Under review as a conference paper at ICLR 2025

Appendix

[A"Related Works|

B Full List of Notations

[C_Proofs of Lemmas/liand 2]

[C1 Proofof Lemmalll. . . ... ... .
(C2 TemmallanditsProofl . . . . ... ... ... ... ... .. ... .. ... ...
[D_Proof of Theorem]

[D.1 Step 0: Bounding term | — Imtialization Errorf . . . . . . . . . .. .. ... ...
[D.2 " Step 1: Bounding term 2 — Score and Hessian Estimation Error] . . . . . . . . ... ..
[D.3 " Step 2: Expressing Log-likelithood Ratio via Tilting Factor] . . . . .. ... ... ...
[D.4  Step 3: Conditional Expectation of ¢;,_; under P,_; 0 ... ..............
[D.5 Step 4: Conditional Expectation of (; , j under Qy_qj¢| - - . . . . . . ... ...
|D.6  Step 5: Bounding term 3 — Reverse-step Error| . . . . . . ... o000

[E Proof of Corollary[l|

[ Auxiliary Proofs for Theorem[1[and Corollary[]

12 Proof of LemmalOl. . . . . . . . . . . .

12 Proof of LemmallOl . . . . . . . . . . . e

[F.11 Proof of Corollary|(3|. . . . . . . . . ... .

16

17

17
17
18

19
20
21
21
23

24
26

27

27
27
28
30
30
31
31
32
34
35
40
42
43



Under review as a conference paper at ICLR 2025

[H Auxiliary Proofs of Theorems[2[to 4] 55
H.1 ProofoflLemmalldl . . . ... ... .. .. ... . 55
H2 ProofoflLemmalldl . . . ... ... ... .. ... . .. . .. .. 58
[H3 ProofofLemmalldl . . . . . .. ... .. . 58
H4 Proofof Lemmall@ . . . . . . . .. .. ... . 59
[HS Proofof Lemmall7l . . . . . . . . . .. . . 62
H6 Proofoflemmall8l . . . ... ... .. .. .. 62

A RELATED WORKS

Theory on Regular DDPM Samplers: Many works have explored the performance guarantees
of regular DDPM models. Specifically, a number of studies perform analyses under the L°° score
estimation error (De Bortoli et al,2021; |De Bortoli, 2022). Later, under L? score estimation error,
Lee et al.[(2022)) developed polynomia]E] bounds for distributions that have Lipschitz scores and
satisfy log-Sobolev inequality. Soon after, (Chen et al. (2023d); [Lee et al.|(2023) concurrently
developed polynomial bounds for those smooth distributions having Lipschitz scores and those
non-smooth distributions having bounded support using early stopping. Later, (Chen et al.|(2023a)
improved the number of steps for those target distributions with finite second moment. Recently,
the convergence result was further improved to linear dimensional dependency using stochastic
localization (Benton et al.,[2024a). In |Conforti et al.|(2023)), by transforming the original process to
the relative-score process, it is shown that linear dimensional dependency can also be achieved for
those target distributions having finite relative Fisher information against a Gaussian distribution. In
all the works above, the analysis technique is to discretize some continuous-time diffusion process
to use SDE-type analyses. In|Li et al.| (2024c)), by carefully design a typical set, polynomial-time
guarantees are obtained directly for the discrete-time samplers under the L? estimation error for target
distributions having bounded support. Other than the works above, [Pedrotti et al.[(2023)) analyzed a
different sampling scheme (e.g., predictor-corrector), and [Bruno et al.| (2023)); |Gao et al.|(2023));/Gao
& Zhu|(2024)) analyzed sampling errors using a different error measure (the Wasserstein-2 distance).

Theory on Score Estimation: In order to achieve an end-to-end analysis, several works developed
sample complexity bounds to achieve the L? score estimation error for a variety of distributions.
To name a few, this includes results for those having bounded support (Oko et al.| [2023), Gaussian
mixture (Shah et al., [2023} |Gatmiry et al.||[2024; [Chen et al., [2024), certain families of sub-Gaussian
distributions (Cole & Lu, 2024; Zhang et al.| [2024)), high-dimensional graphical models (Mei &
'Wul 2023)), and those supported on a low-dimensional linear subspace (Chen et al.,|2023b). More
recently, |Li et al.[(2024¢) considered the generalizability of the continuous-time diffusion models,
and [Wibisono et al.|(2024) proposed a regularized score estimator that attains the minimax rate of
estimating the scores.

Other Theoretical Works: Other than the works listed above and in Section Gao & Zhu| (2024)
studied the ODE convergence for strongly-concave target distributions under Wasserstein-2 error.
Cao et al.|(2023)) compared the performance of SDE and PF-ODE and investigated conditions where
one might outperform the other. Besides PF-ODE, (Cheng et al.| (2023)); Benton et al.| (2024b); Jiao
et al.| (2024); |Gao et al.| (2024) provided guarantees for the closely-related flow-matching model,
which learns a deterministic coupling between any two distributions. |(Chang et al.|(2024) proposed a
novel ODE for sampling from a conditional distribution. |Lyu et al.[(2024); Li et al.| (2024b)) provided
convergence guarantees for the more recent consistency models (Song et al., [2023)).

Relationship to GENIE (Dockhorn et al., 2022): To obtain higher-order scores, another method
is to use automatic differentiation, as in GENIE (Dockhorn et al.| [2022). There, higher-order
score functions are used to accelerate the diffusion sampling process empirically. In particular,
Dockhorn et al.|(2022) shows that GENIE achieves better empirical performance than deterministic
samplers such as DDIM (Song et al., [2021). Our paper theoretically justifies the accelerated empirical
performance of Dockhorn et al.|(2022)) in the regime when the Hessian of log ¢; is well-estimated.

By “polynomial” we mean that the number of steps has polynomial dependency on the score estimation
error, along with other parameters.
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B FULL LIST OF NOTATIONS

For any two functions f(d,d,T) and g(d, 8, T), we write f(d,0,T) < ( ,0,T) (resp. f(d,0,T) 2,
9(d, 8, T)) for some universal constant (not depending on §, d or T) < oo (resp. L > 0)if
limsupp_, . |f(d,6,T)/ g(d,0,T)| < L (resp. liminfr_, |f(d,d,T)/g(d, 6, T)| > L). We write
f(d,8,T) = g(d,8,T) when both f(d,8,T) < g(d,8,T) and f(d,8,T) > g(d,5,T) hold. Note
that the dependency on ¢ and d is retained with <, > <. We write f(d,d,T) = O(g(T)) (resp.
£(d,6,T) = Q(g(T) if £(d,6,T) < L(d, )g(T) (resp. /(d,3,T) 2 L(d, 8)g(T)) holds for some
L(d, ) (possibly depending on ¢ and d). We write f(d,d,T) = o(g ( ) if limsupy_, o | f(d, 0, T)
/g(T)| = 0. We write f(d,8,T) = O(g(T)) if f(d,8,T) = O(g(T)(log g(T))*) for some constant
k. Note that the big-O notation omits the dependency on § and d. In the asymptotic when e ! — o0,
we write f(d,e™') = O(g(d,e™1)) if f(d,6,e7) < g(d, 8,6 *)(log g(1))* for some constant k.
Unless otherwise specified, we write 2°(1 < ¢ < d) as the i-th element of a vector z € R and [A]"

as the (1, 7)-th element of a matrix A. For a function f(x) : RY — R, we write ; f(2) as a shorthand

for ay f (a:)‘ , and similarly for higher moments. For matrices A, B, Tr(A) is the trace of A, and

r=z
A < B means that B — A is positive semi-definite. For a positive integer n, [n] := {1,...,n}.
C PROOFS OF LEMMAS [IIAND
In this section, we provide lemmas and proofs related to Hessian estimation.

C.1 PROOF OF LEMMA[T]
The idea is similar to score matching. Define vy (z) := vg(z) — —Id For each i, j € [d],

g 0L (X, i=7
Ex,~q, (”;J(Xt) B ( th()((t)) * ]11{_ af}>>

32 Qt(Xt)
Qt(Xt)

:]EXtNQt ([vé(Xt)] J

D) 822] t Xt
=Ex,~q, ([t§(X)]7)” — 2Ex,~q, l[ﬂé(Xt)]wq:I()((t))

—Exno, (16(X0)))° = 2 [ bh(e)] 702 an(ar)day + const

where const denotes terms that are independent of €, and
[lwien)io ez,
/ ()] / 5 4t10(Tt|20)dQo (7o) d,

15 0%5ar10 (4] 0)
//qt|0 (wsa0) [vh ()] “22 L2 4 Qg (o ) dary

Qt\o(l‘t\l’o)

-+ const

9 //Qt\o(xt‘fﬂo)[vé(xt)w (aij log Qt|0($t|I0) + 0; log Qt|0(93t|1'0)3j log Qt\O(xt|x0)) dQo(zo)dw,

— [ [ awstaleo)ty(w” (“ =0} | o voury o ﬁ) dQo(xo)dz,

l—at 1—0(,5 1—Oét

= E (x0.W)~QooN (0.10) [[%(Xt)] ’ (— =+ ——WW/

Xi=var Xo+vVI—-a: W 1- Qe 1- at
2
where (i) follows because for any function f(z) we have 97 logf(z) = 6’]{{5 ) _

(0;log f(x))(0; log f(x)), and (i) follows because x; = /o xo + /1 — &y w;. Therefore,
2
” %qi(Xy)  1{i=j}
ij _ | Y _
Bxe~a. <v€ (%2) < (X 1—a,

17




Under review as a conference paper at ICLR 2025

/ ij 1 {Z = ]} 1 g 2
= E (x0,W)~Qoen(0,14) [vp (X)) — | — 1-a + T—a i + const
Xi=vVai Xo+vVI—a; Ws 827 Qg
2
i 1 —
= E (X0, W) ~QoaN (0,14) (M(Xt)} =W W,ﬁ) + const
Xi=v/a Xo+vI=arW; &

and the result follows immediately after we sum up over 7, j € [d].

C.2 LEMMARIAND ITS PROOF

The following lemma provides sufficient conditions such that the H, in (8) satisfies Assumption 3]
Lemma 2. Under Assumption D} with the «; defined in Definition[I} suppose that vy and s, satisfy,
asT — oo,

2 2 ~
F S Bxena (X0 - (G + e L) |, =0T, (an
max; <;<r (1 — at)_Q\/Ewat Is¢(Xe) = Viog g (Xy)||* = O(1). (12)

16
Also suppose that the Hy defined in () satisfies sup;s, (IEXtNQt ||Ht(Xt)||[’ = O(1). Then, the

H; and the s, from score matching (Song & Ermon, |2019) satisfy Assumption

Proof of Lemma[2] The condition on the score estimation error in Assumption [3] is immediately
satisfied using Jensen’s inequality. We next focus on the condition on the Hessian estimation. Recall
that

1

Hy(z) = v(x) — T I; — s¢(z)s] (x).

The goal is to show that H, is close to V2 log ¢, (i.e., the second relationship in Assumption . Given

that V? log ¢, () = % -

by s¢(x)s¢(x)T, which is

(Vlogq:(z))(Vogg:(x))T, the key is to control the error incurred

d

Exnar Y (51(X0)5](X0) ~ [VIoga (X0 [V log (X))
i,j=1
d . L S S\ 2
=Ex~q. Y, ((510X) ~ [Vlogai(X)))s{(X0) + [VIogan(X)]' (s} (Xe) ~ [V log s (X,)}))

. d
< 2Ex,~q, _Z (s4(X:) — [V1og gt (Xe)]")(51(X0))? + ([V1og qe(X)]")2(s](Xe) — [Vog e (Xy)))?

= 2B, [l15:(X0) — VIogar(Xo) I (17 log ae(X0) | + 1o (X0)]1)

where (i) follows because (a + b)? = a? + b> + 2ab < 2a® + 2b%. To continue, we use the
Cauchy-Schwartz inequality and obtain

Ex,~q, [15:(Xe)s] (X¢) — (V1og q:(X1))(V1og q: (X)) 7|1

< 2\/EXt~Qt [[s¢(X:) — Viog qt(Xt)||4\/2EXtNQt {HVIog a(XOI* + s (XN

Here the second term has that
E[[lse(Xe)[|'] < 8E[||s¢(X:) — Vlog qr(X:)]| '] + SE[[|V log ¢ (X:)|*]
S E[||V log gi(X4)]|"].

Therefore,

1 T
13 Exea, (X0 — T loga ()2
t=1

18



Under review as a conference paper at ICLR 2025

2

(Xe) — <v;tq(t)(()f)t) + 1_1%[(1)

T
Z Xe~Qr

- %ZEM@ e (X)5T(X0) — (¥ log (X)) (V log (X))

t=1
Vth(Xt) 1 )
Xy) — + —1
t) < qt(Xt) 1—ay ¢

F

T

1
5 T ZEXtNQt
t=1
1 T
+= Ex,~q, |ls1(Xt) — Viog q:(X,)||*\/Ex,~q, IV log ¢:(X,)|*
T
t=1

vo(Xy) — (vqtg?}(()t()t) + 1 1o7tld>

2

F

2

(i) 1 v
= TZ]EXtNQt
t=1

F

T
~ 1
+0 [ | 7 220 — a)Exin, [V loga (X))

Vth(Xt) 1
wol(Xe) - ( 0 latfd)

2

+0(T™h)

(i) 1 ¢
= TZEXtNQt
t=1 F

where (i) follows from (T2) using the fact that Zthl Var </ % Zthl a; by Jensen’s inequality,
and (ii7) follows under Assumption[5] Combining this with (TT), we finally get

T 2
1 V2q(Xy) 1 ) N
— Ex,~0, X)) — + — 1 =0(T
T tz:; Xe~Qt t) ( P (Xt) 1— Qs d h ( )
and thus the second relationship in Assumption [3]is satisfied. The proof is now complete. O

D PROOF OF THEOREM [I]

Instead of Assumption 5} we will prove Theorem [TJunder the following more general condition.
Assumption 5 (Regular Partial Derivatives+). For all ¢ > 1, ¢ > 1, and a € [d]? such that
la|=p=1,

(1= @) *Ex, g, |08 og a,(X0)| = O (1= ar)7?) |
Qi X~ 0g qt—1 (Mt At ) — O .
(1= @) *Ex, g, |05 0g g1 (e(X0)) | = O ((1 = ar)?*?)
When g does not exist, this is required only for ¢ > 2.

Obviously, Assumption [5]implies Assumption [5]for any c.

To begin the proof of Theorem I} note that

~ q(Xo,..., X
KL(QHP) Ex,,...Xr~Q [IOgM

O g 1 g0(Xo) 11—, Qeje—1(Xe| Xi—1)
= FXo XnQ 1108 7 (Xo-. .. X1)
(i1) q0(Xo) Hthl Qt|t71(Xt|Xt—1)
= Exo,.. . Xr~@ 10gA, —
po(XO)Htﬂpt‘t (Xl Xi1)
Xo)} Qee—1(Xe| Xi1)
=E ~ lo + E t— t~vQi—1,t log 55—
Xo Q0|: g,, XO) tz:; X1, Xe~Qi—1, [ ]/9\;|t,1(Xt|Xt71)
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T
QO(XO)} Qajt—1 (X Xi—1)
= ]E ~ 10 + E t—1~Qe—1 ]E t~ e — 10 = (YY. L)
Xo~Qo |: g%(XO) ;:1: X Q¢ Xi~Q [t—1 gf)\;sltil(ththl)

T
= KL(QolIP§) + DB,y [KL(Qua (X 0) 1By (e 1))
t=1

Here (4) holds because of the Markov property of the forward process. We explain (i¢) below. By
the backward Markov property of the reverse process, for any ¢ > 1, given X;_1 = x;_1, each of
Xi_9,..., X is independent with X;. This implies that

1/7\;|t—1,4..,0(1’t‘$t—1a @) = ﬁf\t—l(xtmt—l)v vt > 1.
Thus, D' (2o, . .., z7) = py(zo) Hleﬁlt_l(xﬂxt_l). In other words, Xy, ..., X is also forward
Markov under P’

Following from similar arguments,

T
KL(QIIP') = KL(Qr||PF) + Y Ex,nan [KL(Qu1u(1X0)IPL_yy (1X0))]

t=1
Since KL-divergence is non-negative, an upper bound on KL(Qo||P}) is given by

KL(Qol|P5)

T
= KL(QTHJB/T) + ZEXth {KL(Qt—1|t('|Xt)||13t/—1\t('|Xt))}
t=1
T
=Y Ex i K@ (X 1P (X))
t=1

T
< KLQrIIPH) + > Exovg, [KL(Qu1e(1X0) 1P, (1X0))]

t=1
T /
QT(XT)] Py (Xe-1]Xi)
— Exyoo, |log S Exyx oo, |log e
o QT[ Pr(Xr) ; A Qe Py (Xe—1] Xe)

Term 1: initialization error Term 2: estimation error

ll Qtlt(Xt—1|Xt)‘| .

