
Appendix A Continuous RL: Formulation and Well-Posedness467

A.1 Exploratory Stochastic-Control468

For n,m positive integers, let b : Rn × A 7→ Rn and σ : Rn × A 7→ Rn×m be given functions,469

where A is a compact action space. A classical stochastic control problem [15, 62] is to control470

the state (or feature) dynamics governed by an Itô process, defined on a filtered probability space471 (
Ω,F ,P;

{
FB

s

}
s≥0

)
, along with an {FB

s }-Brownian motion B = {Bs, s ≥ 0}:472

dXa
s = b (Xa

s , as) ds+ σ (Xa
s , as) dBs, s ≥ t, Xt = x, (29)

where as is the agent’s action (control) at time s. The goal of the stochastic control (discounted473

objective over an infinite time horizon) is for any time-state pair (t, x) in (29), to find the optimal474 {
FB

s

}
s≥0

-progressively measurable sequence of actions a = {as, s ≥ t} (called the optimal policy)475

that maximizes the expected total β-discounted reward:476

E
[∫ +∞

t

e−β(s−t)r (Xa
s , as) ds | Xa

t = x

]
, (30)

where r : Rn ×A 7→ R is the running reward of the current state and action (Xa
s , as), and β > 0 is a477

discount factor that measures the time-depreciation of the objective value (or the impatience level of478

the agent). Note that the state process Xa = {Xa
s , s ≥ t} depends on the starting (initial) time-state479

pair (t, x). For ease of notation, we denote by Xa instead of Xt,x,a = {Xt,x,a
s , s ≥ t} the solution480

to the SDE in (29) when there is no ambiguity.481

Listed below are the standard assumptions to ensure the well-posedness of the stochastic control482

problem in (29)-(30).483

Assumption 2. The following conditions are assumed throughout:484

(i) b, σ, r are all continuous functions in their respective arguments;485

(ii) b, σ are uniformly Lipschitz continuous in x, i.e., there exists a constant C > 0 such that for486

φ ∈ {b, σ},487

∥φ(x, a)− φ (x′, a)∥2 ≤ C ∥x− x′∥2 , for all a ∈ A, x, x′ ∈ Rn; (31)

(iii) b, σ have linear growth in x and a, i.e., there exists a constant C > 0 such that for φ ∈ {b, σ},488

∥φ(x, a)∥2 ≤ C(1 + ∥x∥2 + ∥a∥2), for all (x, a) ∈ Rn ×A; (32)

(iv) r has polynomial growth in x and a, i.e., there exists a constant C > 0 and µ ≥ 1 such that489

|r(x, a)| ≤ C (1 + ∥x∥µ2 + ∥a∥µ2 ) for all (x, a) ∈ Rn ×A. (33)

The key idea underlying exploratory stochastic control is to use a randomized policy (or relaxed490

control), i.e., apply a probability distribution to the admissible action space. To do so, let’s assume491

the probability space is rich enough to support a uniform random variable Z that is independent492

of the Brownian motion B = {Bt}. We then expand the original filtered probability space to493 (
Ω,F ,P; {Fs}s≥0

)
, where Fs = FB

s ∨ σ(Z) (i.e., augment FB
s with the sigma field generated by494

Z).495

Let π : Rn ∋ x 7→ π(· | x) ∈ P(A) be a stationary feedback policy given the state at x, where P(A)496

is a suitable collection of probability distributions (with density functions). At each time s, an action497

as is generated from the distribution π (· | Xa
s ), i.e. the policy only depends on the current state.498

In other words, we only consider stationary, or time-independent feedback control policies for the499

stochastic control problem (29)-(30).500

Given a stationary policy π ∈ P(A), an initial state x, and an {Fs}-progressively measurable action501

process aπ = {aπs , s ≥ 0} generated from π, the state process Xπ = {Xπ
s , s ≥ 0} follows:502

dXπ
s = b (Xπ

s , a
π
s ) ds+ σ (Xπ

s , a
π
s ) dBs, s ≥ t, Xπ

0 = x, (34)

defined on
(
Ω,F ,P; {Fs}s≥0

)
. It is easy to see that the dynamics in (34) define a time-homogeneous503

Markov process, such that for each t ≥ 0 and x:504

(Xπ
s | Xπ

0 = x)
d
=

(
Xπ

s+t | Xπ
t = x

)
, s ≥ 0.
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Consequently, the objective in (30) is independent of time t, and is equal to:505

