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Abstract

We generalize acyclic deterministic structural equation mod-
els to the nondeterministic case and argue that it offers an
improved semantics for counterfactuals. The standard, deter-
ministic, semantics developed by Halpern (and based on the
initial proposal of Galles & Pearl) assumes that for each as-
signment of values to parent variables there is a unique as-
signment to their child variable, and it assumes that the actual
world (an assignment of values to all variables of a model)
specifies a unique counterfactual world for each intervention.
Both assumptions are unrealistic, and therefore we drop both
of them in our proposal. We do so by allowing multi-valued
functions in the structural equations. In addition, we adjust
the semantics so that the solutions to the equations that ob-
tained in the actual world are preserved in any counterfac-
tual world. We provide a sound and complete axiomatization
of the resulting logic and compare it to the standard one by
Halpern and to more recent proposals that are closer to ours.
Finally, we extend our models to the probabilistic case and
show that they open up the way to identifying counterfactuals
even in Causal Bayesian Networks.

1 Introduction
Deterministic Structural Equation Models – DSEMs from
now on – represent the causal relations between a set of en-
dogenous variables by specifying an equation for each en-
dogenous variable that determines the variable’s value as a
function of the values of some other variables, both endoge-
nous (V) and exogenous (U) (Pearl 2009). Exogenous vari-
ables represent unobserved sources of variation whose ex-
istence has to be assumed in order to obtain deterministic
equations.

DSEMs serve as the mathematical and conceptual foun-
dation for Pearl’s causal modelling approach. As they lack
probabilities, probabilistic causal models are built on top of
DSEMs in two stages. First, we get probabilistic DSEMs –
PDSEMs – by adding a probability distribution over the ex-
ogenous variables U . This induces a joint distribution over
(U ,V). Second, assuming that there are no cyclic causal re-
lations, that exogenous variables are independent, and that
no two endogenous variables share an exogenous parent
(i.e., that the model is Markovian), we get Causal Bayesian
Networks by marginalizing out the exogenous variables and
directly considering the marginal distribution over V and its
Markov factorization (Pearl 2009; Bongers et al. 2021).

We here present Nondeterministic Structural Equation
Models – NSEMs – as a more general and improved foun-
dation for causal models. The reason for doing so is that
the heavy reliance on exogenous variables in DSEMs is un-
necessarily restrictive. The generalization from DSEMs to
NSEMs is given by dropping the assumption that there must
exist exogenous variables such that the value of each en-
dogenous variable can be uniquely determined by its causal
parents. Note that dropping this assumption is not the same
as dropping the assumption that the world is itself funda-
mentally deterministic. It is one thing to assume that there
must exist some properties of the world such that the value
of a variable is uniquely determined, it is quite another to
assume that these properties can be neatly compartmental-
ized into sets of variables whose values determine the other
value according to a stable functional relationship. In many
situations the latter may not hold, and such situations are
currently beyond the scope of SEMs. (And in even more sit-
uations, we may want to – or have to due to practical con-
straints – represent the world as if it does not hold.)

Furthermore, the use of exogenous variables also involves
a commitment to an overly strong semantics for causal coun-
terfactual statements, for it implies that there is always a
unique solution to the model for any counterfactual query,
given the actual values of all variables. That assumption
is even stronger than the previous one. For example, con-
sider a patient who may or may not receive treatment for
some condition, and when she does she may or may not re-
cover, depending on whether the treatment is effective. We
observe that in the actual world, she does not receive treat-
ment, and she does not recover. Representing this world us-
ing DSEMs requires specifying actual values of exogenous
variables such that if she had been treated, she would have
either certainly recovered, or she would certainly not have.
Using NSEMs there is no such requirement, and thus we can
simply consider both counterfactual worlds as possible.

The benefit of dropping this counterfactual uniqueness
property should not be underestimated. The property has
been severely criticized in the general philosophical liter-
ature on counterfactuals ever since the seminal work of
(Lewis 1973) first did so. More relevant for the present pur-
poses, it is one of the driving forces behind (Dawid 2000)’s
influential criticism of the counterfactual semantics offered
by both DSEMs and the related Potential Outcomes frame-



work (Rubin 1974), and this criticism lies at the heart of the
recent back-and-forth over the correct methodology for per-
sonalised treatment decisions, such as in the patient exam-
ple above (Dawid and Senn 2023; Mueller and Pearl 2023).
By offering a semantics for counterfactuals that avoids this
property, NSEMs provide room for both sides of this hotly
contested – and literally vital – dispute to meet in the middle.

We proceed as follows. We define NSEMs (Sec. 2),
present a formal language and corresponding semantics for
causal formulas that hold in NSEMs (Sec. 3), compare our
logic to the standard one for DSEMs (Sec. 4), offer a sound
and complete axiomatization and compare to other recent
proposals that allow nondeterminism (Sec. 5), and offer a
preliminary investigation into the probabilistic generaliza-
tion of NSEMs, sketching how it allows for computing coun-
terfactuals even in Causal Bayesian Networks (Sec. 6).

2 Nondeterministic Structural Equation
Models

We take the definition of deterministic causal models by
(Halpern 2016) and generalize it to the nondeterministic
case by using multi-valued functions 1. As a first step, we
need to define a signature as the variables out of which a
causal model is built up.

Definition 2.1: A signature S is a tuple (U ,V,R), where
U is a set of exogenous variables, V is a set of endoge-
nous variables, and R a function that associates with ev-
ery variable Y ∈ U ∪ V a nonempty set R(Y ) of possible
values for Y (i.e., the set of values over which Y ranges).
If ~X = (X1, . . . , Xn), R( ~X) denotes the crossproduct
R(X1)× · · · × R(Xn).

A causal model expresses the causal relations between the
endogenous variables of a signature. In addition to using
multi-valued functions, we depart from Halpern by explic-
itly including the causal graph as an element of the causal
model.

Definition 2.2 : A causal model (or a Nondeterministic
Structural Equation Model – NSEM)M is a triple (S,F ,G),
where S is a signature, G is a directed graph such that there
is one node for each variable in S, and F defines a function
that associates with each endogenous variable X a struc-
tural equation FX giving the possible values of X in terms
of the values of some of the other endogenous and exoge-
nous variables. A structural equation FX takes on the form
X = fX( ~PaX), where ~PaX ⊆ (U ∪ V − {X}) are the
parents of X as they appear in G, and fX : R( ~PaX) →
P(R(X)). (Here P(R(X)) is the powerset of R(X): the
set that contains as its elements all subsets ofR(X).)

1(Halpern 2000) already suggested this generalization, but
never implemented it. He did recently offer an even further gener-
alization in order to allow for an infinite number of variables with
infinite ranges, by doing away with equations altogether (Peters
and Halpern 2021; Halpern and Peters 2022). Recently (Barbero
2024) and (Wysocki 2023) have likewise offered generalizations to
the nondeterministic case. We compare our approach to these ones
in Section 5.

We here restrict attention to the case in which G is acyclic
(so that G is a DAG – a Directed Acyclic Graph). If for each
fX the co-domain does not contain the empty set, we say
that a causal model is total. We here restrict ourselves to
total causal models. This amounts to the assumption that for
all possible settings ~paX of the parents, there exists at least
one solution x for the child.

There are no equations for exogenous variables U , as
these are taken to represent the background conditions that
are simply given. We call ~u ∈ R(U) a context, ~v ∈ R(V)
a state, and (~u,~v) ∈ R(U ∪ V) is a world. In determinis-
tic causal models all the functions fX are standard as op-
posed to multi-valued, and thus each equation has a unique
solution x for each choice of values ~paX . In nondetermin-
istic models, a solution of the equation X = fX( ~PaX) is
a tuple (x, ~paX) such that x ∈ fX( ~paX). (The term “equa-
tion” is thus somewhat strange, but we stick with it given the
common reference to causal models as “structural equation
models”. Furthermore, an equivalent characterization can be
given in terms of a literal equation as well.)2. A solution of
M is a world (~u,~v) that is a solution of all equations in F .

In acyclic models the solutions ofM given a context ~u can
be determined recursively: determine the solutions of each
equation in the partial order given by G, and pass these on
to the next equation. In general, deterministic causal models
(DSEMs) need not have solutions for each context, nor do
any such solutions have to be unique, but unicity and exis-
tence are guaranteed for acyclic deterministic models. When
we move to nondeterministic causal models, unicity and ex-
istence are no longer guaranteed even for acyclic models,
but existence is recovered in total models.