T
+ E tyNt—1~VEe t— 0 (13)
tz:; XosXim1~Qae- gp, (Xo—1|Xy)

t—1t

Term 3: reverse-step error
The last equality holds because Pl = pr..
Next, we bound the above three terms separately in a few steps.
D.1 STEP O: BOUNDING TERM 1 — INITIALIZATION ERROR

Lemma 3. Suppose ar \, 0 as T'— co. Then, under Assumption|[l)

qr(Xr7)
pr(Xr)
Remark 1. Under Assumption [T} if the noise schedule satisfies Definition [T} we have

ar(Xr)| _ ope2
IEAX‘T’\’QT |:10g p/T(XT):| - (T )

Proof. See Appendix [F.1] O

1
Exr~Qr [log } < iMszd +0(a7), asT — oo.

We now introduce the following notation for analyzing the estimation error and the reverse-step error
for the accelerated sampler.
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Definition 2 (Big-O in L" space). For a random variable Zr, we say that Zr(z) = O,r(g)(1) if
(Ex~q |Zr(X)|)" =0(1) forall r > 1 as T — oc.

One property is that if Z7(x) = Ozr(g)(1) then Exq |Z7(X)| = O(1). Another property is that
if Zy = Orrqy(ar) and Zy = Orr(q)(br) for all 7 > 1, applying Cauchy-Schwartz inequality we
get, forall r > 1,

(E[2, 22" < (Bz2Ez2) " = O(arbr),

which implies that Oz (o) (a1)Or ) (br) = Orr (@) (arbr). Now, with this notation, the regularity
condition on H; can be written as

(1= ) [Hi(X0)|| = Opr(qny(1 —ar), Vr > 1.
Also, Assumption |5|can be equivalently written as, Vr > 1,
(1= )2 |08 log ai(X)| = Oy (1= an)"’?)

(1= an)"’2 |05 log -1 (e (X0)| = Oy (1= a)??) .

D.2 STEP 1: BOUNDING TERM 2 — SCORE AND HESSIAN ESTIMATION ERROR

We first bound the estimation error, which includes the errors that come from the score and the
Hessian estimation. In particular, Assumption [5] guarantees that all higher Taylor terms are well
controlled in expectation over X; ~ Q.

Lemma 4. Under Assumptions[3|and[] with the o satisfying Definition[I} we have

T / 2
Pt,l‘t(thﬂXt) 9 log”T ,

E Ex, x, 1~Q, .1 |08 ——=—==| S (logT)e” + €

t:1 X, Xe—1~Qp -1 [ gﬁ (Xt71|Xt) ( g ) T H

t—1|t
~ (1
-0 (T2> '

Proof. See Appendix [F.2] O

Remark 2. Under Assumption [3] Lemma 4] guarantees that

XT:E log p2—1|t(Xt*1|Xt)
pt Xt,Xt—lNQt,t—l 23/ (Xt71|Xt)

t—1t

Before we proceed to the reverse-step error, we provide the following lemma to provide an upper

bound when we use the ¥, and its estimate according to (9).
Corollary 2. Under the same conditions of Lemmald) the upper bound in Lemma|on the estimation
error still holds with the slightly perturbed 3, provided in (9).

Proof. See Appendix [F3] O

D.3 STEP 2: EXPRESSING LOG-LIKELIHOOD RATIO VIA TILTING FACTOR

Next we focus on the reverse-step error for the accelerated process. Recall that ()¢ is smooth under
Assumption 2] We introduce the following notations for analysis. Let

A(zy) = (1 — ) V?logqe(zy), Be(wy) = Ig— (Ia+ Ae(z) ", (14)
which imply that
l1—« _ o
Yi(ze) = SIg+ Ag(@e), St (we) = ——(La — By(zy)).
o 1— oy

Now, with the notation in Deﬁnition for each i, j € [d], A7 (x;) = O cr(Q) (1 —ay) forallr > 1
under Assumption[5] Also, when (1 — o) is small, we can perform Taylor expansion on By (+) around
A¢(+) and obtain, under Assumption

By(X3) = A(X1) + Orrqny (1 —ar)?). (15)
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Remark 3. In general, suppose that we choose P/ S whose conditional covariance satisfies

11—«

Qi

(X)) = =2 (T + A(X0) + O (g (1= a)?) ) = SulX0) + Orriay) (1 - ar)?),

where a small perturbation is added to the covariance matrix. An immediate consequence is that

~ « ~ _ ~
57X = o (Id — Bi(Xy) + O (1 — at)Q)) =57 Y(Xy) + Oprigyy (1— ).
- &t
Then, with such P} 1)t having a slightly perturbed covariance, the following Lemmasandstill

hold with A, (z;) and B, (z;) such that

Ay(zy) = Se(xe) — Iy, By(my) i=Ig — (Ig 4 Ag(2y)) 7L

Note that A;(X;) = A¢(X:) + Orr (o) (1 — )?) and By(X;) = By(X) + Orr(,) (1 — ar)?).

In the following we write p; = (), Ay = Ai(x¢), and By = By(x) for brevity.
Lemma 5. For any fixed x; € R%, as long as g, is defined, we have

Py gy (e wg)eSim (om)

[eSte-1 (@6 Xe-1)]”

Qt—1|t($t—1|$t)

]EX’ 1~P 1)t

where

Ct,tfl(xtaxtfl) = log Qtfl(xtfl) — log Qt—l(lit) - (xtfl - Mt)T(\/CTtV log qt(xt))v (16)

and
a1 (T, me1) o= Cep—1 (e, 1) — ﬁ(%_l — 11¢) T Be(wp—1 — pe)
=1og qr_1(z—1) —log qe—1(11r) — (w1 — pe)T (/s V log qu (2¢))
B ﬁ(%fl — )" By(e—1 — pur). (17)
Proof. See Appendix [F4] .

In the following we write (; ;1 = (¢ ¢—1(w¢, 2¢—1) and (7,1 = (/1 (2, 7¢—1) and omit depen-
dencies on x; and z;;_; for brevity. As we will see, (I6)) is the tlltlng factor for the regular diffusion
process. Given the definition of ¢/ ; ; in (I7)), below we analyze log ¢; 1 () around x = j; using
Taylor expansion. We first provide the following notations for the Taylor expansion.

Definition 3 (Taylor Expansion). Recall that 2 (1 < i < d) denotes the i-th element of a vector .
Given an analytic function f(z), its Taylor expansion around x = p is given by

f@) = F() + > T(f, 2, 1)

p=1
= f(u) + VF()7( Z (' = p') Z (@' — p') (2! — p)
;ésf
+ Z Tp(fa z, /j‘)
p=3
where, for p > 1, we define
d

HIEEE I SENE 710) | (CETou (18)

YENL:Y, yi=p i=1

where in a € [d]P the multiplicity of i (€ [d]) is .
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If we specialize it to the case where f = logq;—1, * = x¢_1, and . = p, we need the following
lemma to guarantee the validity of Taylor expansion for ¢ > 1.

Lemma 6. Fixt > 1. For any Qo (not necessarily having a p.d.f. w.r.t. the Lebesgue measure), given
any k > 1 and any vector of indices a € [d]*, q; exists and |0% log q; ()| < 0o, Va; € RY (which
possibly depends on T). Further, q; and log q; are both analytic.

Proof. See Appendix [F3] O

Thus, by Assumption 2] and Lemma [6] since log g;—1 is analytic, its Taylor expansion around
xp—1 = pg is equal to (cf. (I6))

Ci—1 = (Viogq—1(pe) — Vo Viog e (z:)) T (ze—1 — ) + ZTp(loth—hxt—la we), (19)
p=2
and the Taylor expansion of ; ; (w4, 2 1) around 2y = i is (cf. (1))

(i1 = (Viog gr—1(pe) — Var Viog gy ()T (w4—1 — pur)

1 «

+ (@1 — )T (V2 log qior () — ——By | (w11 — )
2 1—oy

+) Ty(log gimr, w1, ). (20)
p=3

In order to differentiate the second-order terms in (I9) and (20}, we reserve T for (I9) and employ

for (20):

1 «
Ty(log qr—1, @1, pie) = 5(«’1315—1 — )T <V2 log qi—1 () — ¢

Bt) (Te—1 = pe).

1—0(,5

Compared with the tilting factor for the regular process in (; ;—1, an additional term that is related to
Y; (and thus By) is introduced in Ct’7t_1. From the perspective of Taylor expansion, we can further
control the second-order term in the Taylor expansion of log ¢, around p; through this extra term,
which improves the accuracy of posterior approximation at each step.

To use Taylor expansion to upper-bound the reverse-step error in (I3)), we first note that, for any fixed
Lts

q]‘,—lt(thxt)‘|

Ex, ,~o,_ log
t—1~Qe 1|t [ p;—l\t(Xt_llxt)

- EXt—l"‘Qt—lH |:Ct/,t—1 - IOg EXf,—l’\‘Pt/_l‘t [ecttilﬂ
= EthlNQt,—lh, [Cé,tfl} - log EXt—lNP, [eCt’til}

t—1[t
(4)

< Ex iy [Gmr] + By, [logethon]
(¢ e—1] (21)

where in (¢) we use Jensen’s inequality and note that — log(-) is convex. In the remaining steps, we
analyze the expected values of the tilting factor separately.

’
= EXt—lNQt—IH [Ct,t—l} - EXt,lePt',l‘t

D.4  STEP 3: CONDITIONAL EXPECTATION OF (;, ; UNDER Ptht

With Taylor expansion around the posterior mean, the calculation of the expected values is reduced
to that of all the (centralized) moments. To start, it is useful to examine the rate of 1;—?“ A direct
implication of Deﬁnitionis that, with some constant C', since oz \, 0 as T — oo,

(1 — )P CVlog? T /TP
< S(1—ao)?, V >1,t > 1. 22
ag = (1 7 Cl IOgT/T)q ~ ( at) ) b,q = 1,t = ( )

Below, we first calculate the centralized moments under Pt’71|t. We employ Isserlis’s Theorem for

our help, which constitutes the main idea in the lemma below. Note that the results in this subsection
hold as long as (¢ has a p.d.f..

23



Under review as a conference paper at ICLR 2025

Lemma 7. Fixt > 1. For brevity write Z; = X]_; — ut, Vi € [d), A = Ay(z;), and E[] as a
shorthand for Bx, ,~p; []. Note that we have Ay (v;) = Orn(q,) (1 — ay) for all i,j € [d]
under Assumption | Thus, the following results hold: ¥'p > 1,

E|[[Z]| =0 Va:la| odd,
i€a
A la]
E HZi = Orr(Qy) ((1 — )2 ) , Va:|a| even.
i€a

Specifically, for i, j, k,1 € [d] all differ; the fourth moment is

2
]E[Zf]:B(l;at) (1+ A%
t
1—ay\? y

E[Z}Z;] =3 <a t) AV (14 AY)

t

1—a\” y . ~
E[Z?Zf]:( - ‘*) (14 A") (1 4+ A7) + Orv(g,) (1 — o))
t

— oy

Qg

2
1 o .
B[222,20) = (2™ ) (14 A4+ Ocnig (1~ a0
E[ZleZkZl] = Ollp(Qt)((l — at)4).
For i, j,k € [d] all differ, the sixth moment is

l—Ozt

i =15 (120Y 1y

1—Oét

3
E[Z!Z?] =3 ( ) (L+ A" (14 A7) + Opog,) (1 — ar)?)

].—th

E(Z] Z; Z}) = < ) (14 A%)(1+ A9)(1 4+ A*) + O oo (1 — ar)®),

Qi

and B |[];cq:a)=6 Zz} = ng(Qt)((l — ay)*) otherwise. All the rates are under AssumptionEl

Proof. See Appendix [F.6] O

D.5 STEP 4: CONDITIONAL EXPECTATION OF gt’,t_l UNDER Q;_1|¢

Although each @, is conditionally Gaussian, the posterior Q;_;; is not Gaussian in general. In
the following, we analyze the posterior centralized moments under ); _1; using the idea of Tweedie’s
formula Efron (2011). Then, we apply them to analyze Ex, ,~q,_,, [Ct,t—1]. again using the Taylor
expansion in (19). Again, the result is more generally applicable to non-smooth Qg at ¢ > 2 due to
Lemma 6]

Lemma 8. Fixt > 1 such that q._1 exists. Define Ty := 1@ ¢, and
1-— 1-— d
k(Z¢) == logq ( \/a»(jt 95t> + 20;% HgEt”2 + 5 log (27(1 — au)) - (23)

Let 1 <14,7,k,1 < d, which are possibly equal to each other. The first 3 centralized moments under
Qi—1)¢ satisfy
EXt—lNQt—uf, [thl] =VE =
1-— Qg (1 — Oét)

Ex, im@eayy [(Xim1 — o) (Xemy — )T = VPk = I+
(673 it

2
v? log Qt(fct)

EXt—th,NQf,—l,f, (Xti—l - /u’z)(thfl - :u’g)(th—l - uf)
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— )3 ~
a ) Ex,~q, [81'3jk log ¢:(X:)] = O((1 — Oét)s)-

=Ex,~q, [3?jk’f] =7 32
QY

The fourth centralized moment satisfies
Exo1 Xem@uoss |(Xio = i)y — i) (XE, — i) (XL, — ud)
=Ex,~q. [(aizj@(alzz’i) + (5i2k“)(ajz‘l“) + (81‘21’1)(532‘%) + afjkz“]
2 ~
3(1) + 0 -a0) irizj=k=t
= () vo - mp), iri=k#i=1,

O((1 — ay)?), otherwise.

Note that all derivatives above are w.r.t. Ty. All the rates are under Assumption[3]

Proof. See Appendix [F77] O

Lemma 8]also justifies the expression of 1, and ¥, in the diffusion process (i.e., (3) and (@), which
match the posterior mean and variance, respectively.

of Tweedie’s formula (Efron, |2011)). This is a direct extension to Lemma
Lemma 9. Fixt > 1 such that q,_1 exists. Fix x; € R<. Under Assumption E] with the same
definitions of T+ and k(%) as in Lemma@ the fifth centralized moment is

Next we turn to calculate the fifth and sixth centralized moment under Q;_ @t, again drawing the idea

B im@u e |(Xion = 1) (XEy = i) (X = i) (XL = i) (X7, = )]

= Z (852“)(3?1,j,k,1,m}\g“) + 3fjkzm’f = OU’(Qt)((l —ap)?)
ge({"v.7:k'21lvm})

where, given a set A, we define

(3) = {{al,ag} tay,a0 €A, a1 #£ ag}.
Let PF be the set that contains all distinct size-k partitions of [n). Define
party(A) := {((as, a;) : {i,5} € p) : p € Py }.
The sixth centralized moment is
ExXo i@ |(Xioy = i) (X = i) (X5, = i) (XEy = i) (X7 = ) (X = i)

= Z (02, k) (02,K)(92,K) + O o ((1 — ar)*)
(&1,€2,€3)€party ({4,5,k,l,m,n})

3 ~
15 (1520) 4 Opnign(1 = ar)), ifi=j=k=l=m=n
3 ~
_J3(55) O o0t ii=k=m=nzj=
(1—%) +O~£p(Qt)((1—Oét)4); ifi=1,5 =m,k =nwhilet,j,k all differ

at

ONU’(Qt) (1 - Oét)4)7 otherwise

Again note that all derivatives above are w.r.t. Ty.

Proof. See Appendix [F8] O

The following lemma provides the correct order (in terms of (1 — «)) for all higher-order posterior
centralized moments. In other words, this shows that (); _|; has nice Gaussian-like concentration.

25



Under review as a conference paper at ICLR 2025

Lemma 10. Fixt > landp > 2. Let a = (a1, ...,a,) € [d|P be a vector of indices of length p.
Under the same conditions as in Lemmal[8} if p is odd,

P
EXt—l»XtNQt—l,t lH(Xfil - M?i) =0 ((1 - at)%) , Va € [d]p (24
i=1
If p is even,
u ~ b
EXt—hXtNQt—l,t [H(Xfil - M(th) = O((l - at)§)7 Va € [d]p (25)
i=1
Proof. See Appendix [F.9] N

D.6 STEP 5: BOUNDING TERM 3 — REVERSE-STEP ERROR

We are now ready to assemble the respective moments into the final convergence rate. In the following
lemma, we use the results in the previous lemmas to control the difference Ex, ;~q,_,,[¢fi—1] —

]EXt,INPtQW ¢t .¢—1] in @T).