E
[∫ +∞

0

e−βsr (Xπ
s , a

π
s ) ds | Xπ

0 = x

]
. (35)

Furthermore, following [58], we can add a regularizer to the objective function to encourage explo-506

ration (represented by the randomized policy), leading to507

V (t, x;π) :=E
[∫ ∞

t

e−β(s−t) [r (Xπ
s , a

π
s ) + γp (Xπ

s , a
π
s , π (· | Xπ

s ) , )] ds | Xπ
t = x

]
, (36)

where p : Rn ×A×P(A) 7→ R is the regularizer, and γ ≥ 0 is a weight parameter on exploration508

(also known as the “temperature" parameter). For instance, in [58], p is taken as the differential509

entropy,510

p(x, a, π(·)) := − log π(a),

and hence, the “entropy” regularizer. The same argument as before justifies that V (t, x;π) is511

independent of time t. That is, for all t ≥ 0,512

V (t, x;π) ≡ V (x;π) := EP
[∫ ∞

0

e−βs [r (Xπ
s , a

π
s ) + γp (Xπ

s , a
π
s , π (· | Xπ

s ))] ds | Xπ
0 = x

]
;

(37)
which is the state-value function under the policy π, V (x;π), in (4), and which, in turn, leads to the513

performance function η(π) in (6). Moreover, recall the main task of the continuous RL is to find (or514

approximate) η∗ = maxπ η(π), where max is over all admissible policies.515

A.2 Controlled SDE and the HJ Equation516

Note that the exploratory state dynamics in (34) is governed by a general Itô process. It is sometimes517

more convenient to consider an equivalent SDE representation— in the sense that its (weak) solution518

has the same distribution as the Itô process in (34) at each fixed time t. It is known ([58]) that when519

n = m = 1, the marginal distribution of {Xπ
s , s ≥ 0} agrees with that of the solution to the SDE,520

denoted by {X̃s, s ≥ 0}:521

dX̃s = b̃
(
X̃s, π

(
· | X̃s

))
ds+ σ̃

(
X̃s, π

(
· | X̃s

))
dB̃s, X̃0 = x,

where b̃(x, π(·)) =
∫
A b(x, a)π(a)da and σ̃(x, π(·)) =

√∫
A σ2(x, a)π(a)da. This result is easily522

extended to arbitrary n,m, thanks to [7, Corollary 3.7], with the precise statement presented below523

(assuming n = m for ease of exposition).524

Theorem 6. Assume that for a policy π and for every x,525 ∫
A
σ2(x, a)π(a)da ∈ Rn×n,

is positive definite. Then there exists a filtered probability space
(
Ω̃, F̃ ,

{
F̃t

}
t≥0

, P̃
)

that supports526

a continuous Rn-valued adapted process X̃ and an n-dimensional Brownian motion B̃ satisfying527

dX̃s = b̃
(
X̃s, π

(
· | X̃s

))
ds+ σ̃

(
X̃s, π

(
· | X̃s

))
dB̃s, X̃0 = x, (38)

where528

b̃(x, π(·)) =
∫
A
b(x, a)π(a)da, σ̃(x, π(·)) =

(∫
A
σ2(x, a)π(a)da

) 1
2

.

For each s ≥ 0, the distribution of X̃s under P̃ agrees with that of Xπ
s under P defined in (34).529

As a consequence, the state value function in (37) is identical to530

V (x;π) = E
[∫ ∞

0

e−βs

∫
A

[
r(X̃s, a) + γp

(
X̃s, a, π(· | X̃s)

)]
π(a | X̃s)da ds | X̃0 = x

]
.
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Also define531

r̃(x, π) =

∫
A
r(x, a)π(a|s)da, p̃(x, π) =

∫
A
p(x, a, π)π(a|x)da,

so we can simplify the value function to532

V (x;π) = E
[∫ ∞

0

e−βs
[
r̃(X̃s, π) + γp̃

(
X̃π

s , π(· | X̃s)
)]

ds | X̃0 = x

]
. (39)

Following the principle of optimality, V then satisfies the HJ equation:533

βV (x;π)− b̃(x, π) · ∇V (x;π)− 1

2
σ̃2(x, π) ◦ ∇2V (x;π)− r̃(x, π)− γp̃(x, π) = 0. (40)

To guarantee that the HJ equation in (40) characterizes the state-value function in (39), we need534

Assumption 3. Assume the following conditions hold:535

(i) b, σ, r, p are all continuous functions in their respective arguments.536

(ii) b, r, p are uniformly Lipschitz continuous in x, i.e., there exists a constant C > 0 such that for537

φ ∈ {b, r},538

∥φ(x, a)− φ (x′, a)∥2 ≤ C ∥x− x′∥2 , for all a ∈ A, x, x′ ∈ Rn,

and539

|p(x, a, π)− p(x′, a, π)| ≤ C ∥x− x′∥2 , for all a ∈ A, π ∈ P(A), x, x′ ∈ Rn.

