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FiffDepth: Feed-forward Transformation of Diffusion-Based Generators for
Detailed Depth Estimation

Supplementary Material

1. Implementation Details

We implement FiffDepth using PyTorch, employing Stable
Diffusion v2 as the backbone and adhering to the original
pre-training setup with a v-objective. Text conditioning is
disabled. To maximize the benefits of pre-trained mod-
els, we adopt the Depth Anything V2-Large model as the
DINO supervision model, as it was the most advanced ver-
sion available at the time. To enable training on a single
GPU, gradients are accumulated over 16 steps. The Adam
optimizer is employed with a learning rate of 3-10~°. Ran-
dom horizontal flipping is applied as a data augmentation
technique. The training process used a batch size of 32, and
the model converged after approximately 10, 000 iterations.
Training to convergence takes approximately 1.5 days on a
single Nvidia Tesla V100 GPU.

Training datasets. Hypersim [5] is a photorealistic in-
door dataset with 461 scenes. From the official split, we
use 54k samples from 365 scenes, filtering out incomplete
ones. RGB images and depth maps are resized to 480 x 640,
and the original distances relative to the focal point are con-
verted into depth values relative to the focal plane. The sec-
ond dataset, Virtual KITTI [1], is a synthetic street scene
data set that features five scenes under varying conditions,
such as weather and camera perspectives. We use four
scenes, totaling around 20K samples, cropping the images
to the KITTI benchmark resolution [3] and setting the far
plane at 80 meters.

Evaluation datasets. For the evaluation of affine-
invariant depth, we use the same datasets and evaluation
protocol as Marigold. These datasets include NYUv2 [7],
ScanNet [2], KITTI [3], ETH3D [6], and DIODE [&].
NYUv2 [7] and ScanNet [2] are indoor datasets collected
using RGB-D Kinect sensors. For NYUv2, we use the test
split containing 654 images. From ScanNet, 800 images are
randomly sampled from the 312 validation scenes. KITTI
[3], a dataset of street scenes with sparse metric depth cap-
tured by LiDAR, is evaluated using the Eigen test split [14],
which consists of 652 images. ETH3D [6] and DIODE
[8] are high-resolution datasets with depth maps generated
from LiDAR measurements. ETH3D contains 454 samples
with ground truth depth maps, while DIODE’s validation
set includes 325 indoor and 446 outdoor samples.

2. Detailed Ablation Studies

Studies about L;. When keeping the original trajectories,
if we only predict image features, the results are distorted

because image features are very different from depth fea-
tures (Figs. 2 and 3). Please refer to the w/o blend depth
results in Table 1.

If we only predict depth features, the U-Net fails to im-
prove the results because the previous trajectories are fully
adapted to depth and cannot be applied at ¢ = 0 when the
input is an image latent. This effectively cuts off the con-
nection between the input at ¢ = 0 and the earlier stages,
leading to results similar to those without keeping trajecto-
ries. For without keeping trajectories results, please refer
to the w/o L;, results in Table 1. Without L, the details
are also reduced accordingly (Figs. 2 and 3), as reflected in
the results shown in Table 2. When predicting the blended
latent, we can achieve a smooth transition from image to
depth.

Regarding the effects of different blend ratio weights,
please refer to Figure 1. It can be observed that as the
proportion of depth increases, the accuracy of the results
improves accordingly. For simplicity, we set v = 0.5, al-
though this is not optimal for all datasets. The ~ value re-
mains constant throughout the entire training process.

Usage of DINO supervision. As for the use of DINO,
we found that the performance drops significantly without
DINO supervision (Table 1). If we use depth at the d stage,
there is no noticeable impact on metrics such as AbsRel, but
it has a substantial effect on details, as shown by the Zero-
shot Boundary metrics in Table 2. These phenomena can
also be observed in Figs. 4 and 5.

Different size of DINOv2. Since DINOv?2 has different
size versions, we use various sizes of Depth Anything mod-
els—small, base, and large—as our DINOv2 model. The
results, shown in Table 1, indicate that while there are some
differences in test metrics across these versions, all results
demonstrate that our method effectively transfers the gen-
eralization capabilities of DINOvV2, regardless of its size,
to the diffusion model. In all experiments except for those
mentioned here, our method uses the Depth Anything Large
version.

3. More Comparison with Other Methods

We have added more comparisons with GenPercept [9]
and Lotus [4] here. Qualitative comparisons are shown in
Figs. 6 to 11. Although their feed-forward approach has a
runtime almost identical to ours, their method falls short in
terms of accuracy, generalization ability, and detail preser-
vation compared to ours.

We also add more comparison results with Depth Any-

ICCV

046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083

084

085
086
087
088
089
090
091



ICCV ICCV

ICCV 2025 Submission #-. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

092 thing v2 and Depth Pro in Figs. 12 to 15, and with GeoWiz-
093 ard and DepthFM in Figs. 16 to 20.

094 4. More visual results

095 We have also included the results of depth to point cloud
096 conversion in Figs. 21 to 27.
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Figure 1. Effects of different blend weight ratios.