Lemma 11. Suppose that Assumption ] holds and that q;_y exists. Then,

EXtNQt (]EXt—INQt—l\t - EXt—1NPt/,1|t) Kt/,tfl]

1— ) & ~
= 0000 S B 0% dom g (e (X0))0% log ar(X)] + O((1— a)?).
3!0%/ i.5,k=1

Proof. See Appendix [F.10] O

Therefore, under Assumptions 2]and[5| we combine Lemma [[T]and ZT) and get

d Qt—l\t(Xt—l‘Xt)
Z EXt—l»XtNQt—l\t log 7

t=1 pt—1\t(Xt—1|Xt)
d
SU—a)® D Exonq [0 10 g1 (pe( X))} log g1 (X0)]. (26)
ijk=1

This completes the proof of Theorem I}

Before we end this section, we provide an upper bound of the reverse-step error when the conditional
covariance of Pt’_1| ; 1s slightly perturbed (see Remark.
Corollary 3. Suppose that Assumption 5| holds and that g, exists. Suppose that the conditional
covariance of Pt’_l‘ , is slightly perturbed, which satisfies

~ 11—«
Yi(xy) = :

(Iqg + A¢(xy) + E¢(24)) ,

Qi

where Z4(X;) = O~U(Qt) ((1 — at)Q)for allr > 1. Then,

ET:E log Qt—l\t(thl‘Xt)
Xoo1,Xe~Qy 111 —— o
£ 1, Qi1 I (Xi1|Xy)

t—l‘t
S —(1 = a)Bx,nq, Tr (V2 log g1 (1:(X1)) — V2 log g1 (X:)) Ee(X1))
d
+(1—ap)? Z Ex,~q, [a?jk log Qt—l(.ut(Xt))@igjk log q¢ (X})]
ij k=1
/1
-0().
Proof. See Appendix [F.11] O
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E PROOF OF COROLLARY ]

Note that ¢; always exists and is analytic by Lemma|6] Therefore, it remains to upper-bound the
mismatch between )y and @;. In the following lemma we provide such a common bound in
Wasserstein distance, which is provided only for completeness.
Lemma 12. For any Q,

W2(Qo, Q1) < (1 — o) (M + 1)d.

Remark 4. If 1 — oy = ¢, this implies that
WQ(QOa Q1)2 5 ad.

Proof. See Appendix [F.12] O

The proof of this corollary is thus complete. A consequence of Lemma[I2]is that, in order to obtain
convergence guarantees for general distributions, one can view 1 — «; as controlling the mismatch
between Qg and @)1 (in terms of the Wasserstein distance), and 1 — «, V¢ > 2 as controlling the

mismatch between @1 and P (in terms of the KL-divergence).

F AUXILIARY PROOFS FOR THEOREM [I] AND COROLLARY [1]

In this section, we provide the proofs for those auxiliary lemmas in the proof of Theorem|IJand Corol-

lary[1]

F.1 PROOF OF LEMMA[J]

First, note that
qr(r1) = Ex,~qo a0 (z7]X0)]-
Also note that the function f(x) = z log(x) is convex. Thus, by Jensen’s inequality,

Exr~qr [loggr(X7)] = /]EX0~Q0 larjo(z7|X0)]log Ex,~qolqrio (x| X0)|dzr
< /EX0~Q0 [ari0(z7|X0) log g0 (27| X0)] dar
=Ex,~0, [/ qrio(x7|Xo)log qrjo(xr|Xo)dzr

Since Q7| is conditional Gaussian N (y/arxo, (1 — ar)ly), its negative conditional entropy equals

2 2
for any zg € R<. On the other hand, since P} = /\/(O7 1),

d d
/QT|0(33T\$0) log g7jo(zr|20)drr = —5 — 5 log(2n(1 — ar))

Ex,nar logp(Xr)] = —5 log(2r) — L Exsnar | Xrl
where
Ex;eqr |1 X7]* = arEx,eqo 1 Xoll* + (1 = a0) By ono,n |[Wr ||
= arBx,~0, [ Xol* + (1 — ar)d.
Putting the two together,

qr(X
Exrar 108 250 = Bxygr log gr(Xr)] ~ Exy- log s (Xr)]
pT(XT)
d d d 1
< —5 — 5 10g(27r(1 — dT)) + 5 10g(27r) + 5 (@TEXONQO ||XV()||2 + (1 — dT)d>
1 9 dar d _
= 507Ex0~q [ Xol™ - = "3 log(1 — ar).

When T is large (and thus when a is small), the Taylor expansion w.r.t. &7 around 0O yields

log(1— ar) = —ar + O (a7) .
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Therefore,
gr(Xr) 1_ o dar d, _ _
Exr~qr [log pép(XT)] < §aT]EXo~Qo [ XollI” — 5 5(*0@) +0 (OK%)

1
< SarMad + 0 (G7) .
F.2 PROOF OF LEMMA [
To start, note that both P/ 1)t and Pt 1)¢ are Gaussian (yet having different mean and variance).

Thus, foreacht =1,...,T,

p;,”t(ﬂctq\l‘t)

CARNES

= log (det(Et) ) log (det %) %)

1 1 PN N
- 5(%—1 — ) TE  (@emy — ) + i(xt—l — 1) TS (oo — Fie)
1 S 1 T(y—1 -1
= 5 (log(det(£4)) — log(det(£0)) ) + 5 (w1 — )T (E7" = =7 ) (@1 — o)
1 PN - 1 al
+ 5 (@1 = L) TS Ha — i) — 5 (@1 — )T N — )
1 ~ 1 ~
= 5 (log(det(£4)) = log(det(£0) ) + 5 (w1 — )T (E7" = 27 ) (o1 — o)
1

1 P ~
S (e — 11e)TE, I(Mt — i)

1 N ~_ ~_ N
+ 5(’” — )Y, 1(1’1‘/71 — )+ = (m1 — )T 1(,Ut — ) + 5
27

[\V]

There are five terms in (27). We first consider the third and the fourth term, for which we have
Ex, 1~Q, 1 {(Mt — )TE (X — Mt)} = (pe — ﬂt)TiflEXHNQFm [(Xi—1 — ] =0,
EXt—1~Qf,_1\t {(thl - Mt)TZ;I(Nt - //;t)} = EXt—INQt—IH, [thl - :ut]T E;I(Mt - //J\t) =0.
Now consider the expectation of the last term in (27). From the definition of 5, in (G, for small 1 —

we have it > 0, and we can define Et =T~ (I;+(1—ay)H;) ™1, and thus i;l = lfgt (Id—ﬁt).
From Taylor expansion, we have B, = (1 — ay)H; + Oﬁp(Qt) ((1 — a¢)?). Thus, for each t > 1,

Exonq. |(i(X0) = (X)) TS (X0) (e (X0) = (X))

= (1 - a)Ex,~q, [(St(Xt) — Vlog q¢(X+))T(1a — ét(Xt))(st(Xt) — Vlog (Jt(Xt))}

= (1 — a)Ex,~nq, [(s6(Xi) — V1og qi( X)) (Lo + (1 — ar) Hy(X1)) ™ (s6(X:) — Vg qi(Xy))]
S (1= a)Bx g, [I56(Xy) — Vg g (X,)|

where the last line follows from the regularity condition on H; in Assumption 3] Therefore, the
expectation of the last term in (27) can be bounded as

ZEXtNQt [ () = e (X)) TS (X) (e (X2) = 7e(X0) |

T
S D1 - an)Ex,na [lse(Xe) = Viog gi(X0)]?
t=1

< (log T)e?, (28)

where the last line follows by the score estimation error in Assumption 3]
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Next we turn to the first two terms in (27). First, note that forall 4, j € [d], we have (1—ay ) H? (X;) =
Orr(q,)(1 — o) under Assumption 3| Now, the first term of (Z7) is given by

log(det(it)) —log(det(2;)) = log(det(I4+ (1 —ay)Hy)) —log(det(Ig+ (1 — )V log qi (24))).
When (1 — «) is small, we can use Taylor expansion for the functions det(-) and log(-) to get
log(det(Z4 + (1 — o) Hy))

ay)?

= log (1 + (1 — ay)Tr(Hy) + A-a)

()2 = () + Ocrio (1 - )

= (1 — ay)Tr(Hy) + %(mm? — Tr(H?)) — %Tr(m)? + Orr(gn (1 — ar)?)
(1 — O[t)

2 ~ P
= (1 — a)Tr(Hy) — Tr(H?) + Ocrr(gn((1 - ar)?).

Similar expression can be obtained for log(det(I; + (1 — a;)V?log g;(z¢))). Thus, the first term in

27) is equal to

log(det(it)) — log(det(%;))

= (1= o) (Te() — To(V log (1)) — =2 [1x(172) = To((V2 log 1))
+ 0o, (1 —an)?).
For the second term in (27), we first take expectation over z;_1 and get
Exoin@uye |(Xim1 = )T (S = 27 (Xemy = )| = T (S5 = 579)%) -
To proceed, note that
Lo+ (1—a)H) ' D I, — (1= a)Hy + (1 — 00)2H2 + Opoon (1 — ar)?).  (29)

To see (#ii), we write S as the true inverse of I; + (1 — o) Hy. Its existence is guaranteed if (1 — ay)
is small. Since

(Lo + (1 — ap)Hy)(Ia — (1 — a)Hy + (1 — o) 2H?) = Iy + O oo (1 — ar)®),
we have
(Ig+ (1= o) Hy)(Ig — (1 = o) Hy + (1 = ) HE = Sp) = O (1 — o))

which implies that Sy = Iy — (1 — au)Hy + (1 — )2 H? + O (0,)((1 — a)®). This shows the
validity of (7i7). Therefore,

Tr ((i;l - zgl)zt) — Te(S1s, — 1)
- Tr< [Id — (L= ap)Hy + (1 — o) HE 4+ O (g (1 — o))

[Is+ (1 — o) V?log qu(zy)] — Id)
= (1= o) [Te(V?log qi(1)) — Tr(Hy)]
+ (1= a)? [Te(H?) — Tr(HV? log i (w¢))] + Orwguy (1 — ar)®).

Adding this to the first term of and taking expectation over X; ~ @ (noting Assumption[5here),
we get

Exe s Xom@ior. | (108(det(S:(X2))) — log(det(T:(X0))
(Kot = (X)) TS (X0) = 57 (X)) (Xt — pu(X0))]

= 00 g [T(HL(X0)?) — 2T (L (X0)V log 4o (X)) + Tr((V2 log 0 (X,))?)]
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+0((1 —ay)?)

i) (1 —« 2 ~
w %EM@ [Ho(X0) — 2 og g (X0) |5 + O((1 — a)?),

where (iv) follows because for two symmetric matrices A and B,
Tr(A?) — 2Tr(AB) + Tr(B?) = Tr(A?) — Tr(AB) — Tr(BA) + Tr(B?)
= Tr((A— B)(A~ B)) =Tr((A~ B)T (A~ B)) = | A~ Bl

Thus, following from Assumption 3]

T
> Ex, x| (log(det(Si(X0)) — log(det(Si(X,))) )

log? T
T
Here ¢ is the Hessian estimation error. Combining (28) and (30) yields the desired result for the

accelerated estimation error, which is in the order O(1/7?).

(Kot = e (X)) T(E7 (X)) = 7 (X)) (Koo — (X)) € 25 (G0)

F.3 PROOF OF COROLLARY 2]
Given the perturbed 3, in @), following the definition in (T4), we define, Vp > 1,

- 1—ay)?
Api=(1- ozt)V2 log q:(z:) + (Tt)

4

(V2 1og qs(x4))?

=(1— o) (V2 log qu(w¢) +

1— oy -
IS =1~ A+ A7 4+ O (1 — av)?)

o
L v? log g; (xt)) )

Bt = Id—

Qi

~ l-a
HtZ:Ht+ i

H,.
Note that under Assumption 3}
(1~ ) | | £ (L ) [ + (1= 0 LI = Origy (1 — o), ¥ > 1.

Then, the rest of the proof Lemma@ still holds with V2 log ¢; () and H; replaced by V2 log q; () +
=292 0g ¢;(2,) and Hy. The proof is complete by noting that

2

(67
o Vilog qt<Xt>>

Hi(Xy) — <V2 log q:(Xy) +

EXtNQt
F

2
S+ (1= aw)Ex,~q, |[Hi(X:) — VZ1og Qt(Xt)HF
N2

F.4 PROOF OF LEMMA[3
By Bayes’ rule, for any z;_; given fixed z;, we have

Qtfl\t(xt—l |z¢)

(08 %—1(%—1) exp (

e = v |
2(1 — Oét)

Nz —xt/@HQ)
2

1 _
X q—1(wt—1)Py_ 1) (T1-1]|2¢) €XP ((It—l — )8y (w1 — ) 20— )/
- &t t

2
a lmemr = we/a|

= qr—1(e—1)Py_ 1) (T1-1]|2¢) €XP ( (w1 — p)T(Lg — By)(xe—1 — pe)

2(1 - ay)

30
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(by Equation (T4))

@
X p;_1|t(xt—1‘$t) exp (Ct,t—l(xtaxt—l) - . )(J%—l — )" Be(x-1 — Mt)) )

2(1 — O

where the last line follows from the definition of (; ¢—1 (¢, ;1) in (I6). Now, with the definition of
Ct—1(we, x41) in (I7), we have

AT GRS EM i

qt—1|t(xt71|$t) = Ex [eC{,t_l(zt,XtA)] .

t—1|t

F.5 PROOF OF LEMMA [

Recall Equation . Let QO denote the distribution of \/&;x¢, and let g(z) denote the p.d.f. (w.r.t.
the Lebesgue measure) of the distribution of /1 — a;w,. Note that g is a scaled version of the unit
Gaussian p.d.f., and fzeRd g(2)dz =1 < oo. Now, for any event A C B()),

o= [ [ sw-mad@s= [ ([ oo-zoir) Gz

by Fubini’s theorem. If A has Lebesgue measure 0, by continuity of g(x) we get [, _, g(x —Zo)dz =

0, and thus Q;(A) = 0. This shows that (); is absolutely continuous w.r.t. the Lebesgue measure,
and its p.d.f. exists, denoted as g;.

Now, since any order of derivative of the Gaussian p.d.f. is bounded away from infinity and Qoisa
probability measure, we can invoke the dominated convergence theorem here to change the order of
derivative and integral as

Ok q(x) = o /

To €Rd

oz — 70)dQo(i0) = / Ohg(z — 50)dDo(R0). (B

To €Rd

Thus, for any k£ > 1 and any vector of indices a € [d]k , we have
0ba)| < sup |oko(a)| [ AQu(a0) = sup |ohg(a)] < .
z€ERY ToERC z€R4
This also implies that the Taylor term |Tj(g¢, x, )| < oo for any x and u, and

~ (’L) p ~
ww) = [ o= a0a@utan [ i S Tulate — 02 Q)

P

i) . . 5 (5
= 111’1’1 Tk(g(x—xo),x,u)on(xo)
p—00 iOGdeZ:O

P
(idi) .
= plggokZ_OTk(qt,m,u)

where (7) follows because (scaled) Gaussian density is analytic, (i¢) follows from dominated conver-
gence theorem and the fact that g is a Gaussian density and has an upper bound independent of Z,
and (i4¢) follows from (3T)). This shows that ¢; is analytic.

Finally, since 0% log ¢; is a smooth function of ¢, d'qy,...,0%q;, we have 9% log q;(x;) < oo
(possibly depending on T') for all k£ > 1 and fixed (finite) x; € R%. Also, log g; is analytic because
log(-) is analytic and g;(z;) > 0, Vx; € R9.

F.6 PROOF OF LEMMA[]]
The result follows directly from Isserlis’s Theorem, which says that

=3 I] Elzzi=Y ][ cov(.z)

peEP?2 {i,j}€p peEP2 {i,j}€p

n

[

i=1

E
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since each Z; is centered. Here P2 is the set that contains all distinct size-2 partitions of [n]. For
example, P = {({1,2},{3,4}), ({1,3},{2,4}), ({1,4},{2,3})}. Thus, since A; = Or(g)(1 —
o) under Assumption 3]

E([[Z| =0, ifnisodd
i=1
n . -\ 2\ =~ oy

E H Zi| = Ocr(q,) 5 = Orrq (1 —ay)?), if nis even.
i=1 t

More specifically, following from Isserlis’s Theorem, the fourth moment is

E[ZlZJZkZl] = COV(Zi, Zj)COV(Zk, Zl)+
Cov(Zs, Zx)Cov(Z;, Z)) + Cov(Zs, Z))Cov(Z;, Zi), i, j, k.1 € [d].