3 The Causal Language
Given a signature S = (U ,V,R), an atomic formula is a
formula of the form X = x, for X ∈ V and x ∈ R(X).
A basic formula (over S) ϕ is a Boolean combination of
atomic formulas. An intervention has the form ~Y ← ~y,
where Y1, . . . , Yk are distinct variables in V , and yi ∈ R(Yi)
for each 1 ≤ i ≤ k. A basic causal formula has the form
[Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is a basic formula and
Y1, . . . , Yk are distinct variables in V . Such a formula is ab-
breviated as [~Y ← ~y]ϕ. The special case where k = 0 is
abbreviated as []ϕ. Finally, a causal formula is a Boolean
combination of basic causal formulas. The language L(S)
that we consider consists of all causal formulas.

A causal formula ψ is true or false in a causal model,
given a world. We write (M,~u,~v) |= ψ if the causal for-
mula ψ is true in causal model M given world (~u,~v). We
call a model-world pair (M,~u,~v) a causal setting.

2Concretely, it turns out that the approach of (Bongers et al.
2021) can be used to express our nondeterministic “equations” as
literal equations. Although they do not explicitly consider nonde-
terministic models, their models do allow “self-cycles”, meaning
they allow for X to depend on X . Note that X = fX( ~PaX) is
equivalent to X = X + (1 − 1fX (X, ~PaX)), where 1fX is the
indicator function that returns 1 iff X ∈ fX( ~PaX). This corre-
spondence opens up the possibility of integrating both approaches,
but that is something we defer to future work.



We first define the |= relation for basic formulas.
(M,~u,~v) |= X = x if x is the restriction of ~v to X . We
extend |= to basic formulas ϕ in the standard way. Note that
the truth of basic formulas is determined solely by the state
~v, and thus we often also write ~v |= ϕ.

In order to define the |= relation for causal formulas, we
introduce two operations on a causal model, the actualized
refinement that is the result of integrating the actual behav-
ior of the equations as observed in a world (~u,~v) into the
equations of a model M , and the intervened model that is
the result of performing an intervention on the equations of
a model M .
Definition 3.1: Given causal models M ′ and M over iden-
tical signatures S and with identical graphs G, we say that
M ′ is a refinement of M if for all X ∈ V and all ~paX ∈
R( ~PaX): fM

′

V ( ~paX) ⊆ fMV ( ~paX).
Since we are restricting ourselves to total causal models, the
only refinement of a deterministic model is itself.3 Hence
we say that a deterministic model is maximally refined.
Concretely, since the way that the equations determine the
outcome in a deterministic model is identical across each
world (~u,~v), there is no need to additionally consider how
the equations behave in a specific world. This is no longer
true for nondeterministic models, as there the actual values
that obtained in a world inform us about how the equations
behaved for those values. When evaluating formulas in a
world, we need to take this information into account, and to
do so requires refining the equations so that they incorporate
this actual behavior.
Definition 3.2: Given a solution (~u,~v) of a model M =
(S,F ,G), we define the actualized refinementM (~u,~v) as the
refinement of M in which F is replaced by F (~u,~v), as fol-
lows: for each variableX ∈ V , its function fX is replaced by
f
( ~paX ,x)
X that behaves identically to fX for all inputs except

for ~paX . Instead, f ( ~paX ,x)
X ( ~paX) = x, where x and ~paX are

the respective restrictions of (~u,~v) to X and ~PaX .

Setting the value of some variables ~Y to ~y in a causal model
M = (S,F ,G) results in a new causal model, denoted
M~Y←~y , which is identical to M , except that F is replaced

by F ~Y←~y: for each variable X /∈ ~Y , F
~Y←~y
X = FX (i.e.,

the equation for X is unchanged), while for each Y ′ in ~Y ,
the equation FY ′ for Y ′ is replaced by Y ′ = y′ (where y′ is
the value in ~y corresponding to Y ′). Similarly, G is replaced
with G~Y←~y .

With these operations in place, we can define the |= rela-
tion for basic causal formulas, relative to settings (M,~u,~v)

such that (~u,~v) is a solution of M . (M,~u,~v) |= [~Y ← ~y]ϕ
iff ~v′ |= ϕ for all states ~v′ such that (~u,~v′) is a solution
of (M (~u,~v))~Y←~y . We inductively extend the semantics to
causal formulas in the standard way, that is, (M,~u,~v) |=
[~Y ← ~y]ϕ1 ∧ [~Z ← ~z]ϕ2 iff (M,~u,~v) |= [~Y ← ~y]ϕ1 and
(M,~u,~v) |= [~Z ← ~z]ϕ2, and similarly for ¬ and ∨.

3Concretely, if we drop totality, then a refinement allows for
fX( ~paX) = ∅, which does not result in a deterministic model.

We define 〈~Y ← ~y〉ϕ as an abbreviation of ¬[~Y ← ~y]¬ϕ.
So (M,~u,~v) |= 〈~Y ← ~y〉true iff there is some world
(~u,~v′) that is a solution of (M (~u,~v))~Y←~y . We then write

(M,~u,~v) |= 〈~Y ← ~y〉V = ~v′.
We can also evaluate formulas with respect to just a partial

causal setting (M,~u), or even with respect to a model M by
itself. For basic causal formulas, we define that (M,~u) |=
[~Y ← ~y]ϕ iff (M,~u,~v) |= [~Y ← ~y]ϕ holds for all states ~v
such that (~u,~v) is a solution of M . In a similar fasion, we
define that M |= [~Y ← ~y]ϕ iff (M,~u,~v) |= [~Y ← ~y]ϕ
holds for all solutions (~u,~v) of M . We again inductively
extend to causal formulas in the standard way: (M,~u) |=
[~Y ← ~y]ϕ1 ∧ [~Z ← ~z]ϕ2 iff (M,~u) |= [~Y ← ~y]ϕ1 and
(M,~u) |= [~Z ← ~z]ϕ2, and similarly for ¬ and ∨. Likewise
for M |= ψ.

We have now defined three different semantics for L(S):
the first with respect to full causal settings (M,~u,~v), the
second with respect to partial causal settings (M,~u), and
the third with respect to M . The first evaluates causal for-
mulas relative to a single world (~u,~v), and thus we will
call the resulting logic the single world counterfactual logic,
or swc logic for short. It formalizes counterfactual state-
ments relative to a specific actual world. The second only
requires specifying a single context ~u, and thus it considers
the entire set of worlds (~u,~v) that extend ~u together, and
thus we call the resulting logic the single context counter-
factual logic, or scc logic for short. Its formulas are also
counterfactual, in the sense that they can express antecedents
which run counter to the facts of a set of worlds extending
a context. Hence both these logics occur on rung 3 of (Pearl
2009)’s causal hierarchy. Lastly, the third semantics evalu-
ates formulas without assuming any factual knowledge that
restricts the set of possible worlds determined by M , and
thus its formulas are entirely forward-looking and interven-
tionist. Hence these semantics are for expressions on rung 2
of Pearl’s causal hierarchy, and therefore we call the result-
ing logic the interventionist logic. In the remainder of this
paper our attention goes to the two counterfactual logics,
but we flag the interventionist logic as a worthwhile study
for future investigation.

4 Comparison to the Standard Semantics
To recap, the standard logic for causal models from (Halpern
2000, 2016) is a logic for DSEMs instead of NSEMs, and its
semantics are defined identically to ours except that it does
not use the actualized refinement. Given that for any DSEM
the actualized refinement M (~u,~v) will simply be M anyway,
the two semantics are in fact entirely equivalent for DSEMs.

Concretely, the standard semantics defines the |= rela-
tion for basic causal formulas as: (M,~u,~v) |= [~Y ← ~y]ϕ
iff ~v′ |= ϕ for all states ~v′ such that (~u,~v′) is a solution
of M~Y←~y . Note that, importantly, this semantics does not
depend on the actual state ~v, and therefore it can be (and
usually is) written and interpreted as a semantics for partial
causal settings (M,~u). As a result, the distinction between
the counterfactual logics swc and scc collapses in the case of
DSEMs, and thus there is only a single counterfactual logic.