(iii) σ̃ is globally bounded, i.e., there exist 0 < σ0 < σ̄0 such that540

σ2
0 · I ≤ σ̃2(x, a) ≤ σ̄2

0 · I, for all a ∈ A, x ∈ Rn.

(iv) the SDE (38) has a weak solution which is unique in distribution.541

(v) π(a|x) is measurable in (x, a) and is uniformly Lipschitz continuous in x, i.e., there exists a542

constant C > 0 such that543 ∫
A
|π(a|x)− π(a|x′)| da ≤ C∥x− x′∥2, for all x, x′ ∈ Rn.

Theorem 7. Under Assumption 3, the state-value function in (39) is the unique (subquadratic)544

viscosity solution to the HJ equation in (40).545

Proof. By [56, Section 3.1], the HJ equation in (40) has a unique (subquadratic) viscosity solution546

under the conditions (i)-(iii). Further by [21, Lemma 2], the viscosity solution is the state-value547

function.548

Appendix B Proofs of Main Results (in §3)549

B.1 Proof of Theorem 2550

Recall in the proof sketch of the Theorem in §3, we have defined the operator Lπ : C2(Rn) 7→ C(Rn)551

as552

(Lπφ) (x) := −βφ(x) + b̃(x, π) · ∇φ(x) + 1

2
σ̃(x, π)2 ◦ ∇2φ(x),

which leads to the following characterization of the HJ equation:553

−LπV (x;π) = r̃(x, π) + γp̃(x, π). (41)

We need the following two lemmas concerning the operator Lπ .554

Lemma 8. For any φ ∈ C2(Rn), we have555 ∫
Rn

dπx(y)(−Lπφ)(y)dy = φ(x).
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Proof. The left hand side of the above equation is556

= E
∫ ∞

0

e−βs

(
βφ(X̃π

s )− b̃(X̃π
s , π)

∂φ

∂x
(X̃π

s )−
1

2
σ̃(X̃π

s , π)
2 ∂

2φ

∂x2
(X̃π

s )

)
ds

= E
∫ ∞

0

e−βs

[(
βφ(X̃π

s )− b̃(X̃π
s , π)

∂φ

∂x
(X̃π

s )−
1

2
σ̃(X̃π

s , π)
2 ∂

2φ

∂x2
(X̃π

s )

)
ds− σ̃(X̃π

s , π)
∂φ

∂x
(X̃π

s )dBs

]
= E

∫ ∞

0

d
(
−e−βsφ(X̃π

s )
)

= lim
s→∞

(
−e−βsφ(X̃π

s )
)
+ φ(X̃π

0 )

= φ(x),

where the first equality follows from the definition of the occupation time and the third equality from557

Itô’s formula. □558

Lemma 9. Let π, π̂ be two feedback policies. We have559

(Lπ̂ − Lπ)V (x;π) + r̃(x, π̂)− r̃(x, π)− γp̃(x, π) =

∫
A(x)

π̂(a | x)q(x, a;π)da. (42)

Proof. By definition of q(x, a;π) in (11), we have560

RHS =

∫
A(x)

π̂(a | x)
(
Ha

(
x,

∂V

∂x
(x;π) ,

∂2V

∂x2
(x;π)

)
− βV (x;π)

)
da

=

∫
A(x)

π̂(a | x)
(
b(x, a) · ∂V

∂x
(x;π) +

1

2
σ2(x, a) ◦ ∂

2V

∂x2
(x;π) + r(x, a)− βV (x;π)

)
da

= r̃(x, π̂) + Lπ̂V π(x)

= r̃(x, π̂)− r̃(x, π)− γp̃(x, π) + Lπ̂V π(x)− LπV π(x)

= LHS.

□561

Proof of Theorem 2. Note that in (13), the equation to be proven, the right hand side can be written as∫
R dπ̂µ(y)f(x;π, π̂)dy, with

f(x;π, π̂) :=

∫
A
π̂(a | x) (q(x, a;π) + γp(x, a, π̂)) da.

