(x)

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

ik
N∑

n=1

πnqt,n(x)z
j
t,n(x)

+ q2t (x)

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

jkzit,n(x)− qt(x)

N∑
n=1

πnqt,n(x)z
i
t,n(x)

N∑
n=1

πnqt,n(x)[Σ
−1
t,n]

jk.

Below, we write ξt(x, i) := maxn
∣∣zit,n(x)∣∣ and Σ̄ to be a matrix such that Σ̄ij := maxn

∣∣[Σ−1
t,n]

ij
∣∣.

Also write ht,n(x) = πnqt,n(x)/qt(x). Note that for any x,
∑N

n=1 ht,n(x) = 1. Therefore, we take
maxn within each summation above and get∣∣∂3

ijk log qt(x)
∣∣ ≤ 6ξt(x, i)ξt(x, j)ξt(x, k) + 2Σ̄ijξt(x, k) + 2Σ̄ikξt(x, j) + 2Σ̄jkξt(x, i).

G.1.3 ASYMPTOTIC EQUIVALENCE OF µt(xt) AND xt

Intuitively, µt(xt) and xt are asymptotically close when 1 − αt is small, which will be useful for
later analysis. In this subsubsection, we will show that ξt−1(µt, i)− ξt(xt, i) = Õ(1− αt).

Note that for each n and fixed xt (writing µt(xt) = µt),

zt−1,n(µt)− zt,n(xt)

= Σ−1
t−1,n(µt − µt−1,n)− Σ−1

t,n(xt − µt,n)

= (Σ−1
t−1,n − Σ−1

t,n)(µt − µt−1,n)− Σ−1
t,n((xt − µt,n)− (µt − µt−1,n)). (41)

Here, since Σt−1,n is real symmetric, we can write the eigen-decomposition as Σt−1,n = UDU⊺,
where U is an orthonormal matrix (having unit 2-norm) and D is a diagonal matrix (with all diagonal
elements positive). In the same notation, Σ−1

t−1,n = UD−1U⊺, and Σ−1
t,n = (αtΣt−1,n + (1 −

αt)Id)
−1 = U(αtD + (1− αt)Id)

−1U⊺. Since∣∣[D−1]ii − [(αtD + (1− αt)Id)
−1]ii

∣∣ = ∣∣∣∣ 1

Dii
− 1

αtDii + (1− αt)

∣∣∣∣
≤

(1− αt)(
∣∣Dii

∣∣+ 1)

αt(Dii)2 + (1− αt)Dii

= Õ(1− αt),

the following holds: ∥∥Σ−1
t−1,n − Σ−1

t,n

∥∥ = Õ(1− αt).

Denote [A]i∗ as the i-th row of a matrix A. Thus, following from (41), for any i ∈ [d],∥∥[Σ−1
t−1,n]

i∗ − [Σ−1
t,n]

i∗∥∥ (i)

≤
∥∥Σ−1

t−1,n − Σ−1
t,n

∥∥ = Õ(1− αt), (42)
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∣∣µi
t − xi

t

∣∣ = ∣∣∣∣1−√
αt√

αt
xi
t −

1− αt√
αt

∂i log qt(xt)

∣∣∣∣ = Õ(1− αt),∣∣µi
t,n − µi

t−1,n

∣∣ = ∣∣(1−√
αt)µ

i
t−1,n

∣∣ = Õ(1− αt),

where (i) follows from the definition of matrix 2-norm and from the fact that [Σ−1
t,n]

i∗ = Σ−1
t,n1i (1i

is the unit vector where the i-th element is 1, and recall that Σ−1
t,n is symmetric). This implies that∣∣zit−1,n(µt)− zit,n(xt)

∣∣ = Õ(1− αt),∀i. Thus,

ξt−1(µt, i)− ξt(xt, i) = max
n

∣∣zit−1,n(µt)
∣∣−max

n

∣∣zit,n(xt)
∣∣

≤ max
n

∣∣zit−1,n(µt)− zit,n(xt)
∣∣ = Õ(1− αt), (43)

where the last inequality follows because maxn |an|+maxn |bn| ≥ maxn(|an|+|bn|) ≥ maxn |an+
bn|.
Following from Theorem 1, we have

EXt∼Qt

 d∑
i,j,k=1

∂3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt)


≤ EXt∼Qt

[
d∑

i,j,k=1

(
6ξ(µt(Xt), i)ξ(µt(Xt), j)ξ(µt(Xt), k) + 2Σ̄ijξ(µt(Xt), k) + 2Σ̄ikξ(µt(Xt), j)

+ 2Σ̄jkξ(µt(Xt), i)
) (

6ξ(Xt, i)ξ(Xt, j)ξ(Xt, k) + 2Σ̄ijξ(Xt, k) + 2Σ̄ikξ(Xt, j) + 2Σ̄jkξ(Xt, i)
) ]

(ii)
≍ EXt∼Qt

 d∑
i,j,k=1

(
ξ(Xt, i)ξ(Xt, j)ξ(Xt, k) + Σ̄ijξ(Xt, k) + Σ̄ikξ(Xt, j) + Σ̄jkξ(Xt, i)

)2
≤ 2EXt∼Qt

 d∑
i,j,k=1

ξ(Xt, i)
2ξ(Xt, j)

2ξ(Xt, k)
2 + (Σ̄ij)2ξ(Xt, k)

2 + (Σ̄ik)2ξ(Xt, j)
2 + (Σ̄jk)2ξ(Xt, i)

2


(44)

where (ii) follows from (43).

G.1.4 EXPLICIT PARAMETER DEPENDENCY

We are now ready for the explicit parameter dependency for Gaussian mixture Q0. In the following,
we provide two different ways to upper-bound the terms in (44) depending on how N is compared to
d. The first approach can be applied when N < d. For the ξ(x, ·) (∀x ∈ Rd) terms,

d∑
i=1

ξ(x, i)2 =

d∑
i=1

max
n

([Σ−1
t,n]

i∗(x− µt,n))
2 ≤

d∑
i=1

N∑
n=1

([Σ−1
t,n]

i∗(x− µt,n))
2

=

N∑
n=1

∥∥Σ−1
t,n(x− µt,n)

∥∥2 ≤ N max
n

∥∥Σ−1
t,n

∥∥2 max
n

∥x− µt,n∥2

(i)

≲ N max
n

∥x− µt,n∥2 ,

where (i) follows because of the following. Since Σt,n is a (full-rank) covariance matrix, all its
eigenvalues are positive. Let λn,min > 0 be the smallest eigenvalue of Σ0,n, and thus

max
n

∥∥Σ−1
t,n

∥∥
2
≤ 1

ᾱt minn λn,min + (1− ᾱt)
≤ 1

min{1,minn λn,min}
< ∞. (45)

In particular, this bound does not depend on d or T . Also, for the Σ̄ terms,
d∑

i,j=1

(Σ̄ij)2 =

d∑
i,j=1

max
n

([Σ−1
t,n]

ij)2 ≤
d∑

i,j=1

N∑
n=1

([Σ−1
t,n]

ij)2 =

N∑
n=1

∥∥Σ−1
t,n

∥∥2
F
≲ Nd,
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where the last inequality follows from (45) and the fact that for any matrix full-rank A, ∥A∥F ≤√
d ∥A∥2. The second approach can be applied when N ≥ d, where we can bound the ξ(x, ·) (∀x ∈

Rd) terms instead as

d∑
i=1

ξ(x, i)2 =

d∑
i=1

max
n

([Σ−1
t,n]

i∗(x− µt,n))
2

(ii)

≤
d∑

i=1

max
n

(∥∥[Σ−1
t,n]

i∗∥∥2 ∥x− µt,n∥2
)
≤

d∑
i=1

max
n

∥∥[Σ−1
t,n]

i∗∥∥2 max
n

∥x− µt,n∥2

(iii)

≤
d∑

i=1

max
n

∥∥Σ−1
t,n

∥∥2 max
n

∥x− µt,n∥2
(iv)

≲ dmax
n

∥x− µt,n∥2 .

