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FiffDepth: Feed-forward Transformation of Diffusion-Based Generators for
Detailed Depth Estimation

Supplementary Material

1. Implementation Details001

We implement FiffDepth using PyTorch, employing Stable002
Diffusion v2 as the backbone and adhering to the original003
pre-training setup with a v-objective. Text conditioning is004
disabled. To maximize the benefits of pre-trained mod-005
els, we adopt the Depth Anything V2-Large model as the006
DINO supervision model, as it was the most advanced ver-007
sion available at the time. To enable training on a single008
GPU, gradients are accumulated over 16 steps. The Adam009
optimizer is employed with a learning rate of 3 \cdot 10^{-5} . Ran-010
dom horizontal flipping is applied as a data augmentation011
technique. The training process used a batch size of 32, and012
the model converged after approximately 10, 000 iterations.013
Training to convergence takes approximately 1.5 days on a014
single Nvidia Tesla V100 GPU.015

Training datasets. Hypersim [5] is a photorealistic in-016
door dataset with 461 scenes. From the official split, we017
use 54k samples from 365 scenes, filtering out incomplete018
ones. RGB images and depth maps are resized to 480×640,019
and the original distances relative to the focal point are con-020
verted into depth values relative to the focal plane. The sec-021
ond dataset, Virtual KITTI [1], is a synthetic street scene022
data set that features five scenes under varying conditions,023
such as weather and camera perspectives. We use four024
scenes, totaling around 20K samples, cropping the images025
to the KITTI benchmark resolution [3] and setting the far026
plane at 80 meters.027

Evaluation datasets. For the evaluation of affine-028
invariant depth, we use the same datasets and evaluation029
protocol as Marigold. These datasets include NYUv2 [7],030
ScanNet [2], KITTI [3], ETH3D [6], and DIODE [8].031
NYUv2 [7] and ScanNet [2] are indoor datasets collected032
using RGB-D Kinect sensors. For NYUv2, we use the test033
split containing 654 images. From ScanNet, 800 images are034
randomly sampled from the 312 validation scenes. KITTI035
[3], a dataset of street scenes with sparse metric depth cap-036
tured by LiDAR, is evaluated using the Eigen test split [14],037
which consists of 652 images. ETH3D [6] and DIODE038
[8] are high-resolution datasets with depth maps generated039
from LiDAR measurements. ETH3D contains 454 samples040
with ground truth depth maps, while DIODE’s validation041
set includes 325 indoor and 446 outdoor samples.042

2. Detailed Ablation Studies043

Studies about Lk. When keeping the original trajectories,044
if we only predict image features, the results are distorted045

because image features are very different from depth fea- 046
tures (Figs. 2 and 3). Please refer to the w/o blend depth 047
results in Table 1. 048

If we only predict depth features, the U-Net fails to im- 049
prove the results because the previous trajectories are fully 050
adapted to depth and cannot be applied at  t = 0   when the 051
input is an image latent. This effectively cuts off the con- 052
nection between the input at  t = 0   and the earlier stages, 053
leading to results similar to those without keeping trajecto- 054
ries. For without keeping trajectories results, please refer 055
to the w/o  L_k  results in Table 1. Without  L_k , the details 056
are also reduced accordingly (Figs. 2 and 3), as reflected in 057
the results shown in Table 2. When predicting the blended 058
latent, we can achieve a smooth transition from image to 059
depth. 060

Regarding the effects of different blend ratio weights, 061
please refer to Figure 1. It can be observed that as the 062
proportion of depth increases, the accuracy of the results 063
improves accordingly. For simplicity, we set \gamma = 0.5  , al- 064
though this is not optimal for all datasets. The \gamma value re- 065
mains constant throughout the entire training process. 066

Usage of DINO supervision. As for the use of DINO, 067
we found that the performance drops significantly without 068
DINO supervision (Table 1). If we use depth at the d_0 stage, 069
there is no noticeable impact on metrics such as AbsRel, but 070
it has a substantial effect on details, as shown by the Zero- 071
shot Boundary metrics in Table 2. These phenomena can 072
also be observed in Figs. 4 and 5. 073

Different size of DINOv2. Since DINOv2 has different 074
size versions, we use various sizes of Depth Anything mod- 075
els—small, base, and large—as our DINOv2 model. The 076
results, shown in Table 1, indicate that while there are some 077
differences in test metrics across these versions, all results 078
demonstrate that our method effectively transfers the gen- 079
eralization capabilities of DINOv2, regardless of its size, 080
to the diffusion model. In all experiments except for those 081
mentioned here, our method uses the Depth Anything Large 082
version. 083

3. More Comparison with Other Methods 084

We have added more comparisons with GenPercept [9] 085
and Lotus [4] here. Qualitative comparisons are shown in 086
Figs. 6 to 11. Although their feed-forward approach has a 087
runtime almost identical to ours, their method falls short in 088
terms of accuracy, generalization ability, and detail preser- 089
vation compared to ours. 090

We also add more comparison results with Depth Any- 091
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thing v2 and Depth Pro in Figs. 12 to 15, and with GeoWiz-092
ard and DepthFM in Figs. 16 to 20.093

4. More visual results094

We have also included the results of depth to point cloud095
conversion in Figs. 21 to 27.096
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Figure 1. Effects of different blend weight ratios.