0.5 0.75
Ratio of Depth

Ratio

05 075
of Depth

Method Training| NYUv2 KITTI ETH3D ScanNet  DIODE-Full DA-2K
Data |AbsRel | 01 1|AbsRel | 61 T|AbsRel | d1 T|AbsRel | 01 1|AbsRel | 61 1|Acc (%)
w/o blend depth | 274K 50 969 89 931, 98 957 58 965 262 79.0| 912
w/o Ly, 274K 48 961 79 914 73 952| 54 96.1| 253 76.4| 952
w/o DINO 74K 55 965 98 913 63 959/ 6.0 958 285 77.8| 879
DINO-L on dy 274K 46 964 78 929 7.6 967 49 96.6/ 251 7T7.6| 957
FiffDepth-S (Ours)| 274K 52  97.1f 79 934, 75 968 4.6 973| 242 77.5| 9438
FiffDepth-B (Ours)| 274K 47 976 7.8 937 72 970 43 978/ 241 779| 96.9
FiffDepth-L (Ours)| 274K 44 978| 73 935 7.1 972 42 979 239 781 97.1

Table 1. Quantitative comparison. We use AbsRel (absolute relative error: |d* — d| /d) and 1 (percentage of max (d*/d,d/d") < 1.25

). All metrics are reported as percentages.

Method Sintel F1T Spring F1T iBims FIT AMRT P3MRT DISRf
GenPercept 0.080 0.040 0.126 0074  0.115  0.049
ee-ft 0.088 0.049 0.136 0088 0107  0.051
Lotus-D 0.081 0.062 0.141 0065  0.109  0.047
Lotus-G 0.072 0.054 0.130 0067 0112  0.043
Marigold 0.068 0.032 0.149 0064 0101  0.049
GeoWizard 0.087 0.038 0.137 0070  0.104  0.052
DepthFM 0.064 0.030 0.145 0.058 0.97 0.039
DepthAnything vi  0.261 0.045 0.127 0058 0094  0.023
w/o blend depth 0.113 0.047 0.148 0072 0114  0.063
wlo Ly, 0.283 0.066 0.157 0157  0.154  0.074
w/o DINO 0.394 0.073 0.161 0.168  0.157  0.087
DINO-L on dy 0.312 0.061 0.154 0.146  0.152  0.069
FiffDepth (Ours) 0.423 0.086 0.189 0.176  0.179  0.091

Table 2. Zero-shot boundary accuracy. We provide the F1 score for datasets containing ground-truth depth and boundary recall (R) for
those with matting or segmentation labels.
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Figure 2. Ablation studies. The generalization capability and depth details of the method are affected when some essential components
are missing. 4
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w/o Ly,

Figure 3. Ablation studies. The generalization capability and depth details of the method are affected when some essential components
are missing.
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Figure 4. Ablation studies. The generalization capability and depth details of the method are affected when some essential components
are missing. 6
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Figure 5. Ablation studies. The generalization capability and depth details of the method are affected when some essential components
are missing. 7



ICCV ICCV

ICCV 2025 Submission #-. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Input Image GenPercept

Figure 6. Qualitative comparison with GenPercept and Lotus.
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Input Image GenPercept

Lotus FiffDepth

Figure 7. Qualitative comparison with GenPercept and Lotus.
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Lotus FiffDepth

Figure 8. Qualitative comparison with GenPercept and Lotus.
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Figure 9. Qualitative comparison with GenPercept and Lotus.
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GenPercept
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Figure 10. Qualitative comparison with GenPercept and Lotus.
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Figure 11. Qualitative comparison with GenPercept and Lotus.
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Input Image Depth Any. v2

Depth Pro FiffDepth

Figure 12. Qualitative comparison with Depth Pro and Depth Anything v2.
14

ICCV



ICCV

ICCV 2025 Submission #-. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Input Image Depth Any. v2

Depth Pro FiffDepth

Figure 13. Qualitative comparison with Depth Pro and Depth Anything v2.
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Figure 14. Qualitative comparison with Depth Pro and Depth Anything v2.
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Input Image Depth Any. v2
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Figure 15. Qualitative comparison with Depth Pro and Depth Anything v2.
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Figure 16. Qualitative comparison with GeoWizard and DepthFM.
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Input Image

DepthFM FiffDepth

Figure 17. Qualitative comparison with GeoWizard and DepthFM.
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Input Image
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Figure 18. Qualitative comparison with GeoWizard and DepthFM.
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Input Image GeoWizard

DepthFM

Figure 19. Qualitative comparison with GeoWizard and DepthFM.
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Input Image GeoWizard
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DepthFM FiffDepth
22

Figure 20. Qualitative comparison with GeoWizard and DepthFM.
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Depth

Novel View

Figure 21. Depth to 3D Point Clouds.

Input Image Depth Novel View

Figure 22. Depth to 3D Point Clouds.
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Input Image Depth Novel View

Figure 23. Depth to 3D Point Clouds.

Input Image Depth Novel View

Figure 24. Depth to 3D Point Clouds.
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Input Image Depth . Novel View

Figure 25. Depth to 3D Point Clouds.

Input Image Depth Novel View

Figure 26. Depth to 3D Point Clouds.

Input Image Depth Novel View

Figure 27. Depth to 3D Point Clouds.
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