Here (ii) follows from Cauchy-Schwartz inequality, (iii) follows from definition of matrix 2-norm
and the fact that [Σ−1

t,n]
i∗ = Σ−1

t,n1i (1i is the unit vector where the i-th element is 1), and (iv) follows
from (45). Also, for the second term, we can obtain an alternative upper bound as follows. Write
the eigen-decomposition as Σ0,n = Qndiag(λn,1, . . . , λn,d)Q

⊺
n, where Qn here is an orthonormal

matrix (that does not depend on T ). Then,

Σ−1
t,n = Qn(ᾱtdiag(λn,1, . . . , λn,d) + (1− ᾱt)Id)

−1Q⊺
n

= Qndiag((ᾱtλn,1 + (1− ᾱt))
−1, . . . , (ᾱtλn,d + (1− ᾱt))

−1)Q⊺
n,

and thus

max
n∈[N ]

∣∣[Σ−1
t,n]

ij
∣∣ = max

n∈[N ]

∣∣∣∣∣
d∑

k=1

(ᾱtλn,k + (1− ᾱt))
−1Qik

n Qkj
n

∣∣∣∣∣
≤ (min{1,min

n
λn,min})−1 max

n∈[N ],i,j∈[d]

∣∣(Qi∗
n )⊺(Qj∗

n )
∣∣

≤ (min{1,min
n

λn,min})−1 max
n∈[N ],i∈[d]

∥∥Qi∗
n

∥∥2
= (min{1,min

n
λn,min})−1,

where the last line follows because Qn is orthonormal for all n ∈ [N ]. Note that this is a uniform
bound that does not depend on N , T or d, which further implies that

d∑
i,j=1

(Σ̄ij)2 ≲ d2.

Combining the two cases, we get

d∑
i=1

ξ(x, i)2 ≲ min{d,N}max
n

∥x− µt,n∥2 , (46)

d∑
i,j=1

(Σ̄ij)2 ≲ dmin{d,N}. (47)

Therefore, using (46) and (47), we can continue from (44) and get

EXt∼Qt

 d∑
i,j,k=1

∂3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt)


≲ min{d,N}3EXt∼Qt

[
∥Xt∥6 +max

n
∥µt,n∥6

]
+ (dmin{d,N})(dmin{d,N}).

Now, note that
max
n

∥µt,n∥6 ≤ max
n

∥µ0,n∥6 ≲ d3

48



Published as a conference paper at ICLR 2025

since µ0,n < ∞ is a fixed vector. Also, the expected sixth power of the norm can be bounded as

E ∥Xt∥6 = E
[(∥∥√ᾱtX0 +

√
1− ᾱtW̄t

∥∥2)3] ≲ E ∥X0∥6 + E
∥∥W̄t

∥∥6 ≲ E ∥X0∥6 + d3,

and, when Q0 is a Gaussian mixture,∫
∥x0∥6 q0(x0)dx0 =

N∑
n=1

πn

∫
∥x0∥6 q0,n(x0)dx0 ≍ d3.

Therefore, we finally obtain a bound on the reverse-step error with explicit system parameters:

T∑
t=1

EXt−1,Xt∼Qt−1,t

[
log

qt−1|t(Xt−1|Xt)

p′t−1|t(Xt−1|Xt)

]
≲

d3 min{d,N}3 log3 T
T 2

.

G.2 PROOF OF THEOREM 3
Throughout the proof of Theorem 3 we adopt the noise schedule αt defined in (10). We first
investigate some nice properties of the noise schedule in (10). Since c ≍ log(1/δ), we have
1− αt ≲ log(1/δ) log T/T . Using a similar argument from (Li et al., 2024c, Equation (39)),

1− αt

αt − ᾱt
,
1− αt

1− ᾱt
,

1− αt

1− ᾱt−1
≲

log(1/δ) log T

T
, ∀2 ≤ t ≤ T, (48)

1− ᾱt

1− ᾱt−1
− 1 =

ᾱt−1(1− αt)

1− ᾱt−1
≤ 1− αt

1− ᾱt−1
= Õ

(
log T

T

)
, ∀2 ≤ t ≤ T.

We note that Li et al. (2024c) does not highlight δ dependency in their results. Also, note that if T is
large,

δ

(
1 +

c log T

T

) T
log T

≍ δec ≥ 1.

Thus, with any fixed r ∈ (0, 1) such that t ≥ rT (≥ T
log T ), we have

1− αt =
c log T

T
min

{
δ

(
1 +

c log T

T

)t

, 1

}
=

c log T

T
.

As a result,

ᾱT ≤
T∏

t=⌊rT⌋

αt =

(
1− c log T

T

)⌈(1−r)T⌉

≍ exp

(
⌈(1− r)T ⌉

(
−c log T

T

))
= Õ(T−(1−r)c).

(49)
Given any c > 2, we can always find some r such that (1− r)c > 2. For example, this is satisfied
when r = (c − 2)/4 if c ∈ (2, 4) and r = 1/4 otherwise. This shows that the αt in (10) satisfies
ᾱT = o

(
T−2

)
if c > 2. Therefore, the αt in (10) satisfies Definition 1.

Since the parameter dependency is clear in the bound for the initialization and estimation errors
(Lemmas 3 and 4), it remains to provide a bound on the reverse-step error that depends explicitly on
the system parameters, which is the main topic below.

G.2.1 CHECKING ASSUMPTION 5
Instead of Assumption 4, we check the more general Assumption 5 below. In particular, we verify
Assumption 5 with the αt in (10). In the following, Lemma 15 is used to establish the first half
of Assumption 5. Next, the following Lemma 16 is used to establish the behavior of the expected
moments under the perturbed posterior Q0|t−1(·|µt(Xt)) when Xt ∼ Qt. Both Lemmas 15 and 17
will be useful for establishing the second half of Assumption 5 with the αt in (10).
Lemma 15. For all t ≥ 1, ℓ ≥ 1, and a ∈ [d]p such that |a| = p ≥ 1,

EXt∼Qt
|∂p

a log qt(Xt)|ℓ ≲
dpℓ/2

(1− ᾱt)pℓ/2
.
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Proof. See Appendix H.3.

Lemma 16. For all t ≥ 2 and p ≥ 1, with the αt in (10),∫
x0,xt

∥µt(xt)−
√
ᾱt−1x0∥

p
dQ0|t−1(x0|µt(xt))dQt(xt) ≲ dp/2(1− ᾱt−1)

p/2.

Proof. See Appendix H.4.

Finally, the following Lemma 17 verifies the second half of Assumption 5 with the αt defined in (10).
Lemma 17. For all t ≥ 2, ℓ ≥ 1, and a ∈ [d] such that |a| = p ≥ 1, with the αt in (10),

EXt∼Qt
|∂p

a log qt−1(µt(Xt))|ℓ ≲
dpℓ/2

(1− ᾱt−1)pℓ/2
.

Combining this with Lemma 15, Assumption 5 holds.

Proof. See Appendix H.5.

Now, Assumption 5 is satisfied since 1
1−ᾱt

≤ 1
1−α1

= δ−1 for all t ≥ 1 if δ is constant. Thus,
if δ is a constant, Assumption 4 is already satisfied (as is Assumption 5). This is not necessary,
however, when δ = 1/poly(T ) is vanishing with T . Fortunately, in this case, from (48), we still get
1−αt

1−ᾱt−1
= Õ(1− αt). Thus, Assumption 5 is still satisfied.