If the DSEMs are acyclic, then for each ~u there is a unique
~v such that (~u,~v) is a solution of M , and thus the counter-
factual logic is with respect to a single actual world, as is the
case for our swc. Also, for each ~u, there is a unique ~v such
that (~u,~v) is a solution of M~Y←~y for any ~Y ← ~y, and hence
the standard semantics for acyclic DSEMs satisfies the con-
troversial uniqueness property we mentioned in Section 1. If
the DSEMs are cyclic, then for each context there may be
multiple solutions, or none. Thus, in this case the counter-
factual logic is with respect to the set of worlds that extend
a context ~u, as is the case for our scc (except that for scc a
solution is guaranteed to exist, given totality). As we discuss
in Section 5, these semantics still satisfy a property that is
conceptually very similar to the uniqueness property.

Importantly, as the following Theorem shows, when we
move from DSEMs to NSEMs, the actualized refinement
only matters for swc, and thus for both the scc logic and
the interventionist logic our semantics are simply general-
izations of the standard semantics to the nondeterministic
case.

Theorem 4.1: Given a nondeterministic causal model M ,
we have that for all ~Y ⊆ V , for all ~y ∈ R(~Y ), and for all
basic formulas ϕ:

• M |= [~Y ← ~y]ϕ iff ~v |= ϕ for all solutions (~u,~v) of
M~Y←~y .

• For all contexts ~u: (M,~u) |= [~Y ← ~y]ϕ iff ~v |= ϕ for all
states ~v such that (~u,~v) is a solution of M~Y←~y .

Proof: All proofs are to be found in the Supplementary Ma-
terial.

The intuition behind Theorem 4.1 is that the actualized
refinement operation updates M ’s equations to include their
actual behavior, and there is no actual behavior unless one
specifies an actual world (~u,~v), so the operation can be ig-
nored for scc and interventionist logics. Concretely, single
world counterfactuals are statements about what is true in a
particular, fully specified, world (~u,~v) that is governed by a
causal model M , if we were to intervene to set some vari-
ables counter to fact.4 Single context counterfactuals, on the
other hand, are statements about what holds in all worlds
that share a context ~u and are governed by the causal model
M . Interventionist statements are of even wider scope, as
they do not rely on any assumption except that the worlds
are governed by the model M . In both of the latter cases,
this means that we take into account all the possible ways in
whichM (or (M,~u)) can be actualized, and thus the various
possible actualized refinements ought to cancel each other
out. We take the fact that our semantics bears out this intu-
ition to be an important sanity check.

As far as we are aware, the distinction between swc
and scc logics has gone unnoticed so far. In fact, recently
(Halpern and Peters 2022) introduced generalized structural

4Usually one speaks of counterfactuals even when variables are
set to their actual values by an intervention, but in such cases the
intervention should have no impact on the truth of factual formu-
las, and Proposition 5.3 shows that this is indeed the case for our
semantics.

equation models – GSEMs – and they provide an axioma-
tization for the more general logic that is the result, but in
doing so Halpern has moved entirely from an swc type of
logic – that was the subject matter of (Halpern 2000) and
(Galles and Pearl 1998) – towards a scc type of logic, for the
logic for GSEMs does not allow evaluating formulas with re-
spect to a single world. In the next section we conclude the
definition of our scw and scc logics by offering a sound and
complete axiomatization for both, and interpret the results in
light of other recently proposed logics for nondeterministic
causal reasoning.

5 Axiomatization and Recent Related Work
Throughout this section we hold fixed some finite signature
S = (U ,F ,R), i.e., U and V are finite, and R(X) is finite
for all X ∈ U ∪ V . Let AX be the axiom system for the
language L(S) that consists of the following list of axioms
and inference rule MP.

D0. All instances of propositional tautologies.

D1. [~Y ← ~y](X = x ⇒ X 6= x′) if x, x′ ∈ R(X), x 6= x′

(functionality)

D2. [~Y ← ~y](
∨

x∈R(X)X = x) (definiteness)

D3(a). 〈 ~X ← ~x〉(W = w ∧ ϕ) ⇒ 〈 ~X ← ~x,W ← w〉(ϕ) if
W /∈ ~X (weak composition)

D3(b). [ ~X ← ~x](W = w ∧ ϕ) ⇒ [ ~X ← ~x,W ← w](ϕ) if
W /∈ ~X (strong composition)

D4. [ ~X ← ~x]( ~X = ~x) (effectiveness)

D5. (〈 ~X ← ~x, Y ← y〉(W = w ∧ ~Z = ~z) ∧ 〈 ~X ← ~x,W ←
w〉(Y = y ∧ ~Z = ~z))

⇒ 〈 ~X ← ~x〉(W = w ∧ Y = y ∧ ~Z = ~z) if ~Z =

V − ( ~X ∪ {W,Y }) (reversibility)
D6. (X0  X1 ∧ . . . ∧ Xk−1  Xk) ⇒ ¬(Xk  X0)

(recursiveness)
D7. ([ ~X ← ~x]ϕ ∧ [ ~X ← ~x](ϕ⇒ ψ))⇒ [ ~X ← ~x]ψ (distri-

bution)
D8. [ ~X ← ~x]ϕ if ϕ is a propositional tautology (generaliza-

tion)
D9. 〈~Y ← ~y〉true ∧ (〈~Y ← ~y〉ϕ ⇒ [~Y ← ~y]ϕ) if ~Y = V

or, for some X ∈ V , ~Y = V − {X} (unique outcomes
for V and V − {X})

D10(a). 〈~Y ← ~y〉true (at least one outcome)

D10(b). 〈~Y ← ~y〉ϕ⇒ [~Y ← ~y]ϕ (at most one outcome)
D10(c). 〈〉ϕ⇒ []ϕ (at most one actual outcome)

MP. From ϕ and ϕ⇒ ψ, infer ψ (modus ponens)

Here, Y  Z means that Y 6= Z and
∨ ~X⊆V,~x∈R( ~X),y 6=y′∈R(Y ),z∈R(Z)(〈 ~X ← ~x, Y ← y〉(Z =

z) ∧ [ ~X ← ~x, Y ← y′](Z 6= z)).
(Halpern and Peters 2022) define differently. However,

our definition is easily seen to be equivalent to theirs in the
presence of D10(b). Note that none of the axioms mentions
basic formulas ϕ. For both the standard semantics and for



ours this is without loss of generality, because ϕ is easily
seen to be equivalent to []ϕ. (Alternatively, we could have
extended the causal language and add the axiom ϕ ⇔ []ϕ,
which is the choice made by (Barbero 2024).) Lastly, note
that in the presence of D10(b), AX contains redundant ax-
ioms: D3(b) is a consequence of D3(a) and D10(b), D9 is a
consequence of D2 and D10(a,b), D10(c) is a consequence
of D10(b), and – as shown by (Halpern and Peters 2022) –
D5 is a consequence of D2, D3, D6, D7, D8, and D10(a,b).

(Halpern and Peters 2022) show that AX without D3(b)
and D10(c) is a sound and complete axiomatization with re-
spect to acyclic DSEMs that have signature S, and thus the
same holds for AX . Furthermore, none of the D10 axioms
holds for cyclic DSEMs. In fact, (Halpern and Peters 2022)
show thatAX without D3(b), D10(a,b,c), and D6, is a sound
and complete axiomatization for cyclic DSEMs.

D10(b) implies the uniqueness property mentioned ear-
lier. To see why, consider some solution (~u,~v) (or context
~u) relative to which we are evaluating formulas, and take
ϕ to be V = ~v′ for some ~v′ ∈ V . D10(b) then commits
us to the claim that if the world (~u, ~v′) is possible under
the counterfactual supposition that ~Y were ~y, then it is the
only world that is possible under that supposition. Although
cyclic DSEMs do not validate D10(b), they do validate D9,
and that is conceptually not at all different: it simply restricts
the above claim to the special case in which the counterfac-
tual supposition contains all but one endogenous variable.
As anticipated, neither axioms are sound for either our swc
logic or our scc logic, and thus they free causal models from
their commitment to this controversial property. (For sake
of completeness, note that neither axiom is sound for our
interventionist logic either, nor is it for the interventionist
logic over DSEMs only.) The following model offers a sim-
ple counterexample.