From Lemma 9, we have562

f(x;π, π̂) = (Lπ̂ − Lπ)V (x;π) + r̃(x, π̂) + γp̃(x, π̂)− r̃(x, π)− γp̃(x, π). (43)

On the other hand, for the left hand side of (13), we have563

η(π) =

∫
Rn

V (y;π)µ(dy) =

∫
Rn

dπ̂µ(y)(−Lπ̂)V (y;π)dy, (44)

with the second equality following from Lemma 8; and564

η(π̂) =

∫
R
dπ̂µ(y) [r̃(y, π̂) + γp̃(y, π̂)] dy, (45)

following the definition of the discounted expected occupation time; moreover, from (41), we have565

0 =

∫
R
dπ̂µ(y) [(−Lπ)V (y;π)− r̃(y, π)− γp̃(y, π)] dy. (46)

Hence, combining the last three equations (44,45,46), we have566

η(π̂)−η(π) =
∫
R
dπ̂µ(y)

[
(Lπ̂ − Lπ)V (y;π) + r̃(y, π̂) + γp̃(y, π̂)− r̃(y, π)− γp̃(y, π)

]
dy. (47)

Thus, we have shown LHS=RHS in (13). □567
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B.2 Proof of Theorem 3568

Proof. It suffices to show the integral version of the theorem:569

∇θ

(
η(πθ)

)
|θ=θ=

∫
Rn

dπ
θ

µ (x)

[∫
A
∇θπ

θ(a | x)
(
q(x, a;πθ) + γp(x, a, πθ)

)
+

γ · πθ(a | x)∇θp(x, a, π
θ)da

]
dx.

(48)

As before, we simplify notation by denoting η(πθ) as η(θ) and dπ
θ

as dθ. Then, by Theorem 2), we570

have571

η(θ + δθ)− η(θ) =

∫
Rn

dθ+δθ
µ (x)

[∫
A
πθ+δθ(a | x) (q(x, a; θ) + γp(x, a, θ + δθ)) da

]
dx. (49)

Denote572

f(δθ) =

∫
A
πθ+δθ(a | x) (q(x, a; θ) + γp(x, a, θ + δθ)) da.

Note that f(0) = 0, which follows from573

f(0) =

∫
A
πθ(a | x) (q(x, a; θ) + γp(x, a, θ)) da

=

∫
A
πθ(a | x)

(
Ha(x,

∂V

∂x
(x;π) ,

∂2V

∂x2
(x;π))− βV (x;π) + γp(x, a, θ)

)
da

= −βV (x;π) + b̃(x, π) · ∇V (x;π) +
1

2
σ̃2(x, π) ◦ ∇2V (x;π) + r̃(x, π) + γp̃(x, π)

= 0.

Thus,574

η(θ + δθ)− η(θ) = ⟨dθ+δθ
µ , f(δθ)⟩

= ⟨dθ+δθ
µ , f(δθ)⟩ − ⟨dθ+δθ

µ , f(0)⟩
= ⟨dθ+δθ

µ , f(δθ)− f(0)⟩
= ⟨dθ+δθ

µ − dθµ, f(δθ)− f(0)⟩+ ⟨dθµ, f(δθ)− f(0)⟩.
Dividing both sides by δθ completes the proof, as the first term on the last line above is of higher575

order than δθ. □576

B.3 Proofs of Lemma 4 and Theorem 5577

We need a lemma for the perturbation bounds.578

Lemma 10. Assume that both σ̃2(x, π̂(·)) and σ̃2(x, π(·)) are positive definite and579

σ̃2(x, π(·)), σ̃2(x, π̂(·)) ≥ σ2
0 · I.

where σ0 > 0, then we have that the difference between the square root matrix is bounded by580

∥σ̃(x, π̂)− σ̃(x, π)∥2 ≤
1

2σ0
∥σ̃2(x, π̂)− σ̃2(x, π)∥2.

If we also assume that the upper bounds, i.e.581

σ̃2(x, π(·)), σ̃2(x, π̂(·)) ≤ σ̄2
0 · I.

by some σ̄0 > σ0 > 0, then we have582

∥σ̃(x, π̂)− σ̃(x, π)∥2 ≤
σ̄0

2σ0
∥π̂ − π∥

1
2
1 .