G.2.2 EXPRESSING ∂3
ijk log qt

We begin by investigating ∇2 log qt (t ≥ 2), for which we can derive the Hessian of log qt(x) as

∇2 log qt(x) =
∂

∂x

(∫
x0∈Rd ∇qt|0(x|x0)dQ0(x0)∫
x0∈Rd qt|0(x|x0)dQ0(x0)

)

=
qt(x)

∫
x0∈Rd ∇2qt|0(x|x0)dQ0(x0)−

(∫
x0∈Rd ∇qt|0(x|x0)dQ0(x0)

)(∫
x0∈Rd ∇qt|0(x|x0)dQ0(x0)

)⊺
q2t (x)

=
1

(1− ᾱt)2q2t (x)

(
qt(x)

∫
x0∈Rd

qt|0(x|x0)
(
(x−

√
ᾱtx0)(x−

√
ᾱtx0)

⊺ − (1− ᾱt)Id
)
dQ0(x0)

−
(∫

x0∈Rd

qt|0(x|x0)(x−
√
ᾱtx0)dQ0(x0)

)(∫
x0∈Rd

qt|0(x|x0)(x−
√
ᾱtx0)dQ0(x0)

)⊺)
= − 1

1− ᾱt
Id +

1

(1− ᾱt)2

(
EX0∼Q0|t(·|x)

[
(x−

√
ᾱtX0)(x−

√
ᾱtX0)

⊺
]

−
(
EX0∼Q0|t(·|x)

[
x−

√
ᾱtX0

]) (
EX0∼Q0|t(·|x)

[
x−

√
ᾱtX0

])⊺)
. (50)

For the third-order partial derivatives, we employ the notation

z :=
x−

√
ᾱtx0

1− ᾱt
.

Note that ∂kqt|0(x|x0) = qt|0(x|x0)(−zk). Then, we can write (50) as

∂2
ij log qt(x) =

1

q2t (x)

(
qt(x)

∫
qt|0(x|x0)z

izjdQ0(x0)︸ ︷︷ ︸
N1

−
∫

qt|0(x|x0)z
idQ0(x0)

∫
qt|0(x|x0)z

jdQ0(x0)︸ ︷︷ ︸
N2

)
− 1

1− ᾱt
Id.
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Note that the last term is a constant. The derivative for term N1 is given by

∂k

∫
qt|0(x|x0)z

izjdQ0(x0)

=

∫
qt|0(x|x0)(−zk)zizj + 1(k = i)qt|0(x|x0)(1− ᾱt)

−1zj

+ 1(k = j)qt|0(x|x0)(1− ᾱt)
−1zidQ0(x0),

and the derivative for term N2 is given by

∂k

(∫
qt|0(x|x0)z

idQ0(x0)

∫
qt|0(x|x0)z

jdQ0(x0)

)
=

∫
qt|0(x|x0)

(
(−zk)zi + 1(k = i)(1− ᾱt)

−1
)
dQ0(x0)

∫
qt|0(x|x0)z

jdQ0(x0)

+

∫
qt|0(x|x0)z

idQ0(x0)

∫
qt|0(x|x0)

(
(−zk)zj + 1(k = j)(1− ᾱt)

−1
)
dQ0(x0)

=

(∫
qt|0(x|x0)(−zk)zidQ0(x0) + 1(k = i)(1− ᾱt)

−1qt(x)

)∫
qt|0(x|x0)z

jdQ0(x0)

+

∫
qt|0(x|x0)z

idQ0(x0)

(∫
qt|0(x|x0)(−zk)zjdQ0(x0) + 1(k = j)(1− ᾱt)

−1qt(x)

)
.

Combining these, the derivative for the numerator is given by

∂k(qt(x)N1 − N2) = ∂k(qt(x))N1 + qt(x)∂k(N1)− ∂k(N2)

= −qt(x)

∫
qt|0(x|x0)z

izjzkdQ0(x0)

−
∫

qt|0(x|x0)z
kdQ0(x0)

∫
qt|0(x|x0)z

izjdQ0(x0)

+

∫
qt|0(x|x0)z

jdQ0(x0)

∫
qt|0(x|x0)z

izkdQ0(x0)

+

∫
qt|0(x|x0)z

idQ0(x0)

∫
qt|0(x|x0)z

jzkdQ0(x0).

Thus,

∂3
ijk log qt(x) = ∂k

qt(x)N1 − N2
q2t (x)

=
1

q3t (x)

(
∂k(qt(x)N1 − N2)qt(x) + 2(qt(x)N1 − N2)

∫
qt|0(x|x0)z

kdQ0(x0)

)
=

1

q3t (x)

(
− q2t (x)

∫
qt|0(x|x0)z

izjzkdQ0(x0)

+ qt(x)
∑

a1=i,j,k
a2<a3, a2,a3 ̸=a1

∫
qt|0(x|x0)z

a1dQ0(x0)

∫
qt|0(x|x0)z

a2za3dQ0(x0)

− 2

∫
qt|0(x|x0)z

idQ0(x0)

∫
qt|0(x|x0)z

jdQ0(x0)

∫
qt|0(x|x0)z

kdQ0(x0)

)
= −

∫
zizjzkdQ0|t(x0|x)

+
∑

a1=i,j,k
a2<a3, a2,a3 ̸=a1

∫
za1dQ0|t(x0|x)

∫
za2za3dQ0|t(x0|x)

− 2

∫
zidQ0|t(x0|x)

∫
zjdQ0|t(x0|x)

∫
zkdQ0|t(x0|x) (51)
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G.2.3 EXPLICIT PARAMETER DEPENDENCY

By Cauchy-Schwartz inequality, we have

EXt∼Qt

 d∑
i,j,k=1

∂3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt)


≤

√√√√√EXt∼Qt

 d∑
i,j,k=1

(
∂3
ijk log qt−1(µt(Xt))

)2×

√√√√√EXt∼Qt

 d∑
i,j,k=1

(
∂3
ijk log qt(Xt)

)2.
(52)

We now analyze the two terms in (52) separately.

We begin with the second term in (52). Recall that Z = Xt−
√
ᾱtX0

1−ᾱt
is standard Gaussian under Q0,t.

Also note that for a standard Gaussian random variable Z, E ∥Z∥6 = d(d+ 2)(d+ 4) ≲ d3. Now,
substituting (51) into the second term of (52), we get

d∑
i,j,k=1

EXt∼Qt

(∫
zizjzkdQ0|t(x0|Xt)

)2

≤ 1

(1− ᾱt)3
EX0,Xt∼Q0,t

 d∑
i,j,k=1

(
Xi

t −
√
ᾱtX

i
0√

1− ᾱt

)2
(
Xj

t −
√
ᾱtX

j
0√

1− ᾱt

)2(
Xk

t −
√
ᾱtX

k
0√

1− ᾱt

)2


=
1

(1− ᾱt)3
EX0,Xt∼Q0,t

∥∥∥∥Xt −
√
ᾱtX0√

1− ᾱt

∥∥∥∥6
=

1

(1− ᾱt)3
E ∥Z∥6

≲
d3

(1− ᾱt)3
,

and
d∑

i,j,k=1

EXt∼Qt

(∫
zidQ0|t(x0|x)

∫
zjzkdQ0|t(x0|x)

)2

= EXt∼Qt

∥∥∥∥∫ zdQ0|t(x0|x)
∥∥∥∥2 d∑

j,k=1

(∫
zjzkdQ0|t(x0|x)

)2


≤

(
EXt∼Qt

∥∥∥∥∫ zdQ0|t(x0|x)
∥∥∥∥6
)1/3

EXt∼Qt

 d∑
j,k=1

(∫
zjzkdQ0|t(x0|x)

)2
3/2


2/3

≤ EX0,Xt∼Q0,t

∥∥∥∥Xt −
√
ᾱtX0

1− ᾱt

∥∥∥∥6
=

1

(1− ᾱt)3
E ∥Z∥6

≲
d3

(1− ᾱt)3
,

and
d∑

i,j,k=1

EXt∼Qt

(∫
zidQ0|t(x0|Xt)

∫
zjdQ0|t(x0|Xt)

∫
zkdQ0|t(x0|Xt)

)2

= EXt∼Qt

(
d∑

i=1

(∫
Xi

t −
√
ᾱtx

i
0

1− ᾱt
dQ0|t(x0|Xt)

)2
)3
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=
1

(1− ᾱt)3
EXt∼Qt

∥∥∥∥∫ Xt −
√
ᾱtx0√

1− ᾱt
dQ0|t(x0|Xt)

∥∥∥∥6
≤ 1

(1− ᾱt)3
E ∥Z∥6

≲
d3

(1− ᾱt)3
.