Here Cov(Z;, Z;) = +5%(1 {i = j} + (1 — ;) A¥). The fourth moment result follows immediately
by plugging into the formula. Turning to the sixth moment, we note that we are interested only in the

coefficients for the terms that grow at a rate O o) (1 — ay)?). Since the sixth moment consists
of sum of product terms in which three covariance matrices are multiplied (giving us a rate at least

Ocp(Qt) ((1 — a4)?)), at least one product term in the sum must take covariance values only on the
diagonal of the matrix. Therefore, only E[Z{], E[Z} Z?], and E[Z7 Z? Z}] with i, j, k all differ satisfy
this requirement, and we immediately get the desired result from Isserlis’s Theorem.

F.7 PROOF OF LEMMA[§]
We first fix z; and will take expectation at the end.  Note that qu_q(2¢|zi—1) =

2
W exp (—%) Following from the idea of Tweedie [Efron|(2011), we have

Qtfl\t(xt—l |z¢)

qt—1\Tt—1
= tntxz))Qtlt—l(xt|$t1)
C]tfl(-thl) 8% Q¢ 2
= _ 0 Toe 1 — ——— ||
L) sl exp (LT — 5 )

TR P Ja
(qt,l(xt,l)e -ap I2e-1ll ) exp (1;%{%1 —log qi(w¢) + log Qtt—1($t|0))
—

=: f(w4_1) exp (xtT_lit — n(:Et)) (32)

where we have used the definitions of #; and k(&) in (23). This shows that x;_; is a conditional
exponential family given Z;. Thus, the first moment can be found as (cf. Prop. 11.1 in Moulin &
'Veeravallil (2018)))

0=Vz, [ ¢1p¢(zi-1|ze)dzi1 = V5, /f(xH) exp (2]_ 1% — K(3)) dai—s
= /f(act,l)vit exp (xtlljt - /{(56,5)) dxs_q
= /f(a:t,l) exp (x{_lfct — /i(;fct)) (xt—1 — Vi, k(%)) drs—1

= /f(xt_l) exp (xtT_ljt — Ii(i‘t)) xp_1das_1 — Vi, 6(Z)

which implies that
EXt—INQt—l\t [Xt—l] = Vk. (33)

For the second moment,

0=20; /Qt71|t(xt—1|xt)dl't—l
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/f Ti—1) exp (It 1Z - /{(Jct)) (mi_l — ain(i"t)) )dxt_l

= / f(@er) exp (arz,lft = (@) (@1 = B(@0) (] — O3(30)) — OF () ) dayy
which yields
1-— it (1 — Oét)Q

IEXt—lNQtfl\t [(Xt—l - :ut)(Xt—l - ,ut)T] =V’k = Iq+
Qg Qg

V2log g (). (34)

Below, we write © = x;_1 and kK = k(&) for brevity. We remind readers that all derivatives are w.r.t.
T, instead of x = x;_;. For the third moment,

0= 8fjk /qt,”tdx =: /f(x) exp (272 — k) D3(x, 7)dx
where
Ds(z, %) = exp (—27%¢ + k) ak(exp (273 — k) (2" — Opk) (27 — Ojk) — afjm) )
= (2" — Oyr) (2" — Oik) (27 — 9yK) — 03k)
+ (=05k) (27 = 0jk) + (= 05k) (2" — Bir) — Oy (35)
Now, for any function fn(#;) and 1 <i < d,
/f(x) exp (2T%; — k) fn(Z) (2" — O;k)dx = 0
by the first moment result (33). Thus, we get
Ex,in@u o |(Xioy — i) (XEy = i) (XEy = )] = O,
and by Assumption Ex,~q[05,6] = O((1 — ay)?).
For the fourth moment, we have
0= 3§1ij /qt_l‘tdx =: /f(x) exp (27 — k) Dy(z, ¢)dx
where
Dy(z,2y) = exp (—2TZ + k) O (exp (273 — k) (2" — 0iw) (27 — 0jk)(a* — Opk)

- afjn(xk — Opk) — O k(2! — Ojk) — a%cﬁ(:c" — Oik) — 8fjkm))

= (2" — Oiw) (2 — B;k) (a* — ) (2! — Oyr) + al( o — O;) (27 — 0) (2" — 3k/1)>
— Bizj/i( k Bkm)(:vl OIKk) — ]lm(x — Okk) + Iiakllﬂl
— Ofur(a? = 9jk) (¢! — Oir) — Bjyr(a? — Ok) + kO K
— r(a’ — k) (x! — Oyk) — k(@' — 0ik) + Oy kOk
- ijk’f(x — Ok) — 8ijkl“<5 (36)

and
0 ((xl — 0;k) (27 — Ojk) (2" — 8k/<a))
= —0%k(2? — 0jK)(2F — Opr) — k(e — Dik)(z* — Okr) — O k(2" — O;k) (27 — k).
Using the first and second moment results in (33)) and (34), we get
Exoan@u e |(Xioy = i) (XEy = i) (XEy = i) (XD = 1)) =
(a?j’f)(al%z’f) + (azzk’i)(a?l”) + (81'21“)(351@“) + 8%1@15-

And the fourth moment result follows directly by applying (34) to each of the terms and taking the
expectation over X; ~ Q. The rate follows from Assumption [5](cf. Definition2).
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F.8 PROOF OF LEMMAIQI

The proof continues the idea of Lemmag] The idea is to use the inductive relationship (provided in
the proof of Lemmas [§]and [T0):

Ds(z,24) = exp( -7 + k) 0, (exp (7% — K) D4(x,£t))
= (2™ — OmK)Dy(x, &t) + O Dy(x, Tt)

Dg(xz, %) = exp (—2TZ¢ + k) O, (exp (7% — K) D5(x,jt))
= (2" — Onk)D5(x,Z4) + OnDs(x, T4).

Let PJ be the set that contains all distinct size-k partitions of [¢]. We use the definitions:

k
party,(A4) == {((ai,a;) : {i,j} € p) : p € Py }-
Recall the formula for D, in (36), which can be abbreviated as (here |a| = 4):

Dy(z, %) :H ' — 0ik) — Z 02k H zt — Oik) + Z 02k02k

ica e(2) ica\b (b,c)epart,(a)
— Z@a\{i}m z — 0;k) — Oik.
i€a

Also recall the definition of f(x) in Lemma and that [ f(x)e® ®~%D,(x,#;)dz = 0, through
which we can find the expected p-th moments of Ex, ,~q,_,, [[T;ca(Xi_ 1 — pi)]. For reference,
the first four moments are

/f(:c) exp (273 — k) (z' — O;x)dz =0

/f(a:) exp (273 — k) (2" — Oir)(2? — 9jk)dx = 8%/{ = Orr(gn(l — o)

A
< > = {{al,...,ak}:al,...,ak €A, ay,...,ax alldiffer}7 kE <|A]

/f(m) exp (278, — k) (2 — k) (27 — Ojk)(z¥ — Oyr)dx = 8f’jk/<c = ng(Qt)((l —y)?)

/f(x) exp (27, — k) (2 — 9;k) (27 — 9k) (2" — Opk) (2! — Oyw)da
= (0,5)(OR1K) + (07:k) (051,) + (0R) (075k) + Ok = Oro(uy (1 — aw)?)
where we note that 9%k = Orv(g,)((1 — a;)¥) forall k > 3.

We can calculate Dj5 as (with |a| = 5):

Ds(x, %) = (% — Oysk)Da(x, Tt) + Ous Do, Zt)

= H(zl — 0ik) — Z ik H (' — Ohr) — Z 52\an(x

ica be(‘;) ica\b be(‘;) 1€b
+ > k02K (2t — k)
ica
(b,c)epart,(a\{:i})

- Z ai\{i}ﬁ(xi — OiK) Z 8b/<;8a\b/<;

i€a be(2)

Therefore,

EXt—1~Qt—1\f, H (Xtifl —,LL;)

i€a:|al=5
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Z Bgnai\b/i—i— Z 83\b/€6§/$— Z 05&82\,,/{—1—335

be(3) be(3) be(3)
= Y OgrOGph + 0ak = Opogn (1 — ar)?).
be(3)

Now we turn to calculate Dg (and let |a| = 6):
Dg(x,@) = ( a6 — (“)aGn)D5(x ft) + 8a6D5(x i‘t>

:H(mi—aﬁ Z@an rt— OiK) — Z@a\bﬁznx—an

i€a ( ) i€a\b (3) icb
- Z 8a\bKH(IZ_8iR)+ Z aZRaZKHI — 0iK) +an (' — Oir)
be(‘;) icb be (s i€b i€a

(c,e)€part,(a\b)
— > RROIROZE+ D Ogrdapr+ Y, Oprdik — Sk
(b,c,e)epart,(a) be(fz") (b,c)epart;(a)

Here fn(k) is a function of x which does not depend on x. Note that fn does not affect the expected
value because Ex, ,~q,_,, [X¢—1 — pt] = 0. Therefore, we have

EthlNQt—l\t H (Xtifl _Nz)

i€a:|la|=6

bE(;) (c,e)epart, (a\b) be(‘;)
ROV LR DR L
be(2) be(3)
(c,e)€epart, (a\b)

+ Z 0RO k02K — Z agnaﬁ\bn — Z D3k02 K + 0%k
(b,c,e)Epart,(a) be(‘;) (b,c)epartg(a)
Z 8§m8i\b/f + Z DRk + Z OpkO2K0%K + Sk
bE(g) (b,c)€eparts(a) (b,c,e)epart,(a)

Z 3§nagnagn+égp(@)((1 —y)”).

(b,c,e)eparty(a)

The proof is now complete.

F.9 PROOF OF LEMMA [10]

We fix x; first and will take the expectation at the end. We first introduce some notations used in the

proof. We write © = x;_1 and xk = k(Z;). Given a set of indices A, define its bipartition as
bipart(4) := {(B,C) : A= BUC}

where B and C' are both sets of indices (and therefore the order of indices within each of B and C' does
not matter). Here LI refers to the disjoint union of the two sets (which is only defined when the two sets
are disjoint). Next, given a set B, define allpart>2(B) as a set containing all partitions of B such that
there are ar least 2 elements in each part of the partition. As an example, allpart>2({1,2,3,4}) =

{{{L,2}, {34}, {{1,3}.{2.4}}, {{1.4}, {2.3}}. and {{1}.{2,3.4}} ¢ allpart>({1,2,3,4})

despite the fact that it is a valid partition. For each partition b € allpartzg( ), define

dyn = [[ 0.

£eb
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Here note that ¢ is also a set, and 9y« is well defined since the order of indices to take partial
derivative with does not matter. Define

Dy(z,24) :=1
Dy(z,2¢) := exp (—2T%; + k) Oq,, (exp (7% — k) Dp_1(z, a?t))
for all p > 1. We again remind readers that all derivatives are w.r.t. Z; instead of x = x4_1.
By working out the derivative, a direct implication of the definition of D, is a recursive relationship:
Dy(z, &) = (2% — 04,k)Dp_1(x, %) + Oa, Dp_1(x, T¢).

Also, if we unroll the recursion of D,,, we get
Dy(z, ) = exp (—27Z; + k) Oq,, (eXp (7%, — k) Dp_1(x, 5:,:))
= exp (=27 + K) Oa, (exp (x7% — k) exp (-2 % + K)
Oa, s (exp (7%, — k) Dp_o(x, :Et)))

=exp (—2T%; + K) 831”%71 (eXp (7% — k) Dp_o(x, it))

=exp (—zTZ: + k) agpwal (eXp (T3 — H))
and thus

0=0, o, [aoside = [ F@0L, o, (e @750~ 1) )ao
= /f(a?) exp (7%, — k) Dp(x, Z¢)dz (37)

where we recall the definition of f(x) back in (32).

In the following, we present the entire proof into two parts. In part 1, we inductively show that each
D, (x, %) satisfies a particular polynomial form. In part 2, we inductively show that this polynomial
form results in the desired rates.

Part 1 of the proof of Lemma[10} The first step toward proving the desired results is to obtain the
form of D, for all p > 2. Now, we aim to show inductively that

p

D,(x,%;) = H(m“’ —0g, k) — Z Z dy(b,C)(Opk) H(m“c —0,,k) (38)

i=1 (B,C)ebipart([p]) beallpart ,(B) ceC

where d, (b, C) is a constant from combinatorics, which is possibly 0 and which only depends on p.
From Lemmal8] the bases cases have been established that (cf. (33) and (36))

Dy(x,24) = (:cl - 5‘i/<;)(xj — 0jK) — afjﬁ

Dy(x,3;) = (2' — 9ik) (27 — 0jk)(a* — Oxk)
- (‘3%/1(3:’“ — Ok) — 05uk(3? — 9;K) — Fpk(x’ — Oik) — Ok

Dy(2,%;) = (2" — 0;k) (27 — 0jK) (2" — Opr)(a! — Oyr)
— afjn(xk — Ok (2! — Oyw) — OZm(ad — Ojk)(z! — Oyk) — 3?k/<;(xi — ;) (! — Oyr)
+ O ((x" — 0pk) (27 — Oj) (2F — Opr)) — a?jkn(wl —Oik) — (“)f’jl(xk — OkK)

— 03, (27 — 0;K) — B?kl(xi — 0iK) + 81-2]-58,3[.% + a?knafln + aj?kﬁafm — 8fjkl/i.

In particular, each term of D, (p = 2,3,4) is in the form of either [[?_, (2% — 8,,x) or
(Op) [[oce (2% — Oa k), where [§| > 2, V€ € b, and (Ugepé) LI C' = [p]. Therefore, Do, D3, Dy
all satisfy the hypothesis (38).
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Turning to the inductive step, we suppose that Dy, satisfies (38)), i.e.,

k

Dy(x, %) = [[ (2™ — Ba,5) — > S dw(b,C) (k) [ (2% = Oa.r).

i=1 (B,C)ebipart([k]) beallpart s 5 (B) ceC

Then, using the recursive relationship, we have

Dk}+1(xa j‘t)
= (21 — 0, k) Dy (2, 1) + Oay ., Di (2, %4)
k41
SICE S S 0@ [] @ - R = 0yy)
i=1 (B,C)ebipart([k]) beallpart 5 (B) ceC
Ty

T

k
- aak+1 <_ (xai - a(liK’)) - Z Z dk(bv C)(abﬁ) (aak+1 H (xac - 8116’{))
i=1

(B,C)ebipart([k]) beallpart, (B) ceC
Ty 1
- > > d6,C) (Oupy, (Bur)) [ (@ — Oa, k)
(B,C)ebipart([k]) beallpart 5 (B) ceC
Ts
=T —-T,—-T5-Ty,—T;
where we define each term as 77, . . ., T5. Now we discuss these terms separately:

1. T3 (and only T}) is in the form Hfill(xa’? — Da,; K).

2. T is a summation of individual terms: (9yx) [[.cc (2% — Ou k) (x**+* — Oy, ,, k). Here
b € allparts,(B) and (B, C) € bipart([k]). Thus, by definition of bipart and allpart.,,
foreach & € b, |£] > 2 and (Ueepé) U C = [k]. Therefore, k + 1 ¢ B U C and

(Weep§) UC Uk + 1} =[kJu{k+1} = [k+1].

This implies that each individual term of 7 is in the form of (9y%) [[.cc, (#¢ — Ocr) where
b € allpart,(Bz), such that By := B and Cy := C U {k + 1}. Here Cy is well defined
because k + 1 ¢ C'. Since (Bg, C2) € bipart([k + 1]),

Ty = Z Z da (b, C)(Bpk) H(m“c — 0y, K)

(B,C)ebipart([k+1]) beallpart s, (B) ceC

for some constant dy (b, C').

3. Ts is the derivative of product, which is a summation of individual terms:
(02 K) H%l(xai —04,K), j =1,..., k. Therefore, foreach j = 1,..., k, each term is
k2

Qj, QK41
J
of the form (9yx) [ [ .c o, (¥ — Oa, k) where b € allparts,(Bs), such that By := {3, k+1}

and C5 := [k] \ {j}. Since (B3, C3) € bipart([k + 1]),
Ty = > > ds(b,C) (k) [[ (@™ — Oa,r)

(B,C)ebipart([k+1]) beallpart s, (B) ceC

for some constant ds3 (b, C').