Example 5.1: Consider the model M with two binary en-
dogenous variables X,Y such that ~PaY = {X}, ~PaX = ∅,
the equation for X is X = 1, and the equation for Y is
Y ∈ {0, 1} if X = 1 and Y = 0 if X = 0. Then
(M,X = 0, Y = 0) |= 〈X ← 1〉Y = 1 and yet
(M,X = 0, Y = 0) 6|= [X ← 1]Y = 1, since also
(M,X = 0, Y = 0) |= 〈X ← 1〉Y = 0. Also, M |=
〈X ← 1〉Y = 1 and yet M 6|= [X ← 1]Y = 1.

We let AXscc
non denote the axiom system D0-D8 and D10(a),

and AXswc
non denotes AXscc

non plus D10(c). The following re-
sult shows that our swc logic is stronger than our scc logic,
that both of them are weaker than the counterfactual logic
for acyclic DSEMS, and that both of them are incomparable
to the counterfactual logic for cyclic DSEMs.

Theorem 5.2: AXswc
non (resp. AXscc

non) is a sound and com-
plete axiomatization for the language L(S) with respect to
the swc logic (resp. the scc logic) over acyclic NSEMS that
have signature S.

D10(c) is what distinguishes our two logics, as it does not
hold for the scc logic. Simply consider the model M con-
sisting of a single binary endogenous variable X with an
equation such that X = {0, 1}. Then we have that both
M |= 〈〉X = 1 and M |= 〈〉X = 0 and thus also

M 6|= []X = 1. That D10(c) is not sound for our scc logic
is what prevents the first problematic assumption of acyclic
DSEMs mentioned in Section 1, namely that the values ~u for
all exogenous variables uniquely determine an actual world
(~u,~v). (As with D10(b), to see this take ϕ to be of the form
V = ~v′.) In the context of our swc logic, D10(c) simply
expresses the sensible property that if the world were as it
actually is, then the actual world is the only world possible.
To see this, note that for any (M,~u,~v), the only way for
〈〉V = ~v′ to hold is when ~v′ = ~v.

Halpern & Peters. Theorem 5.2 shows that both of our
counterfactual logics are stronger than the one introduced in
(Halpern and Peters 2022) for so-called GSEMs, General-
ized Structural Equation Models, even when restricting to
the case that is most similar to ours (the case in which all
interventions are considered, the signature is finite, and the
graph is acyclic). Briefly, GSEMs do away with structural
equations altogether, and simply define there to be some
set of states ~v corresponding to each context-intervention
pair (~u, ~Y ← ~y). As a result, this means that the connec-
tion between formulas that hold under some intervention
~X ← ~x and those that should hold under an extension
~X ← ~x,W ← w is lost, and thus the axioms D3 (both
of them) and D5 are no longer sound, in addition to losing
D9 and D10(a,b,c). (See their Theorem 5.3.)

Barbero. The closest logic to ours is that of (Barbero
2024), as it also generalizes structural equation models by
allowing for multi-valued functions in the equations. (His
work formed part of the motivation for the current paper.)
Except for the fact that he also considers the cyclic case,
there are two main differences with our proposal.

Firstly, his logic builds on team semantics, meaning that
instead of evaluating formulas with respect to either a single
solution (~u,~v) or a single context ~u of a model M , he does
so with respect to a team, where a team is any subset of solu-
tions of a model M . As a result, the logic is a mixture of all
three of our logics: consider a singleton team and causal for-
mulas are effectively single world counterfactual formulas,
consider a team that consists of all solutions extending some
context ~u, and causal formulas are effectively single context
counterfactual formulas, consider a team that consists of al
solutions, and causal formulas are interventionist formulas,
consider a team that belongs to none of these categories and
the causal formula is some form of hybrid.

Second, although his semantics also aims to incorporate
the actual behavior of the equations into all counterfactual
worlds, his semantics is less demanding than our actualized
refinements are. It merely requires that the values of all non-
descendants of the variables in some intervention ~X ← ~x
remain identical to the actual ones in counterfactual worlds.5
It is easy to show that this property also holds for our seman-
tics, i.e., for any variable Y that is not a descendant of any

5At least, that is the intended semantics. When moving from
the cyclic to the acyclic case, Barbero drops the requirement on
non-descendants. Personal communication with the author con-
firms that this was unintended.



variable in ~X , we have for any solution (~u,~v) of M that if
(M,~u,~v) |= Y = y then (M,~u,~v) |= [ ~X ← ~x]Y = y.

As a result of the second difference, weak composition
– D3(a) – comes apart from strong composition – D3(b)
– for Barbero. Just as with our logics, D3(a) is sound and
D10(b) is not. However, D3(b) is no longer sound for his
logic. We believe this is an undesirable property. Consider
again the model from Example 5.1, and consider the world
(M,X = 1, Y = 1). Then according to both Barbero and
our counterfactual logic it holds that (M,X = 1, Y =
1) |= []Y = 1, yet for Barbero’s logic we do not have that
(M,X = 1, Y = 1) |= [X ← 1]Y = 1, the reason being
that for his logic (M,X = 1, Y = 1) |= 〈X ← 1〉Y = 0.
As Barbero points out, this results in his logic not validating
conjunction conditionalization, which is seen by many as a
crucial property for a logic of counterfactuals to satisfy (see
(Walters and Williams 2013) for a thorough defense).6 We
view it as an argument in favor of our approach that it does
satisfy this property:

Proposition 5.3: For a solution (~u,~v) of M , if (M,~u,~v) |=
~X = ~x ∧ ϕ then (M,~u,~v) |= [ ~X ← ~x]ϕ.

As to the first difference, it is not clear to us what the notion
of a team is supposed to capture. The most straightforward
interpretation would be that it expresses the set of “possible
worlds” in some sense or other. However, that interpretation
conflicts with how teams behave. Again considering Exam-
ple 5.1, we add that the team consists exclusively of the so-
lution (X = 1, Y = 1). If we then consider the intervention
X ← 1, the team suddenly changes to also including the
solution (X = 1, Y = 0). We fail to understand why inter-
ventions that do not change anything should be able to re-
sult in changing what worlds we consider possible. Another
consequence of his use of teams is that his logic invalidates
D10(c), contrary to our swc logic.

Wysocki. (Wysocki 2023) also recently proposed to gen-
eralize structural equation models using multi-valued func-
tions. His logic, however, only considers formulas with re-
spect to an entire causal model M , and is thus what we have
called a logic for interventionist reasoning rather than for
counterfactual reasoning. There is only one important dif-
ference with our interventionist logic.

He follows Halpern’s standard approach in that he de-
fines the parent relation between variables rather than read-
ing it of an additional graph G that we (and Barbero) have
added to the definition of a causal model. Concretely, for
DSEMs (Halpern 2016) defines the equation for a variable
Y to consist of a function fY : R(U ∪ V − {Y })→ R(Y ),
and then defines Y depends on X to mean that there ex-
ist x 6= x′ ∈ R(X) and ~z ∈ R(U ∪ V − {X,Y }) such
that fY (~z, x) 6= fY (~z, x

′). Wysocki uses the same defini-
tion, except that he generalizes it to the multi-valued case.

6For what it’s worth, we also believe that Barbero’s defense of
this property is confused. He discusses exactly this example (X =
1 is Alice flipping a coin and Y = 1 is its landing heads) and he is
explicit that the formula is a counterfactual statement, yet then says
that it expresses what would happen if Alice flips the coin again,
which is of course not a counterfactual statement.

Both Halpern and Wysocki then take “X is a parent of Y ”
to be synonymous with “Y depends onX”. Clearly, if Y de-
pends on X then it will also be a parent in our framework,
but the reverse need not hold. In fact, following Barbero,
we can distinguish between the graph GM that comes with
a model and the graph GD that is built up out of all the de-
pendence relations, noting that GD is a subgraph of GM .7
Although nothing prevents one from restricting our frame-
work to models M in which GM = GD, we believe it is a
mistake to enforce this stricter definition of a parent in gen-
eral, because it prohibits a natural extension to probabilistic
causal models. Viewed probabilistically, if conditional on all
other variables, X can change the distribution of Y , then X
is a parent of Y . Changing the distribution does not require
than any value y changes from being possible (p > 0) to
impossible (p = 0) or vice versa, and yet that is what is re-
quired for Y to depend on X (in the non-probabilistic sense
defined above). Furthermore, one might want to allow for X
being a parent of Y even if it does not meet this probabilis-
tic requirement, because of a failure of faithfulness (Spirtes,
Glymour, and Scheines 2001). This is consistent with our
more permissive notion of a parent.