Thus, the second term of (52) satisfies that

EXt∼Qt

 d∑
i,j,k=1

(
∂3
ijk log qt(Xt)

)2 ≲
d3

(1− ᾱt)3
.

Now we turn to the first term in (52). Note that Z =
µt(Xt)−

√
ᾱt−1X0

1−ᾱt−1
. While Z is no longer standard

Gaussian under Q0,t, we can still achieve moment bounds using Lemma 16. Now, substituting (51)
into the first term of (52), we apply Lemma 16 and get

d∑
i,j,k=1

EXt∼Qt

(∫
zizjzkdQ0|t−1(x0|µt(Xt))

)2

≤ 1

(1− ᾱt−1)3
EX0∼Q0|t−1(·|µt(Xt))

Xt∼Qt

∥∥∥∥µt(Xt)−
√
ᾱt−1X0√

1− ᾱt−1

∥∥∥∥6 ≲
d3

(1− ᾱt−1)3
,

and similarly,
d∑

i,j,k=1

EXt∼Qt

(∫
zidQ0|t−1(x0|µt(Xt))

∫
zjzkdQ0|t−1(x0|µt(Xt))

)2

≲
d3

(1− ᾱt−1)3
,

d∑
i,j,k=1

EXt∼Qt

(∫
zidQ0|t−1(x0|µt(Xt))

∫
zjdQ0|t−1(x0|µt(Xt))

∫
zkdQ0|t−1(x0|µt(Xt))

)2

≲
d3

(1− ᾱt−1)3
.

Thus, the first term of (52) satisfies that

EXt∼Qt

 d∑
i,j,k=1

(
∂3
ijk log qt−1(µt(Xt))

)2 ≲
d3

(1− ᾱt−1)3
.

Finally, since 1−αt

1−ᾱt
, 1−αt

1−ᾱt−1
≲ log(1/δ) log T

T , we arrive at

(1− αt)
3EXt∼Qt

 d∑
i,j,k=1

∂3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt)

 ≲
d3 log3(1/δ) log3 T

T 3
.

Summation over t ≥ 2 gives us the desirable result.

G.3 THEOREM 5 AND ITS PROOF

Before we enter the proof of Theorem 4, we introduce an intermediate result which might have
independent interest. Previously, for regular samplers, linear dimensional dependency can be shown
when all Qt’s (∀t ≥ 0) have Lipschitz score (Chen et al., 2023a;d). The following Theorem 5
provides an accelerated convergence guarantee when all Qt’s (∀t ≥ 0) have Lipschitz Hessians.
Theorem 5 (Accelerated Sampler for All-Path Lipschitz Hessians). Suppose that ∇2 log qt(x), ∀t ≥
0 is 2-norm M -Lipschitz, i.e., ∃M > 0 such that∥∥∇2 log qt(x)−∇2 log qt(y)

∥∥ ≤ M ∥x− y∥ (53)
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for all x, y ∈ Rd and t ≥ 0. Then, under Assumptions 1, 3 and 5, if the αt satisfies Definition 1, the
distribution P̂ ′

0 from the accelerated sampler satisfies

KL(Q0||P̂ ′
0) ≲

d2M2 log3 T

T 2
+ (log T )ε2 +

log2 T

T
ε2H .

G.3.1 PROOF OF THEOREM 5
In order to continue from Theorem 1 (in particular, the reverse-step error in (26)), we need to introduce
some useful notations for the distribution class in (53). For a matrix A, define its vectorization as
vec(A) := [A11, . . . , A1d, . . . , Ad1, . . . , Add]⊺ ∈ Rd2

. Define Kt ∈ Rd2×d to be the matrix that
reorganizes the third-order partial derivative tensor, i.e.,

[Kt(x)]
mk := ∂3

ijk log qt(x), s.t. m = (i− 1)d+ j, ∀i, j, k ∈ [d].

With these notations, consider y = x+ ξu where u ∈ Rd satisfies ∥u∥2 = 1 and ξ ∈ R is some small
constant. Then,

vec(∇2 log qt(y))− vec(∇2 log qt(x)) = Kt(x
∗)(y − x) = ξKt(x

∗)u.

Here x∗ = γx+ (1− γ)y for some γ ∈ (0, 1). Also, we have∥∥vec(∇2 log qt(y))− vec(∇2 log qt(x))
∥∥

=
∥∥∇2 log qt(y)−∇2 log qt(x)

∥∥
F

≤
√
d
∥∥∇2 log qt(y)−∇2 log qt(x)

∥∥ ≤
√
dM ∥y − x∥

where the last inequality comes from (53). Thus, noting that y = x+ ξu and that ∥u∥2 = 1, we take
the limit of ξ to 0 and get

∥Kt(x)∥ ≤
√
dM, ∀x ∈ Rd, ∀t ≥ 0. (54)

We now derive an explicit upper bound on the reverse-step error. Using Cauchy-Schwartz inequality,
for any t ≥ 1 and xt ∈ Rd, we have

d∑
i,j,k=1

∂3
ijk log qt−1(µt)∂

3
ijk log qt(xt)

≤

√√√√ d∑
i,j,k=1

(∂3
ijk log qt−1(µt))2

√√√√ d∑
i,j,k=1

(∂3
ijk log qt(xt))2

= ∥Kt−1(µt)∥F × ∥Kt(xt)∥F
≤ (

√
d ∥Kt−1(µt)∥)× (

√
d ∥Kt(xt)∥)

≤ d2M2. (55)

Therefore, following from Theorem 1, we obtain
T∑

t=1

EXt−1,Xt∼Qt−1,t

[
log

qt−1|t(Xt−1|Xt)

pt−1|t(Xt−1|Xt)

]
≲

d2M2 log3 T

T 2
.

G.4 PROOF OF THEOREM 4
Throughout the proof of Theorem 4 we adopt the noise schedule αt defined in (10) with δ =

1/(M
2
3T

3
2 ) and c ≥ log(M

2
3T

3
2 ). Note that such αt satisfies Definition 1 for all t ≥ 1, and thus

the bound on the estimation error still applies. Also, Assumption 5 is satisfied for t ≥ 2, as shown
in Appendix G.2.1. Thus, Theorem 3 can be applied and the reverse-step error at t ≥ 2 satisfies,
∀t = T, . . . , 2,

(1− αt)
3EXt∼Qt

 d∑
i,j,k=1

∂3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt)
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≲
d3(log3 M + log3 T ) log3 T

T 3
. (56)

In order to determine the dimensional dependency of the reverse-step error, the key is thus to establish
a similar upper bound at t = 1.

Now, we provide a modified version of Theorem 1 which does not require q0 to be analytic (as in
Assumption 2) or to have regular partial derivatives (as in Assumption 5). We recall from (21) that
the reverse-step error at time t = 1 can be upper-bounded as

EX0∼Q0|1

[
log

q0|1(X0|x1)

p′0|1(X0|x1)

]
≤ EX0∼Q0|1 [ζ

′
1,0]− EX0∼P ′

0|1
[ζ ′1,0].

Instead of the Taylor expansion in (20), we employ the following different expansion from Taylor’s
theorem. The only difference is that the expansion stops at the third-order term.