4. Ty is a summation of individual terms: (8yx) (Oaysy [[oec (2% — Oa,k)) Where b €
allparts(B) and (B, C) € bipart([k]). Now,

(abﬂ) <8ak+1 H (xac - 8%/{)) - *(6b’€)(82j,ak+1 K:) H(xai - aaa,ﬁ)

ceC ieC
iF#c
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= —(Op, k) H (2% — Oy, k)
1€Cy
where by :=bU{k+1,c}and Cy := C'\ {c}. Here b, is well defined because k + 1, ¢ ¢ b.
Define By := [k + 1] \ C4, and we have by € allpart,(By4). Since (By, Cy) is a valid
partition of [k + 1], we have

T, = > S du(b,C) (k) [[ (@™ = Da,r)

(B,C)ebipart([k+1]) beallpart >, (B) ceC
for some constant d4(b, C').

5. Ts is a summation of individual terms: (8q,,,(9vk)) [[.cc (2% — Ba.k), where b €
allparts,(B) and (B, C') € bipart([k]). From definition of 9y,

D (Ok) = Ouy, [ TT0MIR ) =7 (0leil ) [T 0Nk = 3 B
£eb §€db ¢edb 3
C#E
where, for each § € b, we have defined a new partition b such that k + 1 is added to the
& in the partition b. Formally, define b¢ := b\ £ U {{ U {k + 1}}, which is well defined
because £ ¢ (b\ &) and k+1 ¢ B. Define B; := BU {k + 1} and C5 := C, and note that
(Bs, C5) is a valid partition of [k + 1]. Since || > 2, V(¢ € b, we have |[¢’| > 2, V(' € bg.
Since b € allpart~,(B), we have bs € allparts,(Bs) for all £ € b. Therefore, for any

fixed C(= Cs)
> di(b,C) (Oay, (Bpr)) = S D db,C)dk
beallpart,(B) beallpart,(B) £€b

= > ds(bs, C) By,

bs €allpart s, (Bs)
for some constant d5(bs, C'), and thus

Ts = > S ds(b,0) (k) [[ (2 = . 5).

(B,C)ebipart([k+1]) b€allpart >, (B) ceC

Finally, letting
5
i1 (b,C) =Y d;(b,C)
Jj=2

for each b € allpart~,(B) and C such that (B,C) € bipart([k + 1]), we have shown that if
Dy, (z, %) is in the form of (38), Dy41(x, Z;) is also in this form. Thus, claim (38) is valid for all
p>2.

Part 2 of the proof of Lemma[10} First, we remind readers of the definition of x(Z;) in 23). Also,
the partial derivatives within the expectation over X; ~ Qt do not affect the rate by Assumption[3]
Note that Vk = y; from direct differentiation. From (37) and (38), for fixed x;, we have

P
]EXt,—lNQt—l\t lH(bel - :u‘ltli)‘|

=1
= O~ sSup abﬁ(jt)EXt—lNQtflu H (Xtail - :U’?C)
(B,C)ebipart([p]) ceC

beallpart ,(B)

@ ( sup < sup Bw(it)> Ex, i~ [H(Xgil - M?C)D - (39

(B,C)ebipart([p]) \ beallparts,(B) e
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We first consider the term Sup,caiipart. ,(5) Ok (Z¢). Given a partition b € allpart.,(B), direct
differentiation yields -

1— 1— ) -
815!,4 = L (1— o) agg log qi(z) = O(1 — o), if |¢]=2and & =&
Qg (673
1— a,)lél -
lei"ﬁ = (7%)5? log ¢ (x) = O((1 — ozt)‘f‘), for all other .

e

Since by definition 9yx = ng b alfsln and Lgep€ = B, the slowest rate of 9y« (as a function of B)
is determined by the partition b containing the most number of equal pairs. The slowest rate is

sup Byki(Fs) = {(? ((1 — at)(\Bl—l)/Q(l _ Oét)?’) -0 ((1 _ at)(\B|+5)/2) if | B|is odd
beallpart ., (B) O ((1—ay)B172) if |B|is even

To proceed, we will again use induction to find the overall rate. From Lemma|] base cases have been
established that

2
EXt—hXt,NQt,—l,t H(Xi?il - .u“;,“> =0 (1 - at) ’ Va € [d]2
=1
3

0 (1—a)?), Va e [d?

EXt—l’XtNQt—l,t H(Xfil - M?i)

i=1

EXt—hXt,NQt,—l,t H(Xt?il - .u“;,“) = O ((1 - at)Q) ) Va € [dri
Li=1 i
These rates satisfy (24) and (23) when p = 2, 3, 4. Now we turn to the inductive step. Suppose k > 4
is even. For purpose of induction, suppose (24) and (23) hold for all p = 2,. .., k. Then, following
(39), for p = k + 1 (odd number), we have

k+1
EXt71,XtNQt71,t [H(Xfil - M?i)]

i=1

(B,C)ebipart([k+1])

= O( sup (1- at)(lB\JrS)/Q(l _ at)|C\/2
|B| odd, |C| even

n sup (1= a)IB2(1 — q)(IC1+3)/2
(B,C)éebipart([k+1])
| B| even, |C| odd

=0 ((1 — at)(k+1)/2+5/2 +(1- at)(k+1)/2+3/2)
-0 ((1 _ at)(k+1)/2+3/2) .

Then, for p = k + 2 (even number), we have

k+2
EXt—hXtNQt—l,t [H(Xffl - :u‘tal)‘|

i=1
-0 sup (1 — o) UBIT9)/2(1 — ) (IC1H3)/2
(B,C)€ebipart([k+2])
|B| odd, |C| odd
+ sup (1 — o)!BI2(1 — a)I€1/2
(B,C)€ebipart([k+1])

|B| even, |C'|even

-0 ((1 — )R/ (] at)(k+2)/2)

These show the validity of the claims (24) and (25). The proof is now complete.
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F.10 PROOF oF LEMMA [T]]

Before analyzing the rate of each moment, we need to guarantee the validity of exchanging the
limit (in the Taylor expansion) and the expectation operator. Intuitively, this is achievable under
Assumption [} where the Taylor series is absolutely convergent in expectation due to its Gaussian-like
moments. Specifically, since log ¢;_1 is analytic, all its partial derivatives exist. Following from the
Taylor expansion of ¢; , , in (20),

lim
k—oco

E Xi~Q [i—1] —E X~ Qs |:T1(loth—17Xt—17.ut)JFTQ/(lOth—lth—ly,ut)
XianPl_y, Xy 1~P!_

—1t

k
+> Ty(log g1, X;1, ,Ut)]

p=3

< lim E XtNQt

k—oco X, 1~P

Cioo1 —Ti(log g1, Xo—1, 1) — To(log qe—1, X1, ur)

1)t
k

- Z T,(log gi—1, Xt—1, put)
p=3

oo

lim E Xi~Q, Z 1T, (log qr—1, Xt —1, f1e)]

k—
C Xem1r~P Ly | p=ktl

IN

INE

lim lim inf Z E Xi~Q |Tp(log gi—1, Xi—1, te)]

k— l—
o° o p=k+1 Xt 1NPf 1)t

(i)

0.
Here (i) follows from Fatou’s lemma, and (i) is because, under Assumption [5]and Lemmal(7} we
have B x,~q, |Tp(logqi—1,X¢—1,:)] = O (T~P/?), and thus the infinite sum is convergent
Xt—1~Pi_q)¢

for all (k, ¢) such that 1 < k < £ < oo since

o0

~ 1 d?
ZE Xi~Qy | p(lqut—lvxt—lnutﬂ =0 (Z o Tp/2> < 0.

—1 Xi—1~Plyy, p=1

The proof for E  x,~qg, 1is similar due to its Gaussian-like concentration of all centralized
Xi—1~Qe—1)¢
moments (see Lemma|[I0). Thus, we are able to exchange the infinite sum and the expectation under

either P, _ 1 X Q:or Qi1 +.

Next, we put together the rates of the conditional moments. We use abbreviated notations as
T, = Tp(logqi—1, X¢—1, pit). To investigate the dominant term, we analyze the expected difference
of the first 8 moments in the Taylor expansion (20) separately. First, for any fixed x;,

EXt—1~Qt—1|f 1] =0= Ex,_ 1~P g, [T1].

Also, for T4, note that for any random variable Z (regardless of its distribution) with EZ = 0 and
Cov(Z) = X, the mean of the quadratic form (with fixed matrix Z) is

E[ZTZ2Z] =E[Tr (ZT22Z)] = Tr (EY).
This implies that, for any fixed x¢,

1
t— W[TQI] = EXt 1~Plg, [(Xt—l —pe)T (V2 log qr—1 (1) —

]EXt 1~P/
2 Qy
;Tr ((V log qs—1(pt) — 1 Bt) Et)
Y

1 o
= 5BXnQioye [(th — )T (VQ log gr—1(pe) — T ;at Bt) (X—1 — Mt):|

Qi

Bt> (Xe—1 — Mt)}

1—O[t
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= EXt—INQt—l\t[TQI}'
Using Lemmas[7) and 8] the rate for T5 is
) [Ts(log i1, X1, )]
= ]EXt,—hXtNQt—l,t [T3 (log -1, X¢—1, Nt)}
(1 — Oét)g

d
= D Exinq 05108 g1 (1e(X1)) 055 log g (Xy)).
QT k=1

EXtNQt (EXt—INQt—l\t - EXt—l"*Pl

t—1|t

Using Lemmas[7]and[I0] and when the partial derivatives satisfy Assumption[5] the rate for 75, T%,
and T),(p > 8) can also be determined:

) [T5(log qi—1, X¢—1, pit)]
= EXt—hXt"’Qt—l,t [T5(10g Gr—1,X¢—1, ;Uft)]
= O((1 —ay)*),

Ex,~q. (]EXt—l’\‘Qt—l\t - EXt—lNPf

t—1]t

EXtNQt (Ext—lNQt—l\t - EXt,—l"‘Pl

t—1|t

) [Tz (0g a1, X1, )]
=Ex, , x,~Qi_1, [T7(log g1, Xi—1, 1¢)]
=0((1 - )%,
Ex,~q, (]Ext_th,m - Ext—sz_m) [Tp(log g1, Xt—1, f1t)]
=O0((1 —a)b), Vp > 8.
The remaining orders are T, and Tg. The following proof will draw from the results in Lemmas|[7]

tog Fix p > 1. Write Z; = X}_; — pi and AY = [A]¥ for i, j € [d]. For Ty, leti,j, k,1 € [d] all
ditfer, and the difference (in expectation) of each term of 7 is

EXt—l’VQt—ut [Zz4] - ]EXt71~Pt’71‘t [Zz4]

Qi

-\’ (1— ) 1- o\’ N2 | A 4
= 5 +6 o2 8iilogqt(xt) -3 (1—|—A ) +O£7)(Qt) ((1—04,5) )
t i

1—o : ii A
= < ) (A™)? + Or(qu) (1 —ar)?),

ay
EX, 1~Qu,[Z0Z)) = Bx,_\~pr_, 127 Z))

f—1|t[ ?

1—Oét

(1- at)s 2
— BT@-]- log g (x¢) — 3 o

2
) AU+ A + O (- ar))
t
1 —« 2 A ~
- (at) ATAT 4+ Oca(q (1= ar)*)
t
Ethl"/Qt—l\t [ZZQZJQ] - EXt—lNPl

t—1|t

2 72
12 Z]]

- (1 _at)2+ < _St)g (02 1og qi(x¢) + 02 log qr(x¢)) — (1 _at)2(1+Au>(1+A,-j)

(673 (&% (673

+Orr(q,) (1 —ar)?)

1— 2
T ( at) ATAY 4 Opog (1 —an)?),

Qi

EX, 1nQu1 |28 Z; 2] = Ex,_y~p, | |22 21)

1—oy)? 1—ap)? o -

= (Q'S)f)?klogqt(xt)_( o t> (1+A“)Ajk+O[)P(Qt) ((1—0425)4)
1—oy)? i i -

= A O (1= 00)),
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Ex, i~ Zi 220620 = Bx,_mpr | [ ZiZZk21) = Opo(q,) (1 — ar)?) .

1)t
Recall from (T4) that A; = (1 — o) V2 log qi () = O‘CP(Qt) (1 — o) under Assumption Hence,
many low-order terms above are cancelled, and we get

(Ext,th_m —Ex, .~p ) [Ty(log qr—1, Xe—1, )] = O~L‘P(Qt) (1 —ap)?).

t—1[t

Now we turn to Tg. Let 4, j, k € [d] all differ, and the difference (in expectation) of each lowest-order
term of Tg is

EXt—l"’Qt—ut [Z?] - EXt—1~Pt/71‘t [Zzﬁ]

1—a\° 1—a,\° 3 _
— 15 ( O‘t) 15 (ao‘t> (14 A3 4+ O (1 — ar)b),
t

Qi
Ex, 1’\’Qt71|t[Zz4Zj2]_Extflf\/PtLMt[Zz4 _]2}

- (1 o at)g -7 <1 . at)s (1+A"*(1+ A7) + O (1 = ar)"),

mr

Qi

- (1 a at) - (1 . at>3 (14 A")(1+ A7) (1 + A™) + Orpgn (1 — ar)®).

Also, by Lemmasand@ the rest of the terms already satisfy O z» @) ((1—a¢)*) under Assumption
The low-order terms cancel in the same way as for 7}, and thus,

(EXt—lNQt—l\t - ]EXt—1~P/ ) [TG(IOthflet—hMt)] = Oﬁp(@f)((l - at)4)'

t—1|t

Therefore, the lowest order term above is T3, whose order is O £r(@.) (1 — ay)?). The proof is now
complete.

F.11 PROOF OF COROLLARY 3]

The proof is very similar to Lemma [TT] and , except with a perturbed covariance matrix. We

employ the notations A; and B; from Remark Here we have that flt(Xt) = A(Xy) + E4(Xy),
and thus, Vr > 1,

Bi(X1) = Bi(Xt) + Orrg,y (1 — ar)?) = Ae(Xe) + Orr(gu (1 — ay)?)
= (1 — Ott)VQ 10g Qt(Xt) =+ OET(Qt) ((1 — Oét)2) .

Compare with the proof of Lemma the only difference is the expected difference of 7. Since
At(Xt) = At(Xt) + OACT(Qt) ((1 — O[t)Q) and Bt(Xt) = Bt(Xt) + OL’V‘(Qt) ((1 — Oét)z), the
expected differences of all higher order T},’s have the same rate as the non-perturbed case.

Now, for any fixed z; and r > 1,
Ex, i~py T3]
1

o ~
FEX P, |:(Xt1 — )7 (V2 log gr—1 (1) — — Bt) (X1 — Nt):|

1— (67
1 o -\ =
= §TT ((V2 log qr—1 (1) — T —tozt Bt> Et> ,

and, from Lemmal(§]

EthlNQt—l\t [TZI}

1 ap o
= 5EX1nQioye {(th — )T (V2 log g1 () — —— Bt) (X1 — Mt)}

1-— Qg
1 lo} ~
= §TT ((V2 log qs—1(pt) — 1 7tat Bt) 2t> .
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Thus,

1 Qi
— T ( (V2 log g1 () — — ( )
9 r(< 0g qe—1(pe) 1o >
2C¥t
Note that here the first term is in the order O £7(Qr) ( (1 — ;)?) under Assumptionsince 2(Xy) =

(Ext—l"/Qt—l\t EXt 1~P/_ 1|t) [TQ/(loth—I,Xt—laMt)]
1— Qg 2
= — Tr (| VZ1logge—1(pt) —
11—« _ -
0, T Tr ((V*1og qe—1(pe) — ¢ V?log i (X:)) Er) + Orr(o,) (1 —a)?) .
Opr (@.) ((1 = ay)?). Therefore, under the perturbed case,
EXtNQt (]Ethl"’Qt—l\f EXt 1NPt l\t) [Ct/,tfl}

1l-« ~
=~ Exina.Tr (V2 log g1 (X)) — 0 V? log ar(X)) 24(X1))
t
(1- at 5 o3
+ W Z EXtNQt[ ijk IOth I(N/t(Xt)) ijk 1qut(Xt)]
@ i,7,k=1

+ O((l — O[t)4).
The final result can be achieved using (21)). The proof is complete.
F.12 PROOF OF LEMMA[I2]
From (T)), the forward process at the first step is

1 =orxg + V1 —ogw
where wy ~ N(0, I) is independent of Q. Thus,

2
EXINQhXONQO HXl - )(0”2 = EW1NN(O,L1),X0~Q0 || V1—aWi + (\/ Qy — 1)X0H

@) 2
= Evw,onro,10) ||[VI = al Wi || + Exgeqo [|(Var — 1) Xo|?
(i1)
< (- a)d+ (var —1)*Mad
(iid)
< (1—a1)(Ma+1)d
where (i) follows from independence, (ii) follows from Assumption [l and (i) follows be—
cause (v/z —1)2 < 1 — z for all z € [0,1]. The proof is complete since W2(Qo, Q1)
Ex,~Q1, Xo~00 || X1 — Xo ||* by the definition of Wasserstein-2 distance.