6 Probabilistic Causal Models
As mentioned, DSEMs give rise to probabilistic DSEMs and
– if Markovian – these in turn give rise to Causal Bayesian
Networks – CBNs. (See (Pearl 2009, Sec. 1.4.2).) We here
offer an initial study of the nondeterministic counterpart to
this construction.

Definition 6.1: A probabilistic causal model (or a PNSEM)
M is a triple (S,F ,G), where S is a signature, G is an
acyclic directed graph such that there is one node for each
variable in S, and F defines a function that associates with
each endogenous variable X a family of conditional prob-
ability distributions PX(X| ~PaX) over R(X), giving the
probability of the values of X in terms of the parents ~PaX
ofX as they appear in G. Further,F associates with each ex-
ogenous variable X a probability distribution PX(X) over
R(X), where PX(x) > 0 for all x ∈ R(X).

A solution of PX is a tuple (x, ~paX) such that
PX(x| ~paX) > 0. We assume that PNSEMs satisfy the
Causal Markov Condition, which means that we assume
the joint distribution PM over R(U × V) is given as:
PM (U ,V) =

∏
X∈U∪V PX(X| ~PaX). (Here we abuse no-

tation and write PX(X| ~PaX) also for the exogenous case,
with the understanding that ~PaX = ∅.) A solution of M is
a world (~u,~v) such that PM (~u,~v) > 0.

In order to evaluate counterfactual probabilities we pro-
ceed analogously to the non-probabilistic case of Section
3. We extend the causal language L to a language LP by
adding probabilistic causal formulas as follows: for each
basic formula ψ ∈ L and each p ∈ [0, 1], ψ = p ∈ LP .

7As we discuss in the Appendix, axiom D6 corresponds to the
property that GD is acyclic, which is a consequence of the acyclic-
ity of GM . It is unclear whether it is possible to also express the
acyclicity of GM in the causal language.



We then extend to non-basic formulas (i.e., Boolean com-
binations of basic formulas) in the standard way. We write
(M,~u,~v) |= χ if the probabilistic causal formula χ is true
in causal model M given world (~u,~v).

We first define the |= relation for the case ϕ = p, where
ϕ is a basic formula. (M,~u,~v) |= ϕ = p if either p = 1 and
(M,~u,~v) |= ϕ or p = 0 and (M,~u,~v) 6|= ϕ.

We can define the |= relation for basic probabilistic causal
formulas by using the probabilistic counterparts of the two
operations from Section 3, as follows.
Definition 6.2: Given a solution (~u,~v) of a probabilistic
model M = (S,F ,G), we define the actualized refinement
M (~u,~v) as the model M in which F is replaced by F (~u,~v),
as follows: for each variable X ∈ (U ∪ V), its distribution
PX is replaced by P ( ~paX ,x)

X (X| ~PaX) that is identical to PX

for all ~pax
′ except for ~paX . Instead, P ( ~paX ,x)

X (x| ~paX) = 1,
where x and ~paX are the respective restrictions of (~u,~v) to
X and ~PaX .
Further, M~Y←~y is the model that results from replacing PY

with the unconditional point distribution that assigns proba-
bility 1 to Y = y for each Y ∈ ~Y , y ∈ ~y and replacing G
with G~Y←~y .

Finally, for any solution (~u,~v) of M , we define the |=
relation as follows. (M,~u,~v) |= [~Y ← ~y]ϕ = p iff
PM ′(ϕ) = p, where M ′ = (M (~u,~v))~Y←~y . We can also use
the more standard notation, and write this as

PM (ϕ|do(~Y ← ~y), ~u,~v) = p.

The extension to causal formulas is defined as before.
Definition 6.3: We say that a PNSEM M and a NSEM M ′

are consistent if both share the same signature and graph,
and if for each X ∈ V we have that PX(x| ~paX) > 0 iff
x ∈ fX( ~paX).
Importantly, the probabilistic swc logic over LP generalizes
our original swc logic over L, as it ought to do.

Theorem 6.4: Given consistent models M and M∗, where
M is probabilistic and M∗ is not, for all worlds (~u,~v) and
all basic causal formulas ψ ∈ L it holds that (M,~u,~v) |=
ψ = 1 iff (M∗, ~u,~v) |= ψ.

Our computation of PM (ϕ|do(~Y ← ~y), ~u,~v) is entirely
analogous to Pearl’s well-known 3-step procedure for com-
puting counterfactual probabilities in DSEMs:
1. Abduction Update PM by the evidence (~u,~v) to obtain
PM(~u,~v) ;

2. Action Modify this by the action do(~Y ← ~y) to obtain
PM ′ ;

3. Prediction Use PM ′ to compute the probability of ϕ.
Lastly, we briefly consider how this allows us to identify
counterfactuals even in Causal Bayesian Networks. Recall
that in the standard case, a PDSEM induces a CBN by
marginalizing over the exogenous variables U under the as-
sumption that the exogenous variables are independent and
that no exogenous variable is a common parent of two en-
dogenous ones. These assumptions together imply that the

CBN satisfies the Markov Condition (Pearl 2009, Th. 1.4.1).
In the nondeterministic case, we assumed the Markov Con-
dition itself, at the level of the PNSEM. Other than that, in
both cases we get that the marginal distribution over the en-
dogenous variables also satisfies the Markov Condition:

PM (V) =
∏
X∈V

P ′X(X| ~EPaX)

where ~EPaX are X’s endogenous parents and P ′X is the
result of marginalizing PX over X’s exogenous parents.8

Definition 6.5: Given a PNSEM M = (S,F ,G) such that
no two endogenous variables share an exogenous parent, the
Causal Bayesian Network CM induced by M is the tuple
(SV , PV ,GV), where SV ,GV is obtained from S,G by re-
moving the exogenous variables, and PV(V) = PM (V).
Note that any CBN may be induced by either a PNSEM or a
PDSEM, and thus at the level of CBNs it appears that noth-
ing has changed. However, this is not true. Under the stan-
dard view, evaluating counterfactual probabilities cannot be
done directly in a CBN, but instead requires computing them
in the – unknown – underlying PDSEM. As a result, the stan-
dard orthodoxy is that they cannot in general be uniquely
identified in CBNs. (See (Balke and Pearl 1994; Pearl 2009)
for a study of their bounds.) Yet under the nondeterminis-
tic view, we can simply apply the procedure for computing
the probability of a counterfactual directly to a CBN itself.
Concretely, we can apply our 3-step procedure directly to
the distribution PV , giving:

PV(~V |do(~Y ← ~y), ~v) =
∏

X∈(V−~Y )

P
′( ~epaX ,x)
X (X| ~EPaX)P

~Y←~y(~Y ).

Here P ~Y←~y is the point distribution assigning probability 1

to ~y, and P ′( ~epaX ,x)
X results from applying Def. 6.2 to P ′X .

Although this computation itself does not require our non-
deterministic framework (as it does not depend on knowl-
edge of the underlying PNSEM), its explanation is possible
only in our framework: it is the distribution that one would
obtain for at least some set of all PNSEMs that could under-
lie the CBN, the extreme case being PNSEMs that have no
exogenous variables at all. It remains to be investigated what
other models belong to this set, and in what circumstances
it is reasonable to assume that the true underlying model M
belongs to it. We aim to do so in future work.

7 Conclusion
We here developed a nondeterministic generalization of
causal models and offered an axiomatization for the two
resulting counterfactual logics, arguing that their semantics
are superior to other proposals. Crucially, they inherit all the
benefits of Pearl’s framework whilst dropping the controver-
sial uniqueness property. We also initiated the probabilistic
extension of our framework, but we consider it far from con-
cluded. Among other things, we anticipate that it offers fruit-
ful middle ground between the two camps disputing the role
of counterfactuals in personalised decision-making.