ζ ′1,0 = (∇ log q0(µ1)−
√
α0∇ log q1(x1))

⊺(x0 − µ1)

+
1

2
(x0 − µ1)

⊺

(
∇2 log q0(µ1)−

α0

1− α0
Bt

)
(x0 − µ1)

+
1

3!

d∑
i,j,k=1

∂3
ijk log q0(µ

∗
1)(x

i
0 − µi

1)(x
j
0 − µj

1)(x
k
0 − µk

1). (57)

Here µ∗
1(x1, x0) := ςµ1(x1) + (1− ς)x0 for some ς ∈ [0, 1]. Note that µ∗

1 is a function of both x1

and x0.

A remarkable difference from the proof of Theorem 1 is that we do not require q0 to be analytic for
this expansion. Indeed, it only requires that the third-order partial derivative exists. With this new
expansion, we have the following lemma, which serves as a counterpart of Lemma 11.
Lemma 18. Suppose that q0 exists and ∇2 log q0 is 2-norm M -Lipschitz. Then, with the αt in (10),
we have

EX0∼Q0

(
EX0∼Q0|1 − EX0∼P ′

0|1

)
[ζ ′1,0] ≲

(1− α1)
3/2

3!α
3/2
1

d4M.

Proof. See Appendix H.6.

Finally, with the chosen δ = 1− α1 = 1/(M
2
3T

3
2 ), the rate at the first step satisfies

(1− α1)
3/2

3!α
3/2
1

d4M ≲
d4

T 9/4
= o(T−2).

As T becomes large, the rate of the total reverse-step error, which decays as Õ(T−2), is not affected.
The proof is now complete.

H AUXILIARY PROOFS OF THEOREMS 2 TO 4
In this section, we provide the proofs for the lemmas in the proofs for Theorems 2 to 4.

H.1 PROOF OF LEMMA 13
Fix k ≥ 1 and a ∈ [d]k. Recall that u ≤ det(Σz) ≤ U ,

∥∥Σ−1
z

∥∥ ≤ V , and

supz∈Z,i,j∈[d]2

∣∣∣[Σ− 1
2

z ]ij
∣∣∣ ≤ w for all z ∈ Z . Also write ϕ(y) as the p.d.f. of the unit Gaus-

sian. We are interested in upper-bounding the absolute partial derivatives of log q(x) with a function
of x where

q(x) =

∫
g(x|z)dΠ(z),

where, using the change-of-variable formula,

g(x|z) = 1

det(Σz)
1
2

ϕ
(
Σ

− 1
2

z (x− µz)
)
. (58)
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We first identify an upper bound on the absolute partial derivatives of q(x). Now,

∂k
aq(x)

(i)
=

∫
∂k
ag(x|z)dΠ(z)

(ii)

≤ 1

infz∈Z det(Σz)
1
2

∫
∂k
aϕ
(
Σ

− 1
2

z (x− µz)
)
dΠ(z)

where (i) follows from the dominated convergence theorem (see (31)), and (ii) follows from (58). To
obtain an upper bound on the k-th derivative of Gaussian density, we invoke the multivariate version
of the Faá di Bruno’s formula (Constantine & Savits, 1996, Theorem 2.1). Since y = Σ

− 1
2

z (x− µz)

is linear in x, only the first-order partial derivative is non-zero and is equal to an entry in Σ
− 1

2
z . Thus,

we have∣∣∣∂k
aϕ
(
Σ

− 1
2

z (x− µz)
)∣∣∣ =

∣∣∣∣∣∣
∑

a′∈[d]k

ϕ
(k)
a′ (y)

k∏
s=1

∂

∂xas

[Σ
− 1

2
z (x− µz)]

a′
s

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

a′∈[d]k

ϕ
(k)
a′

(
Σ

− 1
2

z (x− µz)
)∣∣∣∣∣∣max {w, 1}k , ∀a : |a| = k.

Here we define ϕ(k)
a (y) := ∂k

aϕ(y). Since ϕ(y) is a Gaussian density which is infinitely differentiable
and decays exponentially at the tail, its k-th order derivative satisfies ϕ(k)

a (y) = polyk(y)ϕ(y) where
polyk(y) is a k-th order polynomial function in y1, . . . , yd (and thus in x1, . . . , xd by linearity). Also
note that, for any a ∈ [d]k,

lim
∥y∥→∞

∣∣∣ϕ(k)
a (y)

∣∣∣ = lim
∥y∥→∞

|polyk(y)ϕ(y)| = 0.

By the continuity of ϕ(k)
a (y), there exists ȳa such that

∣∣∣ϕ(k)
a (y)

∣∣∣ ≤ ∣∣∣ϕ(k)
a (ȳa)

∣∣∣ ≤ polyk(ȳa) for all

y ∈ Rd. Now, for all x ∈ Rd,∣∣∂k
aq(x)

∣∣ ≤ ∫ det(Σz)
− 1

2

∣∣∣∂k
aϕ
(
Σ

− 1
2

z (x− µz)
)∣∣∣dΠ(z)

≤ max {w, 1}k
∫

det(Σz)
− 1

2

 ∑
a∈[d]k

∣∣∣polyk (Σ− 1
2

z (x− µz)
)∣∣∣
ϕ

(
Σ

− 1
2

z (x− µz)
)
dΠ(z)

(59)

≤ dk max {w, 1}k√
u

|polyk (ȳa)|ϕ (ȳa) . (60)

We have thus obtained a constant upper bound on all partial derivatives of q(x) of order k.

Next, we convert the partial derivative bound into that for log q(x). We again invoke Faá di Bruno’s
formula Constantine & Savits (1996). Note that

∂k
a log q(x) = q(x)−k

∑
b1,...,bk

k∏
j=1

∂
|bj |
bj

q(x) =:
∑

b1,...,bk

rb1,...,bk
(x) (61)

in which we define each summation term as r. Here {b1, . . . , bk} is some (possibly empty) partition
of a, i.e.,

∑
j bj = a and

∑
j |bj | = k (thus, at most k partitions). We order this partition such

that k ≥ |b1| ≥ · · · ≥ |bk| ≥ 0. Note that the total number of partition can be upper-bounded
by dk

∑k
l=1 Bk,l(1, . . . , 1) = dkBk, where Bk,l(·) and Bk are the Bell polynomials and the Bell

number, respectively.

We first showcase a simple yet useful upper bound. From (60), we get,∣∣∣∣∣∣
k∏

j=1

∂
|bj |
bj

q(x)

∣∣∣∣∣∣ ≤
k∏

j=1

∣∣∣∂|bj |
bj

q(x)
∣∣∣
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≤ (dmax{w, 1})
∑

j |bj |

min{u, 1}k/2
max{max

y
ϕ(y), 1}k

k∏
j=1

∣∣∣poly|bj |(ȳbj
)
∣∣∣

≤ (dmax{w, 1})
∑

j |bj |

min{u, 1}k/2
max{max

y
ϕ(y), 1}k max

j

∣∣∣poly|bj |(ȳbj
)
∣∣∣k

≤ Ck
b1,...,bj

dk max {w, 1}k

min{u, 1}k/2

where, as noted above, ȳbj
does not depend on x. Here Cb1,...,bj

is some constant which depends
only on the partition {b1, . . . , bj} and is independent of x. On the other hand, we can also obtain
a simple lower bound on q(x). Observe that q(x) is continuous and always positive. Recall that
b = supz∈Z ∥µz∥. Thus,

q(x) =

∫
Z
g(x|z)dΠ(z)

≥ 1

(2π)d/2 supz∈Z det(Σz)
1
2

∫
Z
exp

(
−1

2
sup
z∈Z

(x− µz)
⊺Σ−1

z (x− µz)

)
dΠ(z)

≥ 1

(2π)d/2 supz∈Z det(Σz)
1
2

∫
Z
exp

(
−1

2
sup
z∈Z

∥∥Σ−1
z

∥∥ (∥x∥2 + ∥µz∥2)
)
dΠ(z)

≥ 1

(2π)d/2 supz∈Z det(Σz)
1
2

∫
Z
exp

(
−1

2
sup
z∈Z

∥∥Σ−1
z

∥∥ (∥x∥2 + b2)

)
dΠ(z)

≥ 1

(2π)d/2U
exp

(
−V

2
(∥x∥2 + b2)

)
.