Proof. Consider a normalized vector x with ∥x∥2 = 1 is an eigenvector of A
1
2 −B

1
2 with eigenvalue583

µ then584

xT (A−B)x = xT (A
1
2 −B

1
2 )A

1
2x+ xTB

1
2 (A

1
2 −B

1
2 )x

= µxT (A
1
2 +B

1
2 )x.
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thus, if A,B ≥ σ2
0I , this implies585

µ ≤ |xT (A−B)x|
xT (A

1
2 +B

1
2 )x
≤ ∥A−B∥2 · λmin(A

1
2 +B

1
2 )−1 ≤ ∥A−B∥2/(2σ0).

Furthermore, note that586

σ̃2(x, π̂)− σ̃2(x, π) =

∫
A
σ2(x, a)(π̃(a|x)− π(a|x))da.

so587

∥σ̃2(x, π̂)− σ̃2(x, π)∥2 ≤ σ̄2
0

∫
A
|π̃(a|x)− π(a|x)|da = σ̄2

0 · ∥π̃(a|x)− π(a|x)∥1.

□588

Proof (of Lemma 4). Consider the Wasserstein-2 distance W2(µ, v) between distribution µ and v as589

W2(µ, ν) =

(
inf

γ∈Γ(µ,ν)
E(x,y)∼γ∥x− y∥22

)1/2

,

where Γ(µ, ν) is the set all probability measures on the product space Rn × Rn with the marginal590

distributions being µ and v, and ∥ · ∥2 is the standard Euclidean distance. Denote591

d̄πµ := βdπµ.

We want to get an upper bound on W2(d̄
π
µ, d̄

π̂
µ) in terms of the distance between two policies π and π̂.592

Consider a specific coupling (Xt, Yt) below:593 {
dXs = b̃ (Xs, π (· | Xs)) ds+ σ̃ (Xs, π (· | Xs)) dBs,

dYs = b̃ (Ys, π̂ (· | Ys)) ds+ σ̃ (Ys, π̂ (· | Ys)) dBs.
(50)

with X0 = Y0, which leads to a joint distribution over Rn × Rn:594

γ̃ :=

{
p̃(x, y) =

∫ ∞

0

1

β
e−βtf(Xt,Yt)(x, y)dt

}
.

Hence,595

W 2
2 (d̄

π
µ, d̄

π̂
µ) ≤ E(x,y)∼γ̃∥x− y∥22 =

∫ ∞

0

1

β
e−βsE∥Xs − Ys∥22ds. (51)

It then boils down to estimating E∥Xs − Ys∥22. By Itô’s formula,596

d∥Xs − Ys∥22 =2(Xs − Ys)
⊤
[
(b̃ (Xs, π)− b̃ (Ys, π̂))ds+ (σ̃ (Xs, π)− σ̃ (Ys, π̂))dBs

]
+Tr

[
(σ̃ (Xs, π)− σ̃ (Ys, π̂))

2
]
ds.

Taking expectation on both sides yields597

d

ds
E∥Xs − Ys∥22 = 2E

[
(Xs − Ys)

⊤(b̃ (Xs, π)− b̃ (Ys, π̂))ds
]

︸ ︷︷ ︸
(A)

+Tr
[
E(σ̃ (Xs, π)− σ̃ (Ys, π̂))

2
]︸ ︷︷ ︸

(B)

,

(52)
with598

(A) = E
[
(Xs − Ys)

⊤(b̃ (Xs, π)− b̃ (Ys, π))ds
]
+ E

[
(Xs − Ys)

⊤(b̃ (Ys, π)− b̃ (Ys, π̂))ds
]

≤ Cb̃ · E∥Xs − Ys∥22 +
1

2
E∥Xs − Ys∥22 +

1

2
E∥b̃ (Ys, π)− b̃ (Ys, π̂) ∥22

≤ (Cb̃ +
1

2
) · E∥Xs − Ys∥22 +

1

2
∥b̃(·, π)− b̃(·, π̂)∥22,∞;

and599

(B) = E∥σ̃ (Xs, π)− σ̃ (Ys, π̂) ∥2F
≤ 2E∥σ̃ (Xs, π)− σ̃ (Ys, π) ∥2F + 2E∥σ̃ (Ys, π)− σ̃ (Ys, π̂) ∥2F
≤ 2C2

σ̃ · E ∥Xs − Ys∥22 + 2 sup
x
∥σ̃ (x, π)− σ̃ (x, π̂) ∥2F

:= 2C2
σ̃ · E ∥Xs − Ys∥22 + 2∥σ̃ (·, π)− σ̃ (·, π̂) ∥2F,∞.
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Combining the above, we get600

d

ds
E∥Xs−Ys∥22 ≤ (2Cb̃ + 1 + 2C2

σ̃)︸ ︷︷ ︸
Cb̃,σ̃

E∥Xs−Ys∥22+∥b̃(·, π)− b̃(·, π̂)∥22,∞ + 2∥σ̃ (·, π)− σ̃ (·, π̂) ∥2F,∞︸ ︷︷ ︸
C(π,π̂)

.