8I.e., P ′
X(X| ~EPaX) =

∑
~w∈R( ~W )(PX(X| ~EPaX , ~w)

∏
wi∈~w PWi(wi)),

where ~W are X’s exogenous parents.
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A Appendix: Proofs of Theorems
Theorem A.1: Given a nondeterministic causal model M ,
we have that for all ~Y ⊆ V , for all ~y ∈ R(~Y ), and for all
basic formulas ϕ:

• M |= [~Y ← ~y]ϕ iff ~v |= ϕ for all solutions (~u,~v) of
M~Y←~y .

• For all contexts ~u: (M,~u) |= [~Y ← ~y]ϕ iff ~v |= ϕ for all
states ~v such that (~u,~v) is a solution of M~Y←~y .

Proof: We first show that the two claims are equivalent. Per
definitionM |= [~Y ← ~y]ϕ iff (M,~u,~v) |= [~Y ← ~y]ϕ for all
solutions (~u,~v) of M , which is equivalent to the statement
that for all contexts ~u: (M,~u,~v) |= [~Y ← ~y]ϕ for all states
~v such that (~u,~v) is a solution of M . In turn, the latter is per
definition equivalent to the statement that for all contexts ~u:
(M,~u) |= [~Y ← ~y]ϕ. By the second claim, the latter is
equivalent to the statement that for all contexts ~u: ~v |= ϕ for
all states ~v such that (~u,~v) is a solution of M~Y←~y . Finally,
this is equivalent to the right side of the first claim.

We now prove the first claim. Recall that, given a solution
(~u,~v) of M , (M,~u,~v) |= [~Y ← ~y]ϕ iff ~v′ |= ϕ for all states
~v′ such that (~u,~v′) is a solution of (M (~u,~v))~Y←~y . Therefore
we need to show that the following claims are equivalent:
• ~v′ |= ϕ for all states ~v′ for which there exists some

solution (~u,~v) of M such that (~u,~v′) is a solution of
(M (~u,~v))~Y←~y .

• ~v′ |= ϕ for all solutions (~u,~v′) of M~Y←~y .

This equivalence follows directly from the statement that
for all states ~v′ and all contexts ~u, the following claims are
equivalent:

• (~u,~v′) is a solution of (M (~u,~v))~Y←~y for some solution
(~u,~v) of M .

• (~u,~v′) is a solution of M~Y←~y .

The implication from the first claim to the second is a
direct consequence of the definition of an actualized refine-
ment. Therefore we proceed with proving the reverse impli-
cation.

Assume (~u,~v′) is a solution of M~Y←~y . We need to show
that there exists some ~v such that (~u,~v′) is a solution of
(M (~u,~v))~Y←~y and (~u,~v) is a solution of M . We proceed
by induction over the partial order given by GM , by con-
sidering the claim: given an ancestrally closed set ~W ⊆ V ,
there exists some ~w such that (~u, ~w′) appears in a solution
of (M (~u,~w))~Y←~y and the set of solutions extending (~u, ~w) of

M is non-empty. Here ~w′ is the restriction of ~v′ to ~W , and
M (~u,~w) instantiates the obvious generalization of Definition
3.2 to ancestrally closed partial settings.

Given that we only consider total models, there exists at
least one solution (to bothM and toM~Y←~y) for each context

~u, and thus the claim holds for the base case with ~W = ∅.
We now proceed with the inductive case. Assume that the

set of solutions of M extending (~u, ~w) is non-empty and
(~u, ~w′) appears in some solution of (M (~u,~w))~Y←~y .



Say V is the next variable in V − ~W according to the
partial order of GM , and v′ is its value in ~v′. We need to
prove that there exists some v ∈ R(V ) so that the set of
solutions of M extending (~u, ~w, v) is non-empty and such
that (~u, ~w′, v′) appears in some solution of (M (~u,~w,v))~Y←~y .

First we consider the case where V ∈ ~Y . Since the set of
solutions extending (~u, ~w) is non-empty, there exists some
v such that the set of solutions extending (~u, ~w, v) is non-
empty as well. The equation for V in (M (~u,~w,v))~Y←~y will
be the constant equation V = v∗, where v∗ is the restriction
of ~y to V . Furthermore, since (~u,~v′) is a solution of M~Y←~y ,
v∗ = v′. It follows that (~u, ~w′, v′) appears in a solution of
(M (~u,~w,v))~Y←~y , as had to be shown.

Second we consider the case where V 6∈ ~Y , which we
separate into two sub-cases. Here ~paV

′ is the restriction of
~v′ to ~PaV . Note that, as ~W is ancestrally closed, ~PaV ⊆ ~W .

Consider the case where ~paV 6= ~paV
′, where ~paV is the

restriction of ~w to ~PaV . As before, we can consider any
v such that the set of solutions extending (~u, ~w, v) is non-
empty. Per definition of an actualized refinement, we have
that fV ( ~paV

′) = f
(v, ~paV )
V ( ~paV

′). Furthermore, since (~u,~v′)
is a solution of M~Y←~y , we have that v′ ∈ fV ( ~paV

′), and

thus also v′ ∈ f (v, ~paV )
V ( ~paV

′). It follows that (~u, ~w′, v′) ap-
pears in a solution of (M (~u,~w,v))~Y←~y .

Lastly, consider the case where ~paV = ~paV
′. As each

v ∈ fV ( ~paV ) is a solution of V = fV ( ~PaX), each so-
lution of M that starts with (~u, ~w) can be extended to a
solution (~u, ~w, v) for each v ∈ fV ( ~paV ). Therefore the
set of solutions extending (~u, ~w, v) is non-empty for each
v ∈ fV ( ~paV ). Choosing v = v′, we get that there exists at
least one solution that extends (~u, ~w, v), and (~u, ~w′, v′) ap-
pears in a solution of (M (~u,~w,v))~Y←~y . This concludes the
proof.

Theorem A.2: AXswc
non (resp. AXscc

non) is a sound and com-
plete axiomatization for the language L(S) with respect to
the swc logic (resp. the scc logic) over acyclic NSEMS that
have signature S.

Proof: We start with completeness. First we consider
AXswc

non and the swc logic. It suffices to show that for any
formula ϕ ∈ L(S) that is consistent with AXswc

non(S), there
is an acyclic NSEM M such that (M,~u,~v) |= ϕ for some
causal setting (M,~u,~v). The proof follows the same tech-
nique as used by (Halpern 2000) and (Halpern and Peters
2022).

Suppose that ϕ ∈ L(S) is consistent with AXswc
non(S)

(i.e., we cannot prove ¬ϕ in AXswc
non(S)). Then ϕ can be

extended to a maximal consistent set C of formulas, mean-
ing that ϕ ∈ C, every finite subset C ′ of C is consistent with
AXswc

non(S), and no strict superset C∗ of C has the property
that every finite subset of C∗ is consistent with AXswc

non(S).
Standard arguments show that, for every formula ψ ∈ L(S),
either ψ or ¬ψ must be in C. Moreover, every instance of
the axioms in AXswc

non(S) must be in C.

We now define an acyclic NSEM M with signature S and
the requisite causal setting (M,~u,~v) as follows. Fix some
context ~u ∈ R(U). The following Lemma from (Halpern
and Peters 2022) is useful, whereAXbas is the axiom system
consisting of D0, D7, D8, and MP.

Lemma A.3:
(a) AXbas ` [~Y ← ~y]ϕ1 ∧ [~Y ← ~y]ϕ2 ⇔ [~Y ← ~y](ϕ1 ∧

ϕ2)

(b) AXbas ` 〈~Y ← ~y〉(ϕ1 ∨ ϕ2)⇔ 〈~Y ← ~y〉ϕ1 ∨ 〈~Y ←
~y〉ϕ2

Applying Lemma A.3 and the axioms D1-2, D7, and
D10(a) to the empty intervention, it follows by standard
modal reasoning that there exists some ~v ∈ R(V) so that
〈〉~V = ~v ∈ C. We will construct M such that (M,~u,~v) |=
ϕ.