Therefore, if we set C := maxb1,...,bj
Cb1,...,bj

, we obtain∣∣∂k
a log q(x)

∣∣ ≤ CkBk
d2k max {w, 1}k

min{u, 1}k/2
Ukek

V
2 (∥x∥2+b2). (62)

The upper bound above, though it depends only on parameters u, U, V, w, has an exponential depen-
dency on x, which is not desirable. We next derive a more refined bound in x. For brevity of analysis,
we re-express r (defined in (61)) to avoid empty partitions:

rb1,...,bk
(x) = q(x)−p

p∏
j=1

∂
|bj |
bj

q(x), s.t. |bp+1| = · · · = |bk| = 0.

Now, by the boundedness of ∥µz∥ and
∥∥∥Σ−1/2

z

∥∥∥ on Z , for each x, there exist (bounded) Σ̄bj
and µ̄bj

such that, ∀z ∈ Z ,∑
b∈[d]|bj|

∣∣∣poly|bj |

(
Σ

− 1
2

z (x− µz)
)∣∣∣ ≤ ∑

b∈[d]|bj|

∣∣∣poly|bj |

(
Σ̄

− 1
2

bj
(x− µ̄bj

)
)∣∣∣ < ∞.

Then, following from (59), we obtain

|rb1,...,bk
(x)| = q(x)−p

∣∣∣∣∣∣
p∏

j=1

∂
|bj |
bj

q(x)

∣∣∣∣∣∣ ≤ q(x)−p

p∏
j=1

∣∣∣∂|bj |
bj

q(x)
∣∣∣

≤ (dmax{w, 1})
∑p

j=1|bj |

up/2
×

p∏
j=1

∫
det(Σz)

− 1
2

∑
cj∈[d]|bj|

∣∣∣poly|bj |

(
Σ

− 1
2

z (x− µz)
)∣∣∣ϕ(Σ− 1

2
z (x− µz)

)
dΠ(z)∫

det(Σz)−
1
2ϕ
(
Σ

− 1
2

z (x− µz)
)
dΠ(z)

≤ (dmax{w, 1})k

min{1, u}k/2
×
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p∏
j=1

∑
cj∈[d]|bj|

∣∣∣poly|bj |

(
Σ̄

− 1
2

bj
(x− µ̄bj

)
)∣∣∣ (∫ det(Σz)

− 1
2ϕ
(
Σ

− 1
2

z (x− µz)
)
dΠ(z)

)
∫
det(Σz)−

1
2ϕ
(
Σ

− 1
2

z (x− µz)
)
dΠ(z)

=
(dmax{w, 1})k

min{1, u}k/2

p∏
j=1

∑
cj∈[d]|bj|

∣∣∣poly|bj |

(
Σ̄

− 1
2

bj
(x− µ̄bj

)
)∣∣∣

Note that for each j, the number of terms in the summation above is upper-bounded by d|bj |. Thus,
expanding the product of summations would result in no more than

∏p
j=1 d

|bj | = dk terms. Also,

since
∣∣polyk1

(y)
∣∣ · ∣∣polyk2

(y)
∣∣ = ∣∣polyk1+k2

(y)
∣∣, and since any Σ̄

− 1
2

bj
(x − µ̄bj

) is linear in x and
independent in z, each product term is a k-th order polynomial in x. Therefore, we obtain

|rb1,...,bk
(x)| ≤ d2k max{w, 1}k

min{1, u}k/2
max

cj∈[d]|bj|,∀j=1,...,p

|polyk (x)|

and thus ∣∣∂k
a log q(x)

∣∣ ≤ Bk
d2k max{w, 1}k

min{1, u}k/2
max

b1,...,bk

max
cj∈[d]|bj|,∀j=1,...,p

|polyk (x)| . (63)

We have thus identified an upper bound on
∣∣∂k

a log q(x)
∣∣ which is polynomial in x. The proof is now

complete by combining (62) and (63).

H.2 PROOF OF LEMMA 14
We first identify u, U, V, w for Σt,n such that they are independent of T and k for all t ≥ 1. Fix t ≥ 1.
We use the fact that Σt,n = ᾱtΣ0,n+(1− ᾱt)Id. If we let λn,1 ≥ · · · ≥ λn,d > 0 as the eigenvalues
of Σ0,n (which do not depend on T ), the eigenvalues of Σt,n are {ᾱtλn,i + (1− ᾱt)}di=1. Therefore,
for any n = 1, . . . , N and t ≥ 1,

(u :=)

d∏
i=1

min{min
n

λn,i, 1} ≤ det(Σt,n) ≤
d∏

i=1

max{max
n

λn,i, 1}(=: U).

Also, following from (45), we have V := 1
min{1,minn λn,d} . Next, write the eigen-decomposition as

Σ0,n = Qndiag(λn,1, . . . , λn,d)Q
⊺
n, where Qn here is an orthonormal matrix (that does not depend

on T ). Then, for any t ≥ 1,

Σ
− 1

2
t,n = Qn(ᾱtdiag(λn,1, . . . , λn,d) + (1− ᾱt)Id)

− 1
2Q⊺

n

= Qndiag((ᾱtλn,1 + (1− ᾱt))
− 1

2 , . . . , (ᾱtλn,d + (1− ᾱt))
− 1

2 )Q⊺
n

and thus, for all t ≥ 1,

[Σ
− 1

2
t,n ]ij =

d∑
k=1

(ᾱtλn,k + (1− ᾱt))
− 1

2Qik
n Qkj

n

≤ (min{1,min
n

λn,d})−
1
2 max
n∈[N ],i,j∈[d]

∣∣∣∣∣
d∑

k=1

Qik
n Qkj

n

∣∣∣∣∣ =: w.

Since the identified u, U, V, w are all independent of T and k, by Lemma 13 we have obtained an
upper bound on

∣∣∂k
a log q(x)

∣∣ for any fixed x which is independent of T . Thus,

(1− αt)
k/2EXt∼Qt

∣∣∂k
a log qt(Xt)

∣∣ , (1− αt)
k/2EXt∼Qt

∣∣∂k
a log qt−1(µt(Xt))

∣∣
= Õ

(
(1− αt)

k/2
)
= Õ

(
1

T k/2

)
.

Hence, we have shown Assumption 5.
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H.3 PROOF OF LEMMA 15

Fix t ≥ 1. We will draw some notations introduced in Lemma 13. Specifically, we recall from (61)
that

∂p
a log qt(xt) = qt(xt)

−p
∑

b1,...,bp

p∏
j=1

∂
|bj |
bj

qt(xt)

= qt(xt)
−p

∑
b1,...,bp

p∏
j=1

∫
x0

qt|0(xt|x0)poly|bj |

(
xt −

√
ᾱtx0

1− ᾱt

)
dQ0(x0)

=
∑

b1,...,bp

1

(1− ᾱt)
p
2

p∏
j=1

∫
x0

poly|bj |

(
xt −

√
ᾱtx0√

1− ᾱt

)
dQ0|t(x0|xt) (64)

in which we have defined polyk(y) as a k-th order polynomial function in y1, . . . , yd. Recall that
here {b1, . . . , bp} is some (possibly empty) partition of a, i.e.,

∑
j bj = a and

∑
j |bj | = p.