G PROOF OF THEOREMS 2] TO [ AND

In this section, we instantiate Theorem [I] (along with Corollary [I)) to provide upper bounds that have
explicit parameter dependency for a number of interesting distribution classes. In order to obtain an
upper bound that explicitly depends on system parameters, we need only to provide an explicit bound
on the reverse-step error, which is the main topic that we address in the following subsections.

G.1 PROOF OF THEOREM 2]

We first introduce some relevant notations. Given that Q) is Gaussian mixture, the p.d.f. of ¢; at each

time ¢t > 1 can be calculated as
N

q:(x) :/ a0(x|70) D mngo.n(w0)do
zoER? n—1
N
= Zﬂ-n/ 4t)o (z]z0) qo, n(To)dxo = Zﬂ'th n(T).
0€R? n=1

Since the convolution of two Gaussian density is still Gaussian, we have that g; ,, is the p.d.f. of
N (ft,ns Xt ), Where iy, := /Qqpio,, and Xy, := X0, + (1 — @;)I4. Note that 3, ,, has full
rank.
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G.1.1 CHECKING ASSUMPTION [4]

We first verify Assumption ] for Gaussian mixture (o for any o that satisfies Definition [T} The
intuition is that its Gaussian-like tail (for all ¢ > 0) is sufficient to control all higher-order derivatives
of log g;.

In the following, Lemma [I3] provides an upper bound on any order of partial derivative of a Gaussian
mixture density for any fixed x4, as long as each mixture component is well controlled. This
directly implies that the partial derivatives are also well controlled in expectation, and thus we verify
Assumption [ for Gaussian mixture in Lemma|[14]

Lemma 13. Ler g(x|z) be the conditional Gaussian p.df. of N(u.,X.). Define q(x) =
[ g9(z|2)dI1(z), where 11(z) is a mixing distribution (and denote Z its support). Suppose b :=
Sup, ¢z ||| < oo, and suppose the following conditions on ¥, hold for all z € Z:

1. There exist u,U € R such that u < det(X,) < U;
2. There exists V € R such that | S| < V;

1
3. There exists w € R such that sup ¢ z ; jc(q2 2. 2]”‘ <w
Then,
) 2k 1 k d2* 1 k
0% log g(a)| < min {Ck B, % kRS el % (poly, ()] b,
U m

where By, is the Bell number, C is some constant, and poly,,(z) is some k-th order polynomial in .

Proof. See Appendix [H.1] O

Lemma 14. When Q) is Gaussian mixture (see Theorem[2)), Assumption[dis satisfied.
Proof. See Appendix [H.2] O

G.1.2  EXPRESSING 97, log g;

Now we continue from Theorem [I|to work for an explicit dependency on d. We first calculate the
second partial derivative of its log-p.d.f. as

\v& log qi(x)

( (Z T Gt,n( t n( — pen) (T — Ht,n)TE;}z - Etﬁi))
T
Z Tindt, n — M, n > (Z Tnqt, n ( — Mt n)) > . (40)

Now write z,(z i — ,ut,n). Note that dyz{,, = [E;}L]Z , and that Orq; () =
Gt () (—2f (). We can rewrlte as

O log (@) = s ( Zﬂann ) (#hn (@) (@) = (2207)

Qt

N1

— (anqtm(az)zfn )(Zﬁnqtn ztn )))

N2

To calculate the third partial derivative of its log-p.d.f., we need first to calculate the partial derivative
of N1 and N2. The derivative for N1 is given by

o Z @) (b ()20 () — [57017)
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N
=3 (@) (2, (@) (21 (@) (@) — [527)
n=1

N
3 Tt ()85 2 () + Tt (0) (S 172 (),

and the derivative for term N2 is given by

N
k (Z 7Tn‘]t,n Zt n Z Tnqt, n Zt n ))

Z Tndt,n( Zf,n(x))zl,n( Z Tngt,n( Zt n(

+ Z TGt () 2] ( Z Tndtn ( (=2t ()2 () + S0
n=1

Combining these, the derivative for the numerator is

(g (z)N1 = N2) = 8k(Qt( )INI + ¢ (2)0)(N1) — 0k (N2)

== 2 maten (@)t anqt w(@) (44 (@) u(2) = (27117
+ qt <Z Tndt, ” Zt,n( )) <Z§,n(w)2g,n(37) - [21;711]”)
+ Tnlt,n (x)[zt n]lk t,n(x) + Tnqtn (x)[zt n]jk2§ n(x)>

N
=Y Muden(@) (—2fa(@)2] (@) + [S)) anqtn 2)2] (@)

n=1

N
- Z 71—th,n Zt n Z Tngt, n ( —Z, n(x))zg,n(l‘) + [EZﬂjk)

n=1

t,n

N
= 7qf Z Tnqt, n Zt n ) x)zf,n(x) - Z Wth,n Zt n Z Tingt, n

+ § 7Tth,n Zt n g Tndt, n Zt n Zt n + E Tingt, n Zt n

+qi( Z TnGen (@) [Zi 728 (@) + Y Tngrn(@)[S )7 Z Tngtn(
+ qt (-T) Z qut,n(x)[zgyli]ikzin (.’17) - Z qut,n t n Zk Z 7ant n
n=1
N
+ G (LL') Z Tnqt,n (LL') n szé n Z Tnqt, n Zt n Z Tnqt, n
n=1

Since

31, 1og g1 () = Oy (qt(x)Nl)—Nz)

gt (x

45

Z Tndt, n

Zt

Zt

Zt

n

n

Py

n

(z)

(z)

Sral*

N
== <8k(qt(ﬂc)N1 —N2)qi(z) + 2(q:(x)N1 — N2) Z qutn(m)zfn(x)> ;
n=1

Ln(@)

Zt n

()20 (2)
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we get

Q?(x)aigjk log Qt(x)

= _qt ZWthn Ztn ) ] (x)ztn +qt Z'ﬂ—thn Ztn Zﬂ-thn Ztn ) ! (il?)
+qt<x)zmqt,n 2)2l, ( anqm )2} (2)2F ()
n=1

N
+ qt (l.) Z Wﬂqt,n Zt n Z Tndt, n Zt n )Zf,n(x)

n=1

-2 <Z7rnqt7n(x)z§n > (Zﬂnqtn ztn ) (Z TnGtn (T ztn ))

+qi (x Zﬂ'n%n P REAM Zﬂ'n%n tn”Zﬂ'thn )2, ()
+q; () Z Tnten (2)[S )% 2], (2) — ai(e Z e (2)[Sg )™ Z Tnten(2)2] ()
+qi(z qutn Soalza(x) — (e Zﬂon )z, (x Zﬂn%n il

Below, we write & (2, ) := max, |2} , ()| and £ to be a matrix such that £ := max,, |[S; 1]|.
Also write hy , (z) = Tpqen(z)/q: (). Note that for any x, anl hin(x) = 1. Therefore, we take
max,, within each summation above and get

|02 1og u(x)| < 6&u(2,0)&(w, )& (w, k) + 257 & (2, k) + 257, (2, j) + 2577, (2, 4).

G.1.3 ASYMPTOTIC EQUIVALENCE OF pi;(x) AND 24
Intuitively, u(z;) and x; are asymptotically close when 1 — «a is small, which will be useful for
later analysis. In this subsubsection, we will show that &1 (11¢,7) — &(e, 1) = O(1 — ).
Note that for each n and fixed x; (writing s (z+) = pt),

Zt—l,n(ut) - Zt,n(lﬂt)

=30 (ke = pre-1,0) = Bpa (@0 — pen)

= (C 1 = Bea) (e = pe—1,0) = i@ = pien) = (e = pe—1,0))- (41)

Here, since X;_1 ,, is real symmetric, we can write the eigen-decomposition as ;1 , = UDUT,

where U is an orthonormal matrix (having unit 2- norm) and D is a diagonal matrlx (with all diagonal
elements positive). In the same notation, Zt 1n = UD™ U7, and Yin = (uXi—10 + (1 —

ai)lq) ™t =U(uD + (1 — ay) 1) "tUT. Since
1 1
(1—ay)(|D] +1)
= 9D £ (1= o)D"

= O(l — Ott),

D7 = [(uD + (1 = ar)1a)']"| =

the following holds:
||Et 1,n th_ 1—&,5

Denote [A]** as the i-th row of a matrix A. Thus, following from @T), for any i € [d],

2t = S s, — Sidll = 00— a), (42)
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. ; 1-— VAT 1-— (673 ~
y— x| = P — 0; 1 =01 — ),
|y — i T o Oilosar (2t) (1—ay)
‘M;n_ﬂéfln‘:’]'_\/a Méfln}:O]'_at)
where (%) follows from the definition of matrix 2-norm and from the fact that [%; e =nr1, 1

is the unit vector where the i-th element is 1, and recall that X;_ !is symmetric). This 1mphes that
|Zt—1,n(ﬂt) Ztn Ty | = (1 — ay), Vi. Thus,

o1 () — €, 8) = max |2y ()| — max |24, )|

< max |25y, (1) — 20 (21)| = O(1 — ), 43)
where the last inequality follows because max,, |a,|+max,, |b,| > max, (|a,|+|bs|) > max,, |a,+
bnl.

Following from Theorem [T} we have

d

Ex,~q. Z a?jk log g;— 1(Nt(Xt))a?jklogqt(Xt)
i,5,k=

1
d

< EXth[ Z (65 1 (X0), 0)& (e (X), )E (e (X), k) + 257 € (e (X ), ) + 257€ (1o (X)), 5)
j, k=

28R (e (X0), ) ) (66X, (X, 7)E(X, B) + 25TE(X0 k) + 25ME(X0, ) + 2574 (X0, )

d
CExea | 30 (60X DEX0 7)EX B) + STEX, k) + SH¢(X0, §) + SI6(X,, 1))
i,5,k=1

< 2Ex,~q. Z E(Xe,1)76(Xe, 1)2E(Xe, k) + (BY)2E(Xe, k) + (B7)26(Xe, ) + (B75)%€(Xe, )
i,5,k=1
(44)
where (i4) follows from @3).

G.1.4 EXPLICIT PARAMETER DEPENDENCY

We are now ready for the explicit parameter dependency for Gaussian mixture ()g. In the following,
we provide two different ways to upper-bound the terms in (#4) depending on how N is compared to
d. The first approach can be applied when N < d. For the £(z, ) (Vo € RY) terms,

d N
ax([S; )™ (2 = pie.n) SZZ [S0al™ (@ = pe,n))

™
I
®
%
= ‘:'M“
S B
g

= S = )| < Nmax |57 max [z —

) )
S Nmax ||z = pen”,

where (i) follows because of the following. Since Y¢.p 1s a (full-rank) covariance matrix, all its
eigenvalues are positive. Let Ay, min > 0 be the smallest eigenvalue of ¥ ,,, and thus
1 1

max by - — < — -
H Ay ming Ay min + (1 — &) ~ min{1, min, Ay min}

inll, < < 0. (45)

In particular, this bound does not depend on d or 7. Also, for the 3 terms,

d _ @ N g N
E (£4)? E max )% < E E ([Et_,flb]”)z = E : HZ ||F S Nd,
n=1

ij=1 ij=1 ij=1n=1
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where the last inequality follows from (@3] and the fact that for any matrix full-rank A, ||A||, <
V/d||Al|,. The second approach can be applied when N > d, where we can bound the &(z, -) (Va €
R?) terms instead as

d d

Y &) = max([S,]" (@ — pen))?

=1 i=1

d d
< > max (=il e = peall®) < D7 max [0 max e =
=1

—

=1
(553 ) (iv)
< Y max|[|Z ] max o — peal® S dmax ||z — el

Here (i¢) follows from Cauchy-Schwartz inequality, (i¢i) follows from definition of matrix 2-norm
and the fact that [©; }]™* = DIy 11, (1, is the unit vector where the i-th element is 1), and (7v) follows
from (@3). Also, for the second term, we can obtain an alternative upper bound as follows. Write
the eigen-decomposition as X ,, = Qndiag(An. 1, . ., An,a)QF, where Q,, here is an orthonormal
matrix (that does not depend on T'). Then,

S = Qn(adiag(An1, ..o Ana) + (1 — @) la) ' QT
= Q’rbdiag((@tA’rL,l + (1 - dt))717 ey (@tAn,d + (1 - @t))il)Ql’u

and thus
d . .
s 5241 = e 5@k
< (min{LH&lin)\n’mm}) e[N] ,]e[d |(Ql*) (@)
< (oin{ 1 min Ay }) ™ pmex Q3 I

= (min{1, min Ay min}) "%,

where the last line follows because Q,, is orthonormal for all n € [N]. Note that this is a uniform
bound that does not depend on N, T or d, which further implies that

d
Y (ZI) S d

i,j=1
Combining the two cases, we get
d
Zf(x,i)Q < min{d, N} maXHx—uthZ, (46)
i=1
d ..
> (£Y)* < dmin{d, N}. (47)
ij=1

Therefore, using @6) and @7), we can continue from (@4)) and get

d
Ex,~q, Z 8i3jk10g qt—l(ﬂt(Xt))a?jklog q(Xy)
i,j,k=1

< min{d, N}’Ex,~0, [||Xt||6 + max ||,ut’n||6} + (dmin{d, N})(dmin{d, N}).

Now, note that . .
max .| < max | po.n]” < o’
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since fo,, < o0 is a fixed vector. Also, the expected sixth power of the norm can be bounded as
_ — —12\3 =116
B = & | (V@ + vI=aibil?) | SENlf B Sl + o,
and, when Qg is a Gaussian mixture,
N
[ 2ol ao(ao)dzo = 3= [ ool (o) = i
n=1

Therefore, we finally obtain a bound on the reverse-step error with explicit system parameters:

XT:EX . log d=teXeclX0) | dminfd, N} log® T
e t—1,Xe~Qr—1,1 p;_1|t(Xt71|Xt) ~ T2 .

G.2 PROOF OF THEOREM 3]

Throughout the proof of Theorem [3] we adopt the noise schedule «; defined in (I0). We first
investigate some nice properties of the noise schedule in (10). Since ¢ =< log(1/d), we have
1 —ay Slog(1/6)log T/T. Using a similar argument from (Li et al., 2024, Equation (39)),

- 1—-¢ 11—y <10g(1/5)logT

V2<t<T 48
Oét—dt71—dt71—dt,1rv T ’ - - ’ ( )
1 *7O[t 1= Oét_1(17* Oét) S 1 *7O[t _ O~ IOgT ’ V2 <t<T
1-— (e} 1— [e T 1-— [e T} T

We note that|Li et al.|(2024c) does not highlight 6 dependency in their results. Also, note that if 7" is

large,
logT T
5<1+C & ) = et > 1.

T 2
Thus, with any fixed » € (0, 1) such that ¢ > rT' (> é), we have

log T logT\" log T
l_at:COz% min{é(l—l—C(;g ),1}:0(;% .

As a result,

T [(1-r)T] ]
ar < [ a= (1 - CIC;%T) = exp (f(l — )T (—CIC;%T)> = O(T~1=7)e),

(49)
Given any ¢ > 2, we can always find some r such that (1 — r)c > 2. For example, this is satisfied
when r = (¢ — 2)/4if ¢ € (2,4) and r = 1/4 otherwise. This shows that the o in satisfies
ar =o0 (T*2) if ¢ > 2. Therefore, the «; in (I0) satisfies Deﬁnition

Since the parameter dependency is clear in the bound for the initialization and estimation errors
(Lemmas 3|and ), it remains to provide a bound on the reverse-step error that depends explicitly on
the system parameters, which is the main topic below.

G.2.1 CHECKING ASSUMPTION [3]

Instead of Assumption[d} we check the more general Assumption [5|below. In particular, we verify
Assumption [5] with the o in (I0). In the following, Lemma [I5]is used to establish the first half
of Assumption[5] Next, the following Lemma [I6]is used to establish the behavior of the expected
moments under the perturbed posterior Qo|¢—1 (-|1¢(X¢)) when X; ~ Q;. Both Lemmas|15|and
will be useful for establishing the second half of Assumption [5|with the «; in (I0).