For all X ∈ V we define ~PaX as the set of variables
Y ∈ V such that Y  X ∈ C. Given D6, we have hereby
defined an acyclic graph G. We define FX for x ∈ R(X)

and ~paX ∈ R( ~PaX) by taking x ∈ fX( ~paX) iff 〈 ~PaX ←
~pax〉X = x ∈ C. As before, it follows from Lemma A.3 and

the axioms D1-2, D7, and D10(a), that for each choice ~paX
there will be at least one value x such that x ∈ fX( ~paX),
and thus our NSEM is total. Therefore M is an acyclic and
total NSEM, as required.

Furthermore, 〈〉~V = ~v ∈ C combined with D10(c)
gives []~V = ~v ∈ C. Applying D3(b) and Lemma A.3, for
each X we get that [ ~PaX ← ~paX ]X = x ∈ C, where
~paX and x are the restrictions of ~v to their respective vari-

ables. Therefore the function fX is deterministic for the ac-
tual parent values, (i.e, x = fX( ~paX)), and thus taking
f
( ~paX ,x)
X ( ~paX) = fX( ~paX) results in a deterministic ac-

tualized refinement for the actual parent values, as required
for an NSEM. It remains to be shown that (M,~u,~v) |= ϕ.

Following exactly the same reasoning as in the proof of
Theorem 5.2 in (Halpern and Peters 2022) and in (Beckers,
Halpern, and Hitchcock 2023), it follows that this reduces to
showing for all formulas of the form 〈~Y ← ~y〉 ~X = ~x with
~X = V − ~Y that 〈~Y ← ~y〉 ~X = ~x ∈ C iff (M,~u,~v) |=
〈~Y ← ~y〉 ~X = ~x.

Suppose that 〈~Y ← ~y〉 ~X = ~x ∈ C. Let ~v′ = (~y, ~x). It
suffices to show that for each X ∈ ~X , 〈 ~PaX ← ~pax〉X =

x ∈ C, where ~paX and x are the restrictions of ~v′ to their
respective variables. Consider some X and the requisite val-
ues ~paX and x. By D3(a), we have that 〈 ~PaX ← ~paX , ~Z ←
~z〉X = x ∈ C, where ~Z = V − ( ~PaX ∪ {X}), and ~z is the
restriction of ~v′ to ~Z.

Let us consider some ~z′′ ∈ R(~Z) such that 〈 ~PaX ←
~paX , X ← x〉(~Z = ~z′′) ∈ C. (As before, such z′′ ∈ R(Z)

must exist.) If also 〈 ~PaX ← ~paX , ~Z ← ~z′′〉X = x ∈ C,
then by D5 and D7 we get that 〈 ~PaX ← ~paX〉X = x ∈ C,
as required.

Remains to consider the case where [ ~PaX ← ~paX , ~Z ←
~z′′]X 6= x ∈ C. It follows that ~z 6= ~z′′. Per construction of



~PaX , we have for each Z ∈ ~Z that ¬(Z  X) ∈ C. We
show by induction that this results in a contradiction.

For the base case, take ~A0 = ∅, and ~a0 the restriction of
~z to ~A0. Let ~W0 = ~Z − ~A0, and ~w0, ~w′′0 the restrictions
of ~z and ~z′′ to ~W0. We have that [ ~PaX ← ~paX , ~W0 ←
~w′′0, ~A0 ← ~a0]X 6= x ∈ C.

The inductive case consists of considering ~Ak+1 = ~Ak ∪
{Z} for some Z ∈ ~Wk. We let ~Wk+1 = ~Z − ~Ak+1, ~ak+1

is the restriction of ~z to ~Ak+1, and ~wk+1, ~w′′k+1 are the re-
strictions of ~z and ~z′′ to ~Wk+1. By the induction hypoth-
esis, we have that [ ~PaX ← ~paX , ~Wk ← ~w′′k, ~Ak ←
~ak]X 6= x ∈ C, which can be rewritten as [ ~PaX ←
~paX , ~Wk+1 ← ~w′′k+1, ~Ak ← ~ak, Z ← z′′]X 6= x ∈ C.

If 〈 ~PaX ← ~paX , ~Wk+1 ← ~w′′k+1, ~Ak ← ~ak, Z ← z〉X =

x ∈ C, it follows that Z  X ∈ C. Therefore, [ ~PaX ←
~paX , ~Wk+1 ← ~w′′k+1, ~Ak+1 ← ~ak+1]X 6= x ∈ C. Given

that |~Z| is finite, for some k ∈ N this results in a contradic-
tion.

For the other way, suppose that (M,~u,~v) |= 〈~Y ←
~y〉 ~X = ~x. Let ~v′ = (~y, ~x). Per construction of M , we know
that for each X ∈ ~X , 〈 ~PaX ← ~pax〉X = x ∈ C, where
~paX and x are the restrictions of ~v′ to their respective vari-

ables.
For each X ∈ ~X , we have that for any ~Z ⊆ V − ( ~PaX ∪
{X}): ¬(Zi  X) ∈ C for all Zi ∈ ~Z. Therefore, for
any ~z we have that 〈~Z ← ~z, ~PaX ← ~pax〉X = x ∈ C.
Letting ~X = {X1, . . . , Xk}, we have in particular that for
each i ∈ {1, . . . , k}: 〈~Y ← ~y, ~X−i ← ~x−i〉Xi = xi ∈ C,
where ~X−i := (X1, . . . , Xi−1, Xi+1, . . . , Xk).

Taking 〈~Y ← ~y, ~X−1 ← ~x−1〉X1 = x1 ∈ C and 〈~Y ←
~y, ~X−2 ← ~x−2〉X2 = x2 ∈ C, we can apply D5 to derive
that 〈~Y ← ~y, ~X−1,2 ← ~x−1,2〉(X1 = x1 ∧X2 = x2) ∈ C.
By the same reasoning, we get that 〈~Y ← ~y, ~X−2,3 ←
~x−2,3〉(X2 = x2 ∧ X3 = x3) ∈ C. Again applying D5
to the last two statements, we get that 〈~Y ← ~y, ~X−1,2,3 ←
~x−1,2,3〉(X1 = x1∧X2 = x2∧X3 = x3) ∈ C. By straight-
forward induction, we get that 〈~Y ← ~y〉 ~X ← ~x ∈ C, which
is what had to be shown. This concludes the proof of com-
pleteness.

For AXscc
non and the scc logic, the proof proceeds identi-

cally except for three differences. The first difference is that
we have no need for some ~v ∈ R(V) so that 〈〉~V = ~v ∈ C,
as we only need to constructM and ~u such that (M,~u) |= ϕ.
The second (related) difference is that in this case there is no
need to consider some actual values ~paX for each X ∈ ~X
and verify that fX( ~paX) is deterministic, for the actualized
refinement is not relevant to the semantics of |= for (M,~u),
as shown by Theorem A.1. This explains why D10(c) is not
part of AXscc

non. The third difference is that we here need to
show 〈~Y ← ~y〉 ~X = ~x ∈ C iff (M,~u) |= 〈~Y ← ~y〉 ~X = ~x
(as opposed to having ~v included on the RHS). By Theorem
A.1, this is equivalent to showing that 〈~Y ← ~y〉 ~X = ~x ∈ C
iff (~u, ~y, ~x) is a solution of M~Y←~y . The remainder of the

proof remains identical.
Now we prove soundness. We leave it as a simple exercise

to the reader that D0-D1-D2-D4-D7-D8-D10(a) are sound
for both of our logics, and that D10(c) is sound for our swc
logic.

D6:
As we explain in the discussion of (Wysocki 2023)’s work

in Section 5, contrary to our NSEMs, DSEMs do not come
with a graph. Rather, a graph GD is induced by invoking
“Y depends on X”: there is an edge from X to Y iff there
exist settings ~z ∈ (U ∪ V − {X,Y }, and x, x′ ∈ R(X),
such that fY (~z, x) 6= fY (~z, x

′). As mentioned in (Halpern
and Peters 2022), D6 expresses the acyclicity of the induced
graph GD. Of course NSEMs can be used to invoke a graph
GD in exactly the same manner: there is an edge from X to
Y iff there exist settings ~z ∈ (U ∪ V − {X,Y }, and x, x′ ∈
R(X), such that fY (~z, x) 6= fY (~z, x

′). NSEMs also come
with an explicit graph GM , and this need not be identical to
GD. But the graph GD is easily seen to be a subgraph of GM ,
since X has to be an argument of fY for Y to depend on
X , and per definition this means that there is an edge from
X to Y in GM . Therefore the acyclicity of GM implies the
acyclicity of GD, and thus D6 is sound for both of our logics.
Concretely: if X  Y for some solution (~u,~v), then X has
to be an ancestor of Y in GD. So the falsity of D6 would
imply that GD is cyclic.