Thus,

EXt∼Qt
|∂p

a log qt(Xt)|ℓ

≤ 1

(1− ᾱt)
pℓ
2

pℓ
∑

b1,...,bp

EXt∼Qt

 p∏
j=1

∣∣∣∣∫
x0

poly|bj |

(
Xt −

√
ᾱtx0√

1− ᾱt

)
dQ0|t(x0|Xt)

∣∣∣∣ℓ


(i)

≤ 1

(1− ᾱt)
pℓ
2

pℓ
∑

b1,...,bp

p∏
j=1

(
EXt∼Qt

∣∣∣∣∫
x0

poly|bj |

(
Xt −

√
ᾱtx0√

1− ᾱt

)
dQ0|t(x0|Xt)

∣∣∣∣
pℓ

|bj|
) |bj|

p

(ii)

≤ 1

(1− ᾱt)
pℓ
2

pℓ
∑

b1,...,bp

p∏
j=1

(
EX0,Xt∼Q0,t

∣∣∣∣poly|bj |

(
Xt −

√
ᾱtX0√

1− ᾱt

)∣∣∣∣
pℓ

|bj|
) |bj|

p

=
1

(1− ᾱt)
pℓ
2

pℓ
∑

b1,...,bp

p∏
j=1

(
E
∣∣∣poly|bj | (Z)

∣∣∣ pℓ

|bj|
) |bj|

p

≲
d

pℓ
2

(1− ᾱt)
pℓ
2

where Z ∼ N (0, Id) is a standard Gaussian random variable (that does not depend on T here) and
any r-th order of polynomial of Z1, . . . , Zd has finite expectation (that does not depend on T and
with at most dr/2 dimensional dependency). Here (i) holds by Hölder’s inequality, and (ii) holds by
Jensen’s inequality since pℓ/ |bj | ≥ 1 for all bj and ℓ ≥ 1. The proof is now complete.

H.4 PROOF OF LEMMA 16

Fix t ≥ 2. We first introduce the following notations. Write µt = µt(xt). Let Qµt be the distribution
of µt(Xt) where Xt ∼ Qt, and let qµt be the corresponding p.d.f. (w.r.t. the Lebesgue measure). Let
Qµt,x0 be the joint distribution of µt and x0.

Now, we can re-write the integral as∫
x0,xt

∥µt(xt)−
√
ᾱt−1x0∥

p
dQ0|t−1(x0|µt(xt))dQt(xt)

=

∫
x0,µt

∥µt −
√
ᾱt−1x0∥

p
dQ0|t−1(x0|µt)dQµt

(µt)

=

∫
x0,µt

∥µt −
√
ᾱt−1x0∥

p qµt
(µt)

qt−1(µt)
dQ0|t−1(x0|µt)dQt−1(µt)
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≤

√∫
x0,µt

∥µt −
√
ᾱt−1x0∥

2p
dQ0|t−1(x0|µt)dQt−1(µt)

×

√∫
x0,µt

(
qµt

(µt)

qt−1(µt)

)2

dQ0|t−1(x0|µt)dQt−1(µt) (65)

where the last line follows from Cauchy-Schwartz inequality.

Now, for the first term of (65) we recovered the matched moment, and we have√∫
x0,µt

∥µt −
√
ᾱt−1x0∥

2p
dQ0|t−1(x0|µt)dQt−1(µt)

=

√∫
x0,xt−1

∥xt−1 −
√
ᾱt−1x0∥

2p
dQ0,t−1(x0, xt−1)

= (1− ᾱt−1)
p
2

√∫
x0,xt−1

∥∥∥∥xt−1 −
√
ᾱt−1x0√

1− ᾱt−1

∥∥∥∥2p dQ0,t−1(x0, xt−1)

= (1− ᾱt−1)
p
2

√
E ∥Z∥2p ≲ d

p
2 (1− ᾱt−1)

p
2

where Z ∼ N (0, Id) is a Gaussian random variable.

Now we upper bound the second term in (65), whose square is equal to∫
x0,µt

(
qµt

(µt)

qt−1(µt)

)2

dQ0|t−1(x0|µt)dQt−1(µt)

=

∫
xt−1

(
qµt(xt−1)

qt−1(xt−1)

)2

qt−1(xt−1)dxt−1

= 1 + χ2(Qµt
||Qt−1)

(i)

≤ 1 + χ2(Qµt,x0
||Qt−1,0)

=

∫
x0

(∫
µt

(
qµt|x0

(µt|x0)

qt−1|0(µt|x0)

)2

qt−1|0(µt|x0)dµt

)
dQ0(x0)

=

∫
x0

(∫
xt

(qt|0(xt|x0))
2

qt−1|0(µt(xt)|x0)
det

(
dµt(xt)

dxt

)−1

dxt

)
dQ0(x0)

(ii)

≤

√∫
x0,xt

(
qt|0(xt|x0)

qt−1|0(µt(xt)|x0)

)2

dQt,0(xt, x0)×√∫
x0,xt

det

(
dµt(xt)

dxt

)−2

dQt,0(xt, x0)

where χ2(P ||Q) is the chi-squared divergence between P and Q. Here (i) follows from the data
processing inequality for f-divergence, and (ii) again follows from Cauchy-Schwartz inequality. We
can calculate the determinant term above as

det

(
dµt

dxt

)−2

= det

(
1

√
αt

Id +
1− αt√

αt
∇2 log qt(xt)

)−2

=

(
1

α
d
2
t

(
1 + (1− αt)Tr(∇2 log qt(xt)) + ϵT (xt)

))−2

≤ α
d
2
t

(
1− 2(1− αt)Tr(∇2 log qt(xt)) + ϵT (xt)

)
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where we denote the residual terms as ϵT (xt) :=
∑∞

p=2(1−αt)
p
∑

I:|I|=p cI
∏

(i,j)∈I ∂
2
ij log qt(xt),

where cI is some coefficient that does not depend on T . Since from Lemma 15,

EXt∼Qt

∣∣∂2
ij log qt(Xt)

∣∣ℓ = Õ

(
1

(1− ᾱt)ℓ

)
, ∀i, j ∈ [d], ∀ℓ ≥ 1,

and note that 1−αt

1−ᾱt
= Õ

(
log T
T

)
with the αt in (10), we have that

EXt∼Qt
|ϵT (Xt)| ≤

∞∑
p=2

(1− αt)
p
∑

I:|I|=p

cIEXt∼Qt

∏
(i,j)∈I

∣∣∂2
ij log qt(Xt)

∣∣
≤

∞∑
p=2

(1− αt)
p
∑

I:|I|=p

cI
∏

(i,j)∈I

(
EXt∼Qt

∣∣∂2
ij log qt(Xt)

∣∣p) 1
p

=

∞∑
p=2

Õ

(
(1− αt)

p

(1− ᾱt)p

)

= Õ

(
(log T )2

T 2

)
,

and thus

EXt∼Qt
det

(
dµt

dxt

)−2

= α
d
2
t + Õ

(
log T

T

)
≤ 1 + Õ

(
log T

T

)
.

Also, since

(
qt|0(xt|x0)

qt−1|0(µt|x0)

)2

=

1
(1−ᾱt)d

exp

(
−∥xt−

√
ᾱtx0∥2

1−ᾱt

)
1

(1−ᾱt−1)d
exp

(
−∥xt+(1−αt)∇ log qt(xt)−

√
ᾱtx0∥2

αt−ᾱt

)
=

(
1− ᾱt−1

1− ᾱt

)d

exp

(∥∥xt −
√
ᾱtx0

∥∥2( 1

αt − ᾱt
− 1

1− ᾱt

))
×

exp

(
2(1− αt)∇ log qt(xt)

⊺(xt −
√
ᾱtx0) + (1− αt)

2 ∥∇ log qt(xt)∥2

αt − ᾱt

)
(iii)

≤ exp

(∥∥∥∥xt −
√
ᾱtx0√

1− ᾱt

∥∥∥∥2 1− αt

αt − ᾱt

)
×

exp

(
2(1− αt)∇ log qt(xt)

⊺(xt −
√
ᾱtx0) + (1− αt)

2 ∥∇ log qt(xt)∥2

αt − ᾱt

)
(iv)
= exp

(∥∥∥∥xt −
√
ᾱtx0√

1− ᾱt

∥∥∥∥2 1− αt

αt − ᾱt

)
×(

1 + Õ

(
(1− αt)∇ log qt(xt)