Lemma 15. Forallt > 1, ¢ > 1, and a € [d)P suchthat |a| =p > 1,

de/Z

J4
Ex,~q, |08 1og q:(X,)|" < (A=’
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Proof. See Appendix [H:3] O
Lemma 16. Forallt > 2 and p > 1, with the o in (10),

/ 11 () — V1o " dQoje—1 (wolpe(¢))dQu (w4) S dP/2(1 — Gy—1)P/%.

Proof. See Appendix [H.4] O
Finally, the following Lemma|[I7] verifies the second half of Assumption[5|with the «; defined in (T0).
Lemma 17. Forallt > 2, £ > 1, and a € [d] such that |a| = p > 1, with the o in (10),

. > Jqrt/2

Ex,~q, |05 10g qi—1 (e (Xe))|" < W.

Combining this with Lemma 3] Assumption[3]holds.

Proof. See Appendix [H.5] O

Now, Assumptlonls satisfied since —— < = ¢~ 1 forallt > 1if § is constant. Thus, if J is

1(1—10/

a constant, Assumption [dis already satisfied, as is Assumptlonl When § = 1/poly(T’) is vanishing
with 7', from (@), we still get (1= = = O(1 — o). Thus, Assumptlonls satisfied.

G.2.2  EXPRESSING 97, log g;
We begin by investigating V2 log q; (t > 2), for which we can derive the Hessian of log q; () as

9 Joyera Varo(@|z0)dQo(20)
9z \ [, era @jo(2]z0)dQo(20)

(%) [, cpe V2arj0(x]20)dQo (o) — (fg;oe]Rd Vqt|o(ff|x0)dQ0($0)) (fg;oe]Rd Vqt|0($|x0)dQ0(xo))T

v? log g:(x) =

q; (x)
= W (Qt(m)/ . qrjo(]z0) (& — Vawo)(x — Vauwo)T — (1 — @) la) dQo(xo)

1 1
=— 1, Ex, ~ © —vVay X, — VX
e (1—%)2( xooucle (@ e o)
T
~ (Exomquntie) [# = VA Xo] ) (Exomaoncio) [ = VaiXo]) ) (50)
For the third-order partial derivatives, we employ the notation
- T — \/0Xg
S

Note that 9yqs(0(x|z0) = qjo(x|w0)(—2"). Then, we can write (50) as

— ><qt<x> [ awotelzo)ziaQu(zo)

2
| -
al] Oth(I) t2($

N1

~ [ antelea)='aQulan) [ alietan)=aQuten) ) - =1

— Qg

N2
Note that the last term is a constant. The derivative for term N1 is given by

3k/f1t|o($|xo)2i2jd@0($o)
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- / Guo(zlzo)(—2*)2i 27 + 1(k = i)aupo(lzo) (1 — )12

+ 1(k = j)qo(x|zo)(1 — @) 12 dQo (o),
and the derivative for term N2 is given by

o1 ([ aotalan)="aQo(e0) [ aalolen)='aQu(eo))
— [ el (=)= + 10k = )(1 = a)™") dQu(zo) [ anolilao)=7dQu(zo)
+ [ agololen)='aQu(zo) [ agoleleo) ((24)27 + 1k = )1 - a0) ™) dQofio)
= ([ aiololan)=4)5aQu(o0) + 10k = )1 = @) () ) [ ao(elan)?dGafa)
+ [ anntelen)=*aQuan) [ aualolea)(~+4)aQu(an) + 10 = )1 - @) o))

Combining these, the derivative for the numerator is given by

O (n(x)N1 — N2) = 04 (g1 (2))N1 + g4 ()04 (N1) — 9 (N2)
— / dio(@leo) 712 2+ dQo o)

*/Qt\o(ﬂf\iﬂo)zdeo(ﬂfo)/Qt|o(9€|=’fo)zizdeo(!E0)
+ / auo0(]70)2 Qo (o) / do(@lw0) 2 2*dQo(x0)

T / Geolzl0)2*dQo o) / Geolzlr0) ) 2*dQo (o).

Thus,

Z]klOth(x> ( ) ( ) L

1

) (ak
1
(-t

- N2)au(a) + 2(a(oN -N2) | qt|o<x|xo>zkdc20<xo>)

3(96 qt|0 (z)20)2'27 28 AQo (o)

va@ Y [ alel)z Qo) [ agoleion)et 2 dQu(zn)

a1=1,j,k
az<as, az,azF#ai

—2/qt|o(a?|xo)zidQ0(fc0)/Qt|0($|$0)3de0($0)/Qt0(33xO)deQO(xO)>
= —/zizjzdeo\t(Mﬂx)
N L

a1=1,j5,k
az<as, az,azFai

o / 21dQup(aole) / 21dQos(xola) / #dQup(wole) 51)

G.2.3 EXPLICIT PARAMETER DEPENDENCY
By Cauchy-Schwartz inequality, we have

d
Ex,~q. [ > 0% 1og g1 (pe(X1)) 05, log g (Xy)

,5,k=1
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d 2 d 2
< | Exi~a Z (a?jkloth—l(ut(Xt))> x | Ex,~q, Z (”klogqt Xt)) .

i,7,k=1 i,7,k=1
(52)
We now analyze the two terms in (52) separately.

We begin with the second term in (52)). Recall that Z = Xt;_i‘/gxo is standard Gaussian under Qg ;.

Also note that for a standard Gaussian random variable Z, E || Z||® = d(d 4 2)(d + 4) < d®. Now,
substituting into the second term of (32)), we get

d 2
Z Ex,~q, </Zizj2deo|t(IoXt))

i,j,k=1
d i ~— i\ 2 j — i\ 2 k —xk\ 2
< 1 EX Xm0 Z (Xt - \/OétX()) Xt - Vath (Xt - \/OétXO)
- (I*O_ét)s 0t ot ikl \/1_dt \/1_dt Vl_@t
1 — VarXo||°
= 3 Ex0,X:~Qo.s = =2
(1—a) V1—ay
1 6
= WE”ZH
3
&
~ (1 — @)
and

d 2
3 Exea, ( / 21dQo (xola) / zjz’“dQOt(xom)

i,5,k=1
2 d . 2
=Ex,~q, H/ZdQOt(x()lx) Z (/z]zde0|t(xo|x)>
3 k=1
6\ 1/3 d 2 3/2\ /2
< <Ext~Qt /Zonu(iUo\&“) ) Ex,~q | Y (/ZJdeQOt(xolff)>
jk=1
X, — VaXo||°
<E ~ —_
> L X0,X:~Qo,t 1—ay
1 6
=~ _E|Z
a2
3
< _ &
~ (1= ay)?
and

d 2
S Ex,q, ( [ #duutaolxs) [ #aQuiteolxs) [ zdem(ont))

i,5,k=1

d Xi— S 2\ *
=Ex,~q, (2 (/ tl_\/ofvconOt(zoXtO )

X, — /& 6
/ tﬁ@d%(mow

= ——— Ev
(l_dt)g Xi~Qt

p—— - AT
<T—ap 1Z]
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3
< &
Tl )?
Thus, the second term of (32) satisfies that
d e

s 2
Ex,~q. Z (aijkloth(Xt)) §m-
i g k=1

Now we turn to the first term in (52)). Note that Z = X)) =V&1 X0 While Z is no longer standard

l—ap—1
Gaussian under Qg ¢, we can still achieve moment bounds using Lemma@ Now, substituting @)
into the first term of (52), we apply Lemma[I6]and get

d o 2
> Bxmo, ([ #5#4Quuwolm(xi)

ij k=1
<« 1 & m(Xe) — Vi Xo|® . &
BTy e Al VA ey Ter S R (R PR

and similarly,

zd: Ex,~0, (/ZidQOH1(xolut(Xt))/ZjdeQ0|t1(xOMt(Xt)))2

i,5,k=1
< dig
~ (1 —ay )3
d . . 2
S Ex,q ( [ #4Qus wolne(x0)) [ 2y (ol (X2)) | z’“onu_l(xomt(Xt»)
i,5,k=1
d3

SAT s
(1 — at,1)5
Thus, the first term of (52)) satisfies that

d

) 2 d?
3
Ex,~qQ. Z (aijkloth—l(:ut(Xt))) S m~
i,7,k=1
Finally, since %:g:, 1£;‘f‘; < log(1/ ;) 198 T \we arrive at
d 3 3
d3log>(1/6)1og® T
(1 ) Exema, | Y 0 log g (X)), loga(X,) | 5 e LD0e T
i, k=1

Summation over ¢ > 2 gives us the desirable result.

G.3 THEOREM[JAND ITS PROOF

Before we enter the proof of Theorem [ we introduce an intermediate result which might have
independent interest. Previously, for regular samplers, linear dimensional dependency can be shown
when all Q;’s (V¢ > 0) have Lipschitz score (Chen et al., [2023aid). The following Theorem |5|
provides an accelerated convergence guarantee when all Q;’s (Vt > 0) have Lipschitz Hessians.
Theorem 5 (Accelerated Sampler for All-Path Lipschitz Hessians). Suppose that V? log q;(z), Vt >
0 is 2-norm M -Lipschitz, i.e., M > 0 such that

V2 log gi(x) — Vlog qe(y)|| < M ||z — y| (53)

forall x,y € R? and t > 0. Then, under AssumptiOns and if the o, satisfies Deﬁnition the
distribution P} from the accelerated sampler satisfies

d2M?log® T
T2

log’T

KL(Qol[Fy) < + (log T)e? + ——eh.
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G.3.1 PROOF OF THEOREM[3]

In order to continue from Theoremm (in particular, the reverse-step error in @), we need to introduce
some useful notations for the distribution class in . For a matrix A, define its vectorization as

vec(A) = [AM, ... AM . Ad AT € RY Define K; € RY %4 to be the matrix that
reorganizes the third-order partial derivative tensor, i.e.,

(K (z)]™F = ?jklog qi(z), st.m= (i —1)d+j, Vi,j, k € [d].

With these notations, consider y = x 4 £u where u € R satisfies ||u/|* = 1 and £ € R is some small
constant. Then,

vee(V2 log go(y)) — vee(V? log i (x)) = Ki(a™)(y — 2) = €K (a*)u.
Here 2* = yx + (1 — «)y for some v € (0,1). Also, we have
|[vec(V?log g¢(y)) — vec(V?log ¢ (x))|
= HV2 log q:(y) — V*log q;(x HF
< Vd||V?log g:(y) — V? log gi(w)|| < VM ||y — ||

where the last inequality comes from (53). Thus, noting that y = z + &u and that [|u||* = 1, we take
the limit of € to 0 and get

K, (z)|| < VdM, Yz eR% vt>o0. (54)

We now derive an explicit upper bound on the reverse-step error. Using Cauchy-Schwartz inequality,
forany t > 1 and ; € R?, we have

d
Z 01 108 qr—1 (1) 071, 1og g1 (1)
i,5,k=1
d d
= Z (82‘3]‘1910%%—1(/%))2 Z (8%klogqt(xt))2
i, k=1 i,,k=1

[ K1 (ue) || p < [[Ke(ze) || o
< (VA || Kioa(u)]) x (V|| Ki(z)])
< d*M?2. (55)

Therefore, following from Theoremm we obtain

ZE ngt 1 (X 1|Xt)] d2M2log T
Xt 1,Xe~vQi—1,¢ Pi 1\t(Xt 1|Xt) T2

G.4 PROOF OF THEOREM 4]

Throughout the proof of Theorem [] we adopt the noise schedule a; defined in (I0) with § =
1/(M§T%) and ¢ > 1og(M%T%). Note that such oy satisfies Deﬁnitionfor all t > 1, and thus
the bound on the estimation error still applies. Also, Assumption [3]is satisfied for ¢ > 2, as shown
in Appendix [G.2.1] Thus, Theorem [3| can be applied and the reverse-step error at ¢t > 2 satisfies,
Vi=T,...,2,

d
(1= )’ Ex,ng, | D O log e (ue(X0))0} log g: (Xe)
ij,k=1
< d3(log® M +log® T) log® T
In order to determine the dimensional dependency of the reverse-step error, the key is thus to establish
a similar upper bound at ¢t = 1.

(56)
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Now, we provide a modified version of Theorem [I] which does not require g to be analytic (as in
Assumption [2) or to have regular partial derivatives (as in Assumption[5)). We recall from (1) that
the reverse-step error at time ¢ = 1 can be upper-bounded as

qoj1(Xol|>1)

4 /
pé\l(X0|$1) < Exonqon (€10l — ]EXONPOH[CLO].

]EXDNQO\I |}Og

Instead of the Taylor expansion in (20), we employ the following different expansion from Taylor’s
theorem. The only difference is that the expansion stops at the third-order term.

Ci,o = (Vlogqo(p1) — Voo Vlog qi (1)) (2o — p11)

1 «@
+ 5o —m)T (V2 loggo(p1) = 5 _an Bt) (zo — p1)
1 < R
7 Z 10 go(uy) (wh — ) () — 1) (2 — ) (57)
k=1

Here uf(x1,z0) := su1(z1) + (1 — ¢)zo for some ¢ € [0, 1]. Note that 7 is a function of both x;
and xg.

A remarkable difference from the proof of Theorem I]is that we do not require ¢ to be analytic for
this expansion Indeed, it only requires that the third-order partial derivative exists. With this new
expansion, we have the following lemma, which serves as a counterpart of Lemma[T1]

Lemma 18. Suppose that qq exists and V? log qg is 2-norm M-Lipschitz. Then, with the o in (T0),

we have 52
1-— (e%]
Exy (Exomaos — Exoery, ) [60] S S0 atar
3!&1/

Proof. See Appendix [H.6| O

2

Finally, with the chosen § = 1 — a; = 1/(M3T'%), the rate at the first step satisfies

(1—ay)?? d* -2
Wd Mg T9/4 ZO(T )
1

As T becomes large, the rate of the total reverse-step error, which decays as O(T‘Q), is not affected.
The proof is now complete.

H AUXILIARY PROOFS OF THEOREMS 21 TO @]
In this section, we provide the proofs for the lemmas in the proofs for Theorems [2]to ]

H.1 PROOF OF LEMMA [I3]

Fix k > 1 and a € [df. Recall that u < det(3;) < U, ||| < V., and
1

SUPzezi,jeld]? (X2 2]V

sian. We are interested in upper-bounding the absolute partial derivatives of log g(z) with a function
of = where

< w for all z € Z. Also write ¢(y) as the p.d.f. of the unit Gaus-

dle) = [ gtalpancs),
where, using the change-of-variable formula,

1 =
olals) = sogre (B @) (58)

We first identify an upper bound on the absolute partial derivatives of ¢(x). Now,

0@ [ohgtalan(s
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(i1)
< W/ a¢( (x_ﬂz)) dIl(z)

where (i) follows from the dominated convergence theorem (see (31)), and (i¢) follows from (58). To

obtain an upper bound on the k-th derivative of Gaussian density, we invoke the multivariate version

of the Fad di Bruno’s formula (Constantine & Savits,[1996, Theorem 2.1). Since y = X, 2 (x —ps)
1

is linear in x, only the first-order partial derivative is non-zero and is equal to an entry in 3, 2. Thus,
we have

o (S @—p))|=| 3 P w) ﬁaxag o — o))

a’€[d]k

< Z qba, ( (x — uz)) max {w,1}*, Va : |a| = k.

a’€[d]k

Here we define ¢ (y) := 0%¢(y). Since ¢(y) is a Gaussian density which is infinitely differentiable
and decays exponentially at the tail, its k-th order derivative satisfies o) (y) = poly,(y)¢(y) where
poly, (y) is a k-th order polynomial function in y1, . . ., yq (and thus in z1, . . . , x4 by linearity). Also
note that, for any a € [d]*,

lim
lyll—o0

<b§f)(y>‘ - Hyllllm Ipoly(y)o(y)| = 0.

By the continuity of qbgk) (y), there exists g such that < poly;.(Fq) for all

Yy € R<. Now, for all z € R?,

)] < [0 ()

x)|§/det(2 ¢( (x—uz)’dl_[
< max w1 [der(®)H [ 2 [polvy (573 - )| | 0 (57 - ) di(e)
a€c[d] 59)
< dkm{\/w Ipolyy, (Ya)| & (Ya) - (60)

We have thus obtained a constant upper bound on all partial derivatives of ¢(z) of order k.