D3(a):
We start with soundness for |= relative to (M,~u,~v).

Assume W 6∈ ~X , and (~u,~v) is a solution of M , and
(M,~u,~v) |= 〈 ~X ← ~x〉(W = w ∧ ϕ). This means that there
exists ~v′ so that (~u,~v′) is a solution of (M (~u,~v)) ~X←~x and
~v′ |= (W = w ∧ ϕ). By D4, it directly follows that (~u,~v′)
is also a solution of (M (~u,~v)) ~X←~x,W←w, and we also have

that ~v′ |= ϕ. This means precisely that (M,~u,~v) |= 〈 ~X ←
~x,W ← w〉ϕ.

Soundness for |= relative to (M,~u) is a consequence of
the soundness for |= relative to (M,~u,~v). For concrete-
ness, we here write out the intermediate steps. Assume that
(M,~u) |= 〈 ~X ← ~x〉(W = w∧ϕ). Per definition of 〈〉, this is
equivalent to: (M,~u) |= ¬[ ~X ← ~x](W 6= w ∨ ¬ϕ). In turn,
this is equivalent to it not being the case that for all states ~v
so that (~u,~v) is a solution ofM , we have (M,~u,~v) |= [ ~X ←
~x](W 6= w ∨ ¬ϕ). This is equivalent to there existing some
state ~v′ such that (~u, ~v′) is a solution ofM and (M,~u, ~v′) |=
〈 ~X ← ~x〉(W = w ∧ ϕ). By D3(a) for |= relative to causal
settings, we get that for some solution (~u, ~v′′) of M , namely
(~u, ~v′), (M,~u, ~v′′) |= 〈 ~X ← ~x,W ← w〉ϕ. Applying all of
the above equivalences in the other direction, this is seen to
be equivalent to (M,~u) |= 〈 ~X ← ~x,W ← w〉ϕ, which is
what had to be shown.

D3(b):
Soundness for |= relative to (M,~u) is a direct conse-

quence of the soundness for |= relative to (M,~u,~v), so we
proceed with the latter.

Assume W 6∈ ~X , and (~u,~v) is a solution of M ,
and (M,~u,~v) |= [ ~X ← ~x](W = w ∧ ϕ). It suffices



to show that for any state ~v′, if (~u,~v′) is a solution of
(M (~u,~v)) ~X←~x,W←w, then it is a solution of (M (~u,~v)) ~X←~x.

We proceed by a reductio. Assume that (~u,~v′) is a so-
lution only of the former. Note that the two models have
identical equations for all variables except W , and that
the restriction of ~v′ to W has to be w. Therefore it must
be that (w, ~paW ) is not a solution of W ’s equation in
(M (~u,~v)) ~X←~x, where ~paW is the restriction of ~v′ to ~PaW .
Given that, per the first assumption,W = w for all solutions
of (M (~u,~v)) ~X←~x, it must be that ~paW does not appear in any
such solution. However, given that both models are acyclic
and have identical equations for all non-descendants of W
(including ~paW ), they have exactly the same partial solu-
tions (~u,~a), where ~A ⊆ V consists of all non-descendants
of W . Thus it cannot be that ~paW only appears in a solution
to one of them.

D5:
We start with soundness for |= relative to (M,~u,~v). As-

sume (~u,~v) is a solution of M , and (M,~u,~v) |= 〈 ~X ←
~x, Y ← y〉(W = w ∧ ~Z = ~z) ∧ 〈 ~X ← ~x,W ← w〉(Y =

y∧ ~Z = ~z), where ~Z = V−( ~X∪{W,Y }). We need to show
that (M,~u,~v) |= 〈 ~X ← ~x〉(W = w ∧ Y = y ∧ ~Z = ~z).

Per assumption, there exists a solution (~u, ~v1) of
(M (~u,~v)) ~X←~x,Y←y such that its restriction to (W, ~Z)

is (w, ~z), and there exists a solution (~u, ~v2) of
(M (~u,~v)) ~X←~x,W←w such that its restriction to (Y, ~Z)

is (y, ~z). Clearly also both solutions have that ~X = ~x, and
the restriction of ~v1 to Y must be y, whereas the restriction
of ~v2 to W must be w.

Since V = ~Z ∪ ~X ∪{W,Y }, the tuple ~v3 = (~x, ~z, y, w) is
a state. Therefore it follows that ~v1 = ~v2 = ~v3. It now suf-
fices to show that (~u, ~v3) is a solution of (M (~u,~v)) ~X←~x. As
the equations for all variables in ~Z ∪ ~X are identical across
the three models, (~u, ~v3) contains solutions to all these equa-
tions in (M (~u,~v)) ~X←~x. As the equation for Y is identical
across (M (~u,~v)) ~X←~x and (M (~u,~v)) ~X←~x,W←w, (~u, ~v3) con-
tains a solution for Y in (M (~u,~v)) ~X←~x. The same holds for
W and the other model, concluding the proof.

Now we prove soundness for |= relative to (M,~u). As-
sume that (M,~u) |= 〈 ~X ← ~x, Y ← y〉(W = w ∧ ~Z =

~z) ∧ 〈 ~X ← ~x,W ← w〉(Y = y ∧ ~Z = ~z), where
~Z = V − ( ~X ∪ {W,Y }). We need to show that (M,~u) |=
〈 ~X ← ~x〉(W = w∧Y = y∧ ~Z = ~z). By Theorem A.1, our
assumption is equivalent to the statement that (~u, ~x, ~z, y, w)
is a solution of both M ~X←~x,Y←y and M ~X←~x,W←w, and
what we need to show is that (~u, ~x, ~z, y, w) is a solution of
M ~X←~x. This follows by applying the reasoning from the
previous paragraph to the three models at hand.

Proposition A.4: For a solution (~u,~v) of M , if (M,~u,~v) |=
~X = ~x ∧ ϕ then (M,~u,~v) |= [ ~X ← ~x]ϕ.
Proof: This follows directly by induction using D3(b) for
~X = ∅ and the fact that ϕ is equivalent to []ϕ.

Theorem A.5: Given consistent models M and M∗, where
M is probabilistic andM∗ is not, for all basic causal formu-
las ψ ∈ L it holds that (M,~u,~v) |= ψ = 1 iff (M∗, ~u,~v) |=
ψ.

Proof: Assume we have a probabilistic modelM1 and a non-
probabilistic model M2 as described, and consider a basic
causal formula [~Y ← ~y]ϕ and a world (~u,~v). First we show
that (~u,~v) is a solution of M1 iff (~u,~v) is a solution of M2.
(~u,~v) is a solution of M1 iff PM1(~u,~v) > 0 iff∏
X∈U∪V PX(x| ~paX) > 0 iff for each X ∈ V ,

PX(x| ~paX) > 0. (Throughout x and ~paX are the respec-
tive restrictions of (~u,~v).) By definition of consistency, the
latter is equivalent to: for each X ∈ V , x ∈ fX( ~paX) in
M2, and this in turn is equivalent to (~u,~v) being a solution
of M2.

What remains to be shown, is that ~v′ |= ϕ for all states ~v′

such that (~u,~v′) is a solution of (M (~u,~v)
2 )~Y←~y iff PM ′(ϕ) =

1, where M ′ = (M
(~u,~v)
1 )~Y←~y . This can be expressed equiv-

alently as: there exists a state ~v′ such that ~v′ |= ¬ϕ and
(~u,~v′) is a solution of (M (~u,~v)

2 )~Y←~y iff PM ′(¬ϕ) > 0. The
last statement simply means that there exists a state ~v′ such
that ~v′ |= ¬ϕ and (~u,~v′) is a solution of M ′. Therefore the
results follows if we can show that for each state ~v′, (~u,~v′)
is a solution of (M (~u,~v)

2 )~Y←~y iff (~u,~v′) is a solution of M ′.

This follows from our previous result, if (M
(~u,~v)
2 )~Y←~y is

consistent with M ′. It is an easy consequence of the defini-
tions that this is the case.