⊺(xt −
√
ᾱtx0) + (1− αt)

2 ∥∇ log qt(xt)∥2

αt − ᾱt

))

where (iii) follows because 1−ᾱt−1

1−ᾱt
< 1, and (iv) follows because ez = 1 + Õ(z) when z → 0 and

because 1−αt

αt−ᾱt
, 1−αt

1−ᾱt
= Õ

(
log T
T

)
with the αt in (10). Thus,

EXt,X0∼Qt,0

(
qt|0(Xt|X0)

qt−1|0(µt(Xt)|X0)

)2

≤

√√√√EXt,X0∼Qt,0
exp

(
2

∥∥∥∥Xt −
√
ᾱtX0√

1− ᾱt

∥∥∥∥2 1− αt

αt − ᾱt

)
×
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√√√√1 + Õ

(
EXt,X0∼Qt,0

[
(1− αt) ∥∇ log qt(xt)∥ ∥xt −

√
ᾱtx0∥+ (1− αt)2 ∥∇ log qt(xt)∥2

αt − ᾱt

])

(v)
=

√√√√EXt,X0∼Qt,0
exp

(
2

∥∥∥∥Xt −
√
ᾱtX0√

1− ᾱt

∥∥∥∥2 1− αt

αt − ᾱt

)
×
(
1 + Õ

(
log T

T

))
where (v) follows from Lemma 15 and Cauchy-Schwartz inequality, and

EXt,X0∼Qt,0
exp

(
2

∥∥∥∥Xt −
√
ᾱtX0√

1− ᾱt

∥∥∥∥2 1− αt

αt − ᾱt

)

=
1

(2π)
d
2

∫
z

e2
1−αt
αt−ᾱt

∥z∥2− 1
2∥z∥

2

dz

=
1

(2π)
d
2

∫
z

e−
1
2∥z∥

2(1+Õ(log T/T ))dz

= 1 + Õ

(
log T

T

)
.

Therefore, we arrive at a bound for the second term in (65):√∫
x0,µt

(
qµt(µt)

qt−1(µt)

)2

dQ0|t−1(x0|µt)dQt−1(µt) ≤ 1 + Õ

(
log T

T

)
.

and the lemma follows immediately.

H.5 PROOF OF LEMMA 17
Fix t ≥ 2. From (64), we also have

EXt∼Qt |∂p
a log qt−1(µt(Xt))|ℓ

≤ 1

(1− ᾱt−1)
pℓ
2

pℓ
∑

b1,...,bp

EXt∼Qt

 p∏
j=1

∣∣∣∣∫
x0

poly|bj |

(
µt(Xt)−

√
ᾱt−1x0√

1− ᾱt−1

)
dQ0|t−1(x0|µt(Xt))

∣∣∣∣ℓ


≤ 1

(1− ᾱt−1)
pℓ
2

pℓ
∑

b1,...,bp

p∏
j=1

(
EXt∼Qt

∣∣∣∣∫
x0

poly|bj |

(
µt(Xt)−

√
ᾱt−1x0√

1− ᾱt−1

)
dQ0|t−1(x0|µt(Xt))

∣∣∣∣
pℓ

|bj|
) |bj|

p

≤ 1

(1− ᾱt−1)
pℓ
2

pℓ
∑

b1,...,bp

p∏
j=1

(
EXt∼Qt

∫
x0

∣∣∣∣poly|bj |

(
µt(Xt)−

√
ᾱt−1x0√

1− ᾱt−1

)∣∣∣∣
pℓ

|bj|
dQ0|t−1(x0|µt(Xt))

) |bj|
p

≤ 1

(1− ᾱt−1)
pℓ
2

pℓ
∑

b1,...,bp

max
j∈[p]

EXt∼Qt

∫
x0

∣∣∣∣polypℓ(µt(Xt)−
√
ᾱt−1x0√

1− ᾱt−1

)∣∣∣∣dQ0|t−1(x0|µt(Xt))

≲
1

(1− ᾱt−1)
pℓ
2

· EXt∼Qt

∫
x0

∥∥∥∥µt(Xt)−
√
ᾱt−1x0√

1− ᾱt−1

∥∥∥∥pℓ dQ0|t−1(x0|µt(Xt))

≲
d

pℓ
2

(1− ᾱt−1)
pℓ
2

where the last line follows from Lemma 16. Now, together with Lemma 15, Assumption 5 is
established noting that 1−αt

1−ᾱt−1
= Õ

(
log T
T

)
= Õ(1− αt) for all t ≥ 2.

H.6 PROOF OF LEMMA 18
Recall the expansion of ζ ′1,0 in (57). As in the proof of Lemma 11, with the choice of µ1 and Σ1, we
still have

EX0∼P ′
0|1

[T1] = EX0∼Q0|1 [T1],
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EX0∼P ′
0|1

[T ′
2] = EX0∼Q0|1 [T

′
2].

Define T ′
3 := 1

3!

∑d
i,j,k=1 ∂

3
ijk log q0(µ

∗
1)(x

i
0 − µi

1)(x
j
0 − µj

1)(x
k
0 − µk

1). Here µ∗
1 = µ∗

1(x1, x0) is a
function of both x1 and x0. A useful result from Lemma 15 is that, with the αt in (10), we have,
∀i, j, k ∈ [d] and ℓ ≥ 1,

(1− α1)
ℓEX1∼Q1

∣∣∂2
ij log q1(X1)

∣∣ℓ ≲ (1− α1)
ℓdℓ

(1− ᾱ1)ℓ
= dℓ, (66)

(1− α1)
3EX1∼Q1

∣∣∂3
ijk log q1(X1)

∣∣2 ≲
(1− α1)

3d3

(1− ᾱ1)3
= d3. (67)

First, using Lemma 8, we have that

EX0,X1∼Q0,1 [T
′
3]

=
(1− α1)

3

3!α
3/2
1

d∑
i,j,k=1

EX0,X1∼Q0,1
[∂3

ijk log q0(µ
∗
1(X1, X0))∂

3
ijk log q1(X1)]

≤ (1− α1)
3

3!α
3/2
1

√√√√EX0,X1∼Q0,1

d∑
i,j,k=1

(∂3
ijk log q0(µ

∗
1(X1, X0)))2

√√√√EX1∼Q1

d∑
i,j,k=1

(∂3
ijk log q1(X1))2

≤ (1− α1)
3

3!α
3/2
1

dM

√√√√EX1∼Q1

d∑
i,j,k=1

(∂3
ijk log q1(X1))2.

Here in the last line we have used a similar technique in (55), which assumes that ∇2 log q0 is 2-norm
M -Lipschitz. Now, from (67) we have

EX0,X1∼Q0,1 [T
′
3] ≲

(1− α1)
3/2

3!α
3/2
1

d4M.

Also,

EX0∼P ′
0|1

X1∼Q1

[T ′
3]

=
1

3!

d∑
i,j,k=1

EX0∼P ′
0|1

X1∼Q1

∂3
ijk log q0(µ

∗
1(X1, X0))

∏
c=i,j,k

(Xc
0 − µc

1(X1))


(i)

≤ 1

3!
dM

√
EX0∼P ′

0|1
X1∼Q1

∥X0 − µ1(X1)∥6

≤ 1

3!
d2M

√√√√ d∑
i=1

EX0∼P ′
0|1

X1∼Q1

(
Xi

0 − µ1(X1)i
)6

(ii)
=

1

3!
d2M

√√√√ d∑
i=1

15

(
1− α1

α1

)3

EX1∼Q1
(1 + (1− α1)∂2

ii log q1(X1))
3

(iii)

≲
(1− α1)

3/2

3!α
3/2
1

d4M

where (i) holds with a similar technique in (55) assuming ∇2 log q0 is M -Lipschitz, (ii) holds by
Lemma 7, and (iii) holds by (66). The proof is now complete.
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