Next, we convert the partial derivative bound into that for log ¢(z). We again invoke Fad di Bruno’s
formula|Constantine & Savits| (1996). Note that

0k log q(x) Z Ha"’ o) = Y rorn(@) (61)

b J=1 bi,...,bx
in which we define each summation term as r. Here {b1, ..., by} is some (possibly empty) partition
of a, ie., Zj b; = a and Zj |bj| = k (thus, at most k partitions). We order this partition such
that k > |by| > --- > |bg| > 0. Note that the total number of partition can be upper-bounded
by d* Zle By.(1,...,1) = d* By, where By (-) and By, are the Bell polynomials and the Bell
number, respectively.
We first showcase a simple yet useful upper bound. From (60), we get,

k

T ol a() _ﬁ)@f’q ’

j=1

_ (dmax{w, 1})2251%4]
min{u, 1}5/2

max{maxgb L1} H ’pOl}’\b | (Yo, )
Jj=1
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_ (dmaxfuw, 1) % . L
mina 1yi7z - max{max o(y), 11 max polyyo, (5,)

<o d* max {w, 1}"

= “by1,...,b; min{u,l}k/Q

where, as noted above, Ub; does not depend on x. Here Cbl,...,bj is some constant which depends
only on the partition {b1, ..., b;} and is independent of z. On the other hand, we can also obtain

a simple lower bound on ¢(z). Observe that g(x) is continuous and always positive. Recall that
b=sup,cz ||p=||. Thus,

exp <— Slelg(fv — )8 (- uz)) dIl(z)

@

> 1

(2m)d/2 supz€3 det(X,)2 /
1 /
2

- <sup|\z (el + sl >) I(2)

T (2m) 42 sup,c z det(T
1

1
> T ex ——su 22—1 T 2+b2 )dH -
= (2m) 2 sup, . 5 det(3.) L, P( 3 sup [ =] (lal® + %) ) dnl(e)

> g o (—V<||x||2+b2>>.

Therefore, if we set C' := maxp,

b, We obtain
J

..........

d?* max {w, 1}* v 2
k k keh ¥ (lel?+6%)
|0k log q(z)| < C*By, a1 Ure (62)

The upper bound above, though it depends only on parameters u, U, V, w, has an exponential depen-

dency on z, which is not desirable. We next derive a more refined bound in x. For brevity of analysis,
we re-express r (defined in (61)) to avoid empty partitions:

p
Tbr, b (1) = q(2) 7 [] 957 q(2), st |bpya| = = br| = 0.
j=1

Now, by the boundedness of ||,
such that, Vz € Z,

H on Z, for each x, there exist (bounded) ibj and fip,

1
‘polywﬂ (Ez 2z - uz))‘ < (poly\b | ( o - [ib; ))‘ < 0.
be[d|b | be d]| J|
Then, following from (59), we obtain

7oy, b0 ()] = q(@ Halb' (z)] < q(x) 'az‘,b 4 )’

J=1
(dmax{w, 1}) _7':1“).7"
<
o uP/Q

p [de()ES Pty (557 (@ = ))& (822 (0 = o)) dll(2)
U J det(s.) 20 (8% (o — ) ) dl(2)
] ) | e ) L)

e [det(2.)"2¢ (2;%(:5 - uz)> dIl(z)

X
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—-(iﬁﬁ?fiﬁiig II 3 [potsny (557 - me)

ch]lal

Note that for each j, the number of terms in the summation above is upper-bounded by d!%s!. Thus,
expanding the product of summations would result in no more than H§:1 dl®il = d* terms. Also,

since ‘poly,Cl (y)| - [polyy, (y)] = |polyy, 4, (y)| and since any i;ﬁ (# — ip;) is linear in = and
independent in z, each product term is a k-th order polynomial in x. Therefore, we obtain
2k E
@ < TR max poly, )
c;eld]l 1 Vj=1,....,p
and thus
d*! max{w, 1}*

k
1 <By——Fm—-"
‘aa 0gq(ac)| =7k min{1,u}*/2 blr?.%,)t(;k

max \polyk (2)]. (63)
c-e[d]|bj‘ Vi=1,...

We have thus identified an upper bound on {8k log g(x | )| which is polynomial in . The proof is now
complete by combining (62)) and (63).
H.2 PROOF OF LEMMA[[4]

We first identify u, U, V, w for ¥ ,, such that they are independent of 7" and k for all ¢ > 1. Fix ¢t > 1.
We use the fact that ¥ ,, = 20, + (1 — ay)Ig. f welet Ay 1 > -+ - > A, ¢ > 0 as the eigenvalues

of ¥, (which do not depend on T), the eigenvalues of ¥, ,, are {@¢ A, ; + (1 — &) }L ;. Therefore,
foranyn=1,...,Nandt > 1,

d d
(u:=) H min{min A, ;, 1} < det(Z;,,) < H max{max A, ;, 1}(=: U).

i=1 i=1
Also, following from @, we have V = m Next, write the eigen-decomposition as

Yon = Qndiag(An 1, ..., A\n,q)QT, where Q,, here is an orthonormal matrix (that does not depend
on T'). Then, for any ¢t > 1,

2,7 = Qu(adiag( A, - s Ana) + (1 — @) 1y) " 2Q7
= Qudiag((Gehn1 + (1= @) 7%, ..., (Gdna + (1 — &))" 5)Q]
and thus, forall t > 1,

(@eAn g + (1 — @) 2QHQRI

Mg

k=1
d

Z QY

Since the identified u, U, V w are all independent of 7" and £, by Lemma. we have obtained an
upper bound on |8k log q(z ‘ for any fixed x which is independent of T". Thus,

< (min{l, min A\, 4 —3 max =:
( { n }) n€[Nl,i,j€[d]

(1 — )" *Ex,~q, |05 log a:(X1)]

(1 — a)*?Ex,~q, |05 1og q—1 (11:(X2))|

-0 (1= =0(s4s).

Hence, we have shown Assumption E}

H.3 PROOF OF LEMMA T3]

Fix t > 1. We will draw some notations introduced in Lemma[T3] Specifically, we recall from (61)
that

b log qi(w¢) = qi(we)” Z Hatl,b ‘Qt ()

bi,...,bp j=1
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= qi(@e) ™" Z H/ Grjo(@¢|zo)poly|p,| (xt \ﬁ%) dQo(z0)

bi,...,bp j=1
T — /T
= ol d Tolx 64
bl;bp (1_at H/xop Y|b; |( =5 ) Qoj¢(wo|z+) (64)
in which we have defined poly, (y) as a k-th order polynomial function in y1, ..., y4. Recall that

here {b1,...,bp} is some (possibly empty) partition of @, i.e., >, bj = aand ), [b;| = p
Thus,

EXtNQt |ag IOg Qt(Xt) |é

p
< —— Z EXW“Q’! H

(1-@1t

w"@

.....

(id)
< # Z H (EXthNQot

X —/aXo
wav ﬂ—%)

| b,

= (1_ % Z ﬁ (E‘pobqb | )’|”p:>

5|

Qy Lobp j=1
< L
(I—au)=
where Z ~ N (0, 1) is a standard Gaussian random variable (that does not depend on 7" here) and
any r-th order of polynomial of Z1, ..., Z4 has finite expectation (that does not depend on 7" and

with at most d’/? dimensional dependency). Here (i) holds by Holder’s inequality, and (i) holds by
Jensen’s inequality since p¢/ |bj| > 1 for all bj and £ > 1. The proof is now complete.

H.4 PROOF OF LEMMA [16]

Fix t > 2. We first introduce the following notations. Write y1; = p;(2¢). Let @, be the distribution
of p14(X¢) where X; ~ @y, and let g,,, be the corresponding p.d.f. (w.r.t. the Lebesgue measure). Let
Q. .z, be the joint distribution of 1, and xg.

Now, we can re-write the integral as
[ ieton) = Vil dQoje-s(aole()) Qs (z2)
To,Tt
— [ = VaTeol? dQup- (el )dQy )
ZTo,Mt

= / llpe — Var—1zol” Md@o\t—l(xdﬂt)th—l(ﬂt)
o, qr—1(pet)

< \// et — /@10 dQoje—1(wope)dQe—1(pet)
Zo,Ht

2
\// qlu .ut ) dQO‘tfl(xOLLLt)th_l(‘LLt) ©5)
To, Mt

%1

where the last line follows from Cauchy-Schwartz inequality.
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Now, for the first term of @ we recovered the matched moment, and we have

\// e — \/O7t—1370H2p dQoje—1(wolpe)dQr—1(pet)
Zo,Ht

_ 2
= \// |zt—1 — Var—1wo|| ™" dQot—1(wo, T4—1)
0, Tt—1

170[,5 1 g\//
Z0,Tt—1
= (1—a-1) \E (2| S d5(1—a1)®

where Z ~ N (0, I) is a Gaussian random variable.

2p
Tt—1 — \/Ott 120

1—Oét 1

on,t—l (500, fct—l)

Now we upper bound the second term in (63]), whose square is equal to

/l'o,m (q‘“(”t)> 2 dQo¢—1(wolpe)dQr—1(1r)

Qt—l(,ut)

= 1) )’
- Gr—1(Ti—1) qr—1(re—1)dz—y
=1+ x*(Qu ||Qe-1)

(i)
< 14X (Quiwo [ Qe—1,0)

N /wo (/m <M)2qt—llo(ﬂt|x0)dut> dQo(zo)
(] et e (42) )
“ vo(Te|x 2

21, ) saotenso

d x -
\//xo,:ct det ’uc;i t)) dQy,0(zt, o)

where x2(P||Q) is the chi- squared divergence between P and (). Here (i) follows from the data

processing inequality for f-divergence, and (4i) again follows from Cauchy-Schwartz inequality. We
can calculate the determinant term above as

dt(ii) —det(\lﬁ 1\ﬁ logqt(xt))_Q

— ( ! (14 (1 = a)Te(V? log g (1)) + GT(xt»)

5
C“t

< at (1 —2(1 — o) Tr (V2 log q:(z:)) + eT(xt))
where we denote the residual terms as e (2) := 3 7o (1—)? 30 p. ir1=p 1 i jyer 95 2 log qi (),
where c; is some coefficient that does not depend on T'. Since from Lemma|I5]
1
(1—ay)t
and note that 1= e = O <IO§T) with the o in (T0), we have that

o0

Ex,~q, ler(Xy)] <Y (1—oy)? Z crEx,~q, H |a IOth(Xt)|
p=2 LiI=p ()€l

EXtNQt ’812] Iqut(Xt)’l = O < > ’ VZ?J € [d]7 Ve > ]-7
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3 =

<

M8

(I —ay)? Z cr H (]EXth ’anIqut(Xt)’p>

2 I|I|=p (ij)el
~ ((1 — at)p)
— (1 — Oét)p
( logT )
dyy -2 e~ (logT ~ (logT
Ex,~ —_— =} —— ) <1 .
X, Q‘det(dxt> (o'h: —|—O( T <140 T

> S 77
( Qt|o($t|$o) ) _ (1—a)d T—a;
Qt—l\o(ﬂt‘xo) 1 exp < |‘/Et+(1at)VIDth(£Et)\/EZEO|2>
S

Dlﬁg?

Il
o}

and thus

Also, since

Qap—0

=
1—a d 2 1 1
(52 et (- 22))
1— &y oap—ap 1—ay
2(1 — ) Vlog gy () T(ze — /arwo) + (1 — a4)? ||V log g (w)]|”
ap — O
(#44) Ty — \/O_Ttl’o 2 1-— (e 77
<
- exp( \/1*0_41; at—dt x
ex 2(1 — ) Vlog qe (24)T (x4 — \/20) + (1 — o)? ||V log Qt(xt)Hz
P ap — oy
_ 2
(H) Tt — \/@Jﬁo 1-— it
= &P ( m Qp — O_[t> x
C+o(a—mvm%mrm—wwm+u—mwvm%mmj>

ar — Oy

exp

where (i) follows because +—2t=1

~ < 1, and (iv) follows because e* = 1 + O(z) when z — 0 and
because ~=2 1=t = (%) with the o in (T0). Thus,

aﬂl Qi
2 1—0&,5)
— | X
oy — O
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ap — Qi
X — VX 21—0[,5 140 logT
\/170_[25 Oét—dt T

where (v) follows from Lemma and Cauchy-Schwartz inequality, and

Xt \/TXO 2170@
ap — O

%wM%>>2
Qtfl\()(/it(Xt)'XO)

X, — V& Xo
VI—a;

Ex, xo~Qu.0 (

< EXtyXONQt,O eXp (2 ’

1+0 (Ext,XmQt,o l
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1 g l-ay

- /e Azl 4 1e0% g,
d
(2m)z J-

_ 1 /e—%|\2|\2(1+0(103T/T))dz
(27‘() z

~ (logT
=1 .
+0(“E%)

Therefore, we arrive at a bound for the second term in (63):

logT
\// (i) ut ) dQoji—1 (ol pe)dQs—1(pe) < 1+O< g )
To, Mt qt 1 /'[/t T

and the lemma follows immediately.

vl

H.5 PROOF OF LEMMA[I7]
Fix t > 2. From (64)), we also have

Ex,~0, |02 10g qi—1 (1:(X1))|*

p
S%pe Z Ex,~q. H

(I—a-1)= by j=1

&~

/ polyy, | (Ht({}%xo) dQo|¢—1(wolpe (X))

‘:‘X

7 Z H <]Ext~czt

(1—0%12 bp j=1

/xo poly|bj| <Mt()i;)1_76j:lmo> dQoj—1(wope(Xt))

| b

poly <Mt(Xt) - \/Oét1$0>
0 |bj| /1 — dt—l

poly ., <ut(%xo> ’ dQoj—1(wope(Xt))

g 3 1 (Bxea |

pt
(1_at12 Lbp j=1

1 ’
< ———p E max]EXtNQt/
zo

(I—aa)z 7, 70

we(Xe) — Va—1zo Pt
V91—

dQoj¢—1 (ol pe(Xt))

where the last line follows from Lemma [I6] Now, together with Lemma [T5] Assumption [3] is
established noting that 17‘;’“ =0 (b%T) =O0(1 —ay) forall t > 2.

H.6 PROOF OF LEMMA [I8]
Recall the expansion of (] ; in (57). As in the proof of Lemma. 11} with the choice of i and X1, we
still have

EXONP’ [T ] = EXONQOM [T ]

o1

EXUNP'| [ ] EXONQOM[T/]
Define T3 := 5 Z” k= 1azgk10gQO(M1)($o ui)(zp 9 — 1) (xf — uf). Here i = i (w1, o) is a
function of both z; and xy. A useful result from Lemma@ is that, with the o in (T0), we have,
Vi, j, k € [d]and £ > 1,

¢ (1—ay)td
(1—1)'Ex,~0, |07 log q1(X1)|” < W =d", (66)
2 _ (1—oq)3d®
(1= a1)’Ex,~q, |05k logai(X1)]” S W = d3. (67)
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First, using Lemma|8] we have that
EX(LXINQO,I [T?ﬂ
(1 — a1)3

d
- W Z EXO,XlNQo,l[a?jk IOgCIO(NT(Xl,Xo))a?jk log q1 (X71)]
1 i,7,k=1

d d
(1—0&1)3 %
T 3/2 EXO,leon,l Z (a?jklogqo(ﬂl(XhXO)))Q Ex,~q Z (a?jklogql(Xl))Q
3lag i.5,k=1 i.5,k=1
d
(1—0[1)3
< WdM Ex,ng, Y, (03 logai(X1))2
Ses| i,j, k=1

Here in the last line we have used a similar technique in (53), which assumes that V2 log gq is 2-norm
M -Lipschitz. Now, from (67) we have

(1 — 041)3/2

d* M.
3/2
3!a1/

EXU,X1~Q0,1 [T?ﬂ 5
Also,
Exonry, T3]

X1~Q1

d
1 *
=31 Y Expery, |05kl0ga0(ni (X1, X0) JT (X6 - ni(X0))
Tigk=1  X1~Qi =ik

(i) 1 6
< g dM By opy, [ Xo = m(X)]|
. Xi1~Q1

d
1 i .6
gdzM ZEXONP(;H (XO — /-Ll(Xl)?’)
: i=1  X1~Q1

IA

d 3
@) 1 5 1—ag 9 3
= g d*M ;15< o Ex,~q, (14 (1 —a1)d%logqi(X1))

(i) (1 — )2

d*M
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where (i) holds with a similar technique in (53) assuming V2 log qq is M-Lipschitz, (i) holds by
Lemma(7} and (i7¢) holds by (66). The proof is now complete.
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