By Grönwall’s inequality, we have601

E∥Xt − Yt∥22 ≤
C(π, π̂)

Cb̃,σ̃

(
eCb̃,σ̃t − 1

)
. (53)

Substituting back into (51), we obtain602

W 2
2 (d̄

π
µ, d̄

π̂
µ) ≤

C(π, π̂)

Cb̃,σ̃

∫ ∞

0

1

β
e−βs

(
eCb̃,σ̃s − 1

)
ds.

Thus, if β > Cb̃,σ̃ , we have603

W2(d̄
π
µ, d̄

π̂
µ) ≤

C(π, π̂)

Cb̃,σ̃(β − Cb̃,σ̃)β
.

Concerning the term C(π, π̂), we have604

∥b̃(·, π)− b̃(·, π̂)∥2,∞ = sup
x
∥b̃ (x, π)− b̃ (x, π̂) ∥2 ≤ sup

x
∥π̂(·|x)− π(·|x)∥1 · sup

x,a
|b(x, a)|,

and605

∥σ̃(·, π)− σ̃(·, π̂)∥F,∞ = sup
x
∥σ̃ (x, π)− σ̃ (x, π̂) ∥F ≤

√
n
σ̄0

2σ0
sup
x
∥π̂(·|x)− π(·|x)∥

1
2
1 .

Thus we have:606

C(π, π̂) = ∥b̃(·, π)− b̃(·, π̂)∥22,∞ + 2∥σ̃ (·, π)− σ̃ (·, π̂) ∥2F,∞

≤
(
sup
x,a
|b(x, a)|2 + d · σ̄2

0

2σ2
0

)
max

(
sup
x
∥π̂(·|x)− π(·|x)∥1, sup

x
∥π̂(·|x)− π(·|x)∥

1
2
1

)
which proves our upper bound. □607

Proof (of Theorem 5). We have that608

|ηπ̂ − Lπ(π̂)| = |⟨dπ̂µ − dπµ, f⟩| =
∥f∥Ḣ1

β

∣∣∣∣〈d̄π̂µ − d̄πµ,
f

∥f∥Ḣ1

〉∣∣∣∣
≤ K

β
∥d̄π̂µ − d̄πµ∥Ḣ−1 ≤

K
√
M

β
W2

(
d̄π̂µ, d̄

π
µ

)
.

(54)

where K := supπ̂ ∥f∥Ḣ1 < ∞ (more about K in the remarks below). Combining (54) with the609

estimate in (22) (of Lemma 4) yields the desired result in (23). 1 □610

Remarks (on K). In the performance-difference bound developed above, we assume K is finite:611

K := ∥f∥Ḣ1 :=

(∫
Rn

|∇f(x)|2dx
) 1

2

<∞,

where f(x;π, π̂) :=
∫
A π̂(a | x) (q(x, a;π) + p(x, a, π̂)) da. The famous Poincaré inequality can612

provide a lower bound on this quantity; but we need an upper bound as well, i.e.,613

K =

(∫
Rn

|∇f(x)|2dx
) 1

2

≤ C

(∫
Rn

|f(x)|2dx
) 1

2

.

This above is essentially a reverse Poincaré Inequality, which is not likely to hold (in particular, the614

existence of the constant C).615

1From this proof, it’s evident that there’s a β missing in the denominator on the RHS of (22). Consequently,
the C(µ, π, π̂) expression in Theorem 5 should have 2β2 (instead of 2β) in the denominator. This correction
will not affect the two numerical examples as both had set β = 1 (as a hyper-parameter).
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Should we indeed have a reverse Poincaré Inequality, then we can further bound f by616

|f(x)| = |
∫
A
(π̂(a | x)− π(a | x)) (q(x, a;π) + p(x, a, π̂)) da|

≤
∫
A
|π̂(a | x)− π(a | x)| · |q(x, a;π) + p(x, a, π̂)|da

≤ 2 sup
a
|q(x, a;π) + p(x, a, π̂)|DTV(π(· | x), π̂(· | x)),

and617 (∫
Rn

|f(x)|2dx
) 1

2

≤
(∫

Rn

4 sup
a
|q(x, a;π) + p(x, a, π̂)|2 D2

TV(π(· | x), π̂(· | x))dx
) 1

2

≤
(∫

Rn

2 sup
a
|q(x, a;π) + p(x, a, π̂)|2 dx

) 1
2 √

sup
x

DKL(π(· | x), π̂(· | x)),

where the second inequality is from Pinsker’s inequality. This way, we would have recovered a618

similar bound as in the discrete RL. Since we do not have the reverse Poincaré inequality, however,619

we have to assume that K is finite.620
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Appendix C Algorithms621