Method Training NYUv2 KITTI ETH3D ScanNet DIODE-Full DA-2K
Data AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ Acc (%)

w/o blend depth 274K 5.0 96.9 8.9 93.1 9.8 95.7 5.8 96.5 26.2 79.0 91.2
w/o Lk 274K 4.8 96.1 7.9 91.4 7.3 95.2 5.4 96.1 25.3 76.4 95.2

w/o DINO 74K 5.5 96.5 9.8 91.3 6.3 95.9 6.0 95.8 28.5 77.8 87.9
DINO-L on d0 274K 4.6 96.4 7.8 92.9 7.6 96.7 4.9 96.6 25.1 77.6 95.7

FiffDepth-S (Ours) 274K 5.2 97.1 7.9 93.4 7.5 96.8 4.6 97.3 24.2 77.5 94.8
FiffDepth-B (Ours) 274K 4.7 97.6 7.8 93.7 7.2 97.0 4.3 97.8 24.1 77.9 96.9
FiffDepth-L (Ours) 274K 4.4 97.8 7.3 93.5 7.1 97.2 4.2 97.9 23.9 78.1 97.1

Table 1. Quantitative comparison. We use AbsRel (absolute relative error: |d∗ − d| /d) and δ1 (percentage of max (d∗/d, d/d∗) < 1.25
). All metrics are reported as percentages.

Method Sintel F1↑ Spring F1↑ iBims F1↑ AM R↑ P3M R↑ DIS R↑
GenPercept 0.080 0.040 0.126 0.074 0.115 0.049
e2e-ft 0.088 0.049 0.136 0.088 0.107 0.051
Lotus-D 0.081 0.062 0.141 0.065 0.109 0.047
Lotus-G 0.072 0.054 0.130 0.067 0.112 0.043
Marigold 0.068 0.032 0.149 0.064 0.101 0.049
GeoWizard 0.087 0.038 0.137 0.070 0.104 0.052
DepthFM 0.064 0.030 0.145 0.058 0.97 0.039
DepthAnything v1 0.261 0.045 0.127 0.058 0.094 0.023
w/o blend depth 0.113 0.047 0.148 0.072 0.114 0.063
w/o Lk 0.283 0.066 0.157 0.157 0.154 0.074
w/o DINO 0.394 0.073 0.161 0.168 0.157 0.087
DINO-L on d0 0.312 0.061 0.154 0.146 0.152 0.069
FiffDepth (Ours) 0.423 0.086 0.189 0.176 0.179 0.091

Table 2. Zero-shot boundary accuracy. We provide the F1 score for datasets containing ground-truth depth and boundary recall (R) for
those with matting or segmentation labels.
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Figure 2. Ablation studies. The generalization capability and depth details of the method are affected when some essential components
are missing.
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Figure 3. Ablation studies. The generalization capability and depth details of the method are affected when some essential components
are missing.
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Figure 4. Ablation studies. The generalization capability and depth details of the method are affected when some essential components
are missing.
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Figure 5. Ablation studies. The generalization capability and depth details of the method are affected when some essential components
are missing.
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Figure 6. Qualitative comparison with GenPercept and Lotus.
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Figure 7. Qualitative comparison with GenPercept and Lotus.
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Figure 8. Qualitative comparison with GenPercept and Lotus.
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Figure 9. Qualitative comparison with GenPercept and Lotus.
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Figure 10. Qualitative comparison with GenPercept and Lotus.
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Figure 11. Qualitative comparison with GenPercept and Lotus.
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Figure 12. Qualitative comparison with Depth Pro and Depth Anything v2.
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Figure 13. Qualitative comparison with Depth Pro and Depth Anything v2.
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Figure 14. Qualitative comparison with Depth Pro and Depth Anything v2.
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Figure 15. Qualitative comparison with Depth Pro and Depth Anything v2.
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Figure 16. Qualitative comparison with GeoWizard and DepthFM.
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Figure 17. Qualitative comparison with GeoWizard and DepthFM.
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Figure 18. Qualitative comparison with GeoWizard and DepthFM.
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Figure 19. Qualitative comparison with GeoWizard and DepthFM.
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Figure 20. Qualitative comparison with GeoWizard and DepthFM.
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Figure 21. Depth to 3D Point Clouds.

Figure 22. Depth to 3D Point Clouds.
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Figure 23. Depth to 3D Point Clouds.

Figure 24. Depth to 3D Point Clouds.
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Figure 25. Depth to 3D Point Clouds.

Figure 26. Depth to 3D Point Clouds.

Figure 27. Depth to 3D Point Clouds.
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