C.1 Performance of CPPO with Square-root KL and Linear KL622

Here we present a detailed version of the CPPO algorithm. For two probability distributions P and Q623

over the action space with density functions p and q correspondingly, the KL-divergence between624

these two is defined as:625

DKL(P∥Q) =

∫
A
log(

q(a)

p(a)
)q(a)da,

Denote DKL(θ, θk) := E
x∼d

θk
µ
DKL(πθ(·|x)∥πθk(·|x)), to distinguish it from D̄KL(θ∥θk) :=626

E
x∼d

θk
µ

√
DKL(πθ(·|x)∥πθk(·|x)) which was used in CPPO Algorithm in 2.627

Note that bounding the performance difference by the linear KL-divergence DKL(θ, θk), instead of628

its square-root counterpart D̄KL(θ∥θk), will generally require stronger conditions (which may be629

difficult to satisfy). For completeness, we present the following algorithm, the CPPO with linear630

KL-divergence:631

Algorithm 3 CPPO: PPO with adaptive penalty constant (linear KL-divergence)
Input: Policy parameters θ0, critic net parameters ϕ0

1: for k = 0, 1, 2, · · · until θk converge do
2: Collect a truncated trajectory {Xti , ati , rti , pti} , i = 1, . . . , N from the environment using

πθk .
3: for i = 0, . . . , N − 1 do: Update the critic parameters as in (8)
4: for j = 1, , . . . , J do: Draw i.i.d. τj from exp(β), round τj to the largest multiple of δt no

larger than it, and compute the GAE estimator of q(Xτj , aτj )

q̃(Xτj , aτj ) :=
(
rτjδt + e−βδtV (Xτj+δt)− V (Xτj )

)
/δt.

5: Compute policy update (by taking a fixed s steps of gradient descent)

θk+1 = argmax
θ

Lθk(θ)− Ck
penaltyDKL (θ, θk) .

6: if DKL (θk+1, θk) ≥ (1 + ϵ)δ, then Ck+1
penalty = 2Ck

penalty.

7: else if DKL (θk+1, θk) ≤ δ/(1 + ϵ), then Ck+1
penalty = Ck

penalty/2.

A comparison between the above and Algorithm 2 (using square-root KL divergence) is presented in632

§D.3 below, which clearly illustrates the advantage of square-root KL divergence.633

C.2 KL-divergence634

We elaborate here on the KL-divergence between the current policy and the optimal policy, along635

with the entropy regularizer. By the performance difference formula, we have636

η(π)− η(π∗) =

∫
Rn

dπµ(x)

[∫
A
π(a | x) (q(x, a;π∗)− γ log(π(a))) da

]
dx.

Notice that by the definition of KL-divergence we defined before, we have637

DKL(π
∗(·|x)∥π(·|x)) =

∫
A
log(

π(a|x)
π∗(a|x)

)π(a|x)da.

Similar as the previous discussion of soft q-learning, π∗ is optimal implies that638

π∗(a | x) ∝ exp(
q(x, a, π∗)

γ
),

and the normalization constant is 1 can be proved through considering the exploratory HJB equation,639

see [22, 56]. Thus640

DKL(π
∗(·|x)∥π(·|x)) =

∫
A
log(π(a|x))π(a|x)da−

∫
A

q(x, a, π∗)

γ
π(a|x)da,
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which leads to641

η(π)− η(π∗) = −γ · Ex∼dπ
µ
DKL(π

∗(·|x)∥π(·|x)).
This justifies our claim that the KL-divergence is essentially equivalent to the distance to the optimal642

performance.643
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Appendix D Experiments644

D.1 Example 1645

Recall, in the LQ control problem, the reward function is646

r(x, a) = −
(
M

2
x2 +Rxa+

N

2
a2 + Px+Qa

)
,

with M ≥ 0, N > 0, R,Q, P ∈ R and R2 < MN , and we adopt the entropy regularizor as647

p(x, a, π) = − log(π(a)).

Furthermore, suppose that the discount rate satisfies β > 2A+ C2 +max
(

D2R2−2NR(B+CD)
N , 0

)
.648

The following results are readily derived from Theorem 4 of [58]. The value function of the optimal649

policy π∗ is650

V (x) =
1

2
k2x

2 + k1x+ k0, x ∈ R,

where651

k2 :=
1

2

(
ρ−

(
2A+ C2

))
N + 2(B + CD)R−D2M

(B + CD)2 + (ρ− (2A+ C2))D2

−1

2

√
((ρ− (2A+ C2))N + 2(B + CD)R−D2M)

2 − 4 ((B + CD)2 + (ρ− (2A+ C2))D2) (R2 −MN)

(B + CD)2 + (ρ− (2A+ C2))D2
,

k1 :=
P
(
N − k2D

2
)
−QR

k2B(B + CD) + (A− ρ) (N − k2D2)−BR
,

and652

k0 :=
(k1B −Q)

2

2ρ (N − k2D2)
+

γ

2ρ

(
ln

(
2πeγ

N − k2D2

)
− 1

)
respectively. Moreover, the optimal feedback control is Gaussian, with density function653

π∗(a;x) = N
(
a | (k2(B + CD)−R)x+ k1B −Q

N − k2D2
,

γ

N − k2D2

)
.

For a set of model parameters: A = −1, B = C = 0, D = 1,M = N = Q = 2, R = P = 1, β =654

1, γ = 0.1, following the formulas and the parameterized policy πθ(· | x) = N (θ1x+ θ2, exp(θ3)),655

and the corresponding value function Vϕ(x) = 1
2ϕ2x

2 + ϕ1x + ϕ0, we can derive the optimal656

parameters:657

ϕ∗ = [0.71914874,−0.10555128,−0.53518376],
and658

θ∗ = [−0.39444872,−0.78889745,−1.40400944].

Table 1: Hyper-parameter values for Example 1

Alphabet Description Value

T Trajectory Truncation Length 25
β discount factor 1
δt time interval 0.005
J batch size for sampling exp(β) 100
α1 learning rate for policy iteration k 0.02 when k ≤ 50 and 0.02× log( 50k ) when k > 50
α2 learning rate for value iteration k 0.01 when k ≤ 50 and 0.01× log( 50k ) when k > 50
K iteration threshold 2000
s steps of gradient descent 10
δ radius 0.0002
ϵ tolerance level 0.5
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D.2 Example 2659

The model parameters are k = 0.01, θ = 7, η = 0.1, ρ = 0.3, σ = 1, rf = 0.01, ℓ = 5. For both the660

value function and the policy parameterization, we use a 3-layer neural network, and with the initial661

parameters sampled form the uniform distribution over [-0.5,0.5]. We use the tanh activation function662

for the hidden layer.663

Table 2: Hyperparameter values for Example 2

Alphabet Description Value

T Trajectory Truncation Length 25
β discount factor 1
δt time interval 0.005
J batch size for sampling exp(β) 100
α1 learning rate for policy iteration k 0.005 when k ≤ 50 and 0.005× log( 50k ) when k > 50
α2 learning rate for value iteration k 0.01 when k ≤ 50 and 0.01× log( 50k ) when k > 50
K iteration threshold 200
s steps of gradient descent 10
δ radius 0.025
ϵ tolerance level 0.5

D.3 Performance of CPPO with Square-root KL and Linear KL664

We compare the performance of CPPO with square-root KL-divergence (denote as CPPO), and linear665

KL-divergence (denoted as CPPO (nst) — non square-root) applied to the experiments in Example666

1 and Example 2. Figure 4 compares the distance between the current policy parameters and the

Figure 4: Performance of CPPO and CPPO (nst) to the Example 1
667

optimal parameters, with x-axis denoting the iteration times and y-axis denoting the L2 distance.668

Figure 5 compares the current expected return, with x-axis denoting the iteration times and y-axis669

denoting the current performance by taking the average of 100 times of Monte Carlo evaluation. In670

both figures, the blue curve represents the algorithm with square-root KL-divergence as opposed to671

the orange one corresponding to the linear version. Both figures clearly demonstrate the advantage672

of the former. In particular, the linear version can suffer from getting stuck at the local optimum as673

demonstrated in Example 1.674
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Figure 5: Performance of CPPO and CPPO (nst) to the Example 2
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