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Abstract

We present the Darwin–Gödel Discovery Machine (DGDM), a dual-loop framework1

for bounded-risk self-improving AI4Science. The inner Darwinian loop evolves2

candidate solutions—demonstrated here with molecular ligands—through rein-3

forcement learning (RL) guided variation, fitness evaluation, and constraint-based4

retention, ensuring validity and incremental improvement. The outer Gödelian loop5

adapts the discovery pipeline itself, governed by statistical safeguards (PAC–style)6

that limit harmful modifications. In a proof-of-concept docking study on four7

seed ligands, DGDM improved median binding affinity from −4.457 to −5.4228

kcal/mol while preserving 100% chemical validity. These results illustrate how9

bounded-risk inner-loop evolution can yield scientifically meaningful advances,10

while motivating future extensions of the outer loop for trustworthy pipeline op-11

timization. Although preliminary in scope, this work highlights the potential12

of dual-loop architectures to push the boundaries of AI in scientific discovery13

while explicitly accounting for risk. Looking ahead, RL strategies and large lan-14

guage models with domain-grounded retrieval offer natural mechanisms to enrich15

inner-loop adaptation and outer-loop self-improvement, advancing the vision of16

trustworthy, self-improving AI4Science. An anonymized reproducibility package17

will be released to facilitate community feedback.18

1 Introduction19

Artificial intelligence (AI) has begun to transform scientific discovery, from protein folding [1] to20

climate modeling [2]. Yet a fundamental challenge remains: how can we design AI systems that21

not only advance individual tasks but also continuously improve the pipelines that integrate them22

into end-to-end scientific discovery? The notion of a Gödel Machine [3] provides a theoretical “yes,”23

as it guarantees improvement whenever a provably better modification is found—but such proofs24

are rarely feasible in practice. By contrast, most existing systems function as fixed pipelines: once25

trained, they are applied in a static manner without the capacity for self-improvement. At the other26

extreme, unconstrained self-modification can lead to unreliable trajectories of improvement, including27

performance degradation, systematic errors, and invalid outputs. The central challenge, therefore, is28

to develop AI frameworks capable of self-improvement at both the task and pipeline levels, while29

ensuring progress under bounded risk.30

Recent advances illustrate both the promise and the limits of current approaches. In molecular discov-31

ery, generative models for de novo design [4, 5], reinforcement learning for synthesis and property32

optimization [6, 7], and autonomous laboratory platforms for iterative experimentation [8–11] have33

shown the potential of self-directed AI. These “self-driving labs” close the loop between hypothesis34

generation and wet-lab validation, offering a physical realization of self-improving pipelines. At35
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the protein level, breakthroughs in structure prediction [1, 12] and structure-conditioned generators36

such as ProteinMPNN and Chroma [13, 14], together with language-model–based predictors (e.g.,37

ESM-2) and diffusion-based docking approaches such as DiffDock [15, 16], have expanded the design38

space and improved accuracy. Meanwhile, classical docking workflows—including AutoDock Vina,39

Vinardo, RDKit, and OpenBabel—remain widely adopted [17–20]. Beyond chemistry, coding-agent40

frameworks such as the Darwin Gödel Machine [21] illustrate the potential of self-improving agents,41

but direct transfer to molecular discovery is challenging due to noisy, continuous chemical spaces42

with strict validity and safety requirements. Overall, current systems demonstrate creativity but43

still operate within largely fixed pipelines and often lack explicit safeguards against invalid or risky44

outcomes.45

To address this gap, we propose the Darwin–Gödel Discovery Machine (DGDM), a two-level46

dual-loop framework for bounded-risk self-improvement in AI4Science. The DGDM integrates two47

complementary principles: a Darwinian inner loop, which evolves candidate solutions—demonstrated48

here with molecular ligands—via reinforcement-learning–guided variation and selection, ensuring49

validity and incremental improvement; and a Gödelian outer loop, which adapts the discovery pipeline50

itself, but only under statistical safeguards (PAC-style) that limit harmful modifications. Together,51

these loops couple the creativity of evolutionary search with the rigor of principled safeguards. While52

our proof-of-concept experiments focus on drug discovery, the framework is designed for general53

application across scientific domains.54

Contributions. Our contributions are threefold:55

1. We introduce a bounded-risk dual-loop self-improving AI framework designed for56

AI4Science, with initial experiments in drug discovery to demonstrate feasibility.57

2. We provide a proof-of-concept docking study showing that DGDM improved median58

binding affinity across four seed ligands while preserving 100% chemical validity.59

3. We outline a roadmap for extending the Gödelian outer loop with PAC-style acceptance60

rules, reinforcement learning, and language model–driven hypothesis generation.61

Taken together, these contributions suggest that bounded-risk dual-loop architectures can produce62

scientifically meaningful improvements while advancing more trustworthy forms of self-improving63

AI. This paper presents a work-in-progress framework: the Darwinian inner loop is validated in a64

molecular docking setting, while the Gödelian outer loop is developed at the level of mathematical65

formulation and PAC-style derivation, with experimental validation left for future work.66

Figure 1: Conceptual schematic of the Darwin–Gödel Discovery Machine (DGDM). The dual-loop
design couples inner-loop solution evolution with outer-loop pipeline adaptation. Molecules are
generated, modified, and optimized under reinforcement-learning–based fitness assessment, while
the pipeline itself can adapt through proposed modifications to models, scoring functions, or search
strategies.
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2 Method67

The Darwin–Gödel Discovery Machine (DGDM) is organized into two nested optimization loops68

(Figure 1), enabling self-improvement at both the molecular and pipeline levels. The inner Darwinian69

loop refines molecules via reinforcement learning–guided evolution, while the outer Gödelian loop70

adaptively reconfigures the discovery pipeline under PAC–style statistical safeguards.71

2.1 Inner Loop: Reinforcement-Learning–Guided Molecular Evolution72

The inner loop follows a Darwinian cycle with four stages: (1) variation, (2) fitness assessment,73

(3) selection, and (4) constraint-based retention. In our conceptual design, reinforcement learning74

(RL) biases this process: docking scores and constraint outcomes provide reward signals that guide75

exploration.76

Variation. Molecular diversity is introduced via perturbations generated by diffusion models,77

graph-based generators, or language-model–based chemistry models. RL agents parameterize these78

operators, learning which transformations are most productive.79

Fitness assessment. Modified ligands are docked against the target receptor. Scoring functions80

(e.g., Vinardo in AutoDock Vina) provide approximate binding free energies, while AlphaFold [1] or81

ESMFold [12] can supply receptor structures when needed. Docking energies serve as quantitative82

rewards for RL.83

Selection. High-affinity candidates are preferentially retained, maintaining evolutionary pressure84

toward stronger binding while preserving structural diversity.85

Constraint filtering. Survivors must satisfy chemical validity and drug-likeness checks (e.g.,86

Lipinski’s rules, synthetic accessibility, toxicity alerts). Failures provide negative reinforcement,87

discouraging unproductive modification strategies.88

This RL-augmented Darwinian cycle balances stochastic exploration (via generative perturbations)89

with directed exploitation (via docking and constraints), producing progressively higher-quality90

ligands across generations.91

2.2 Outer Loop: Gödelian Pipeline Self-Adaptation92

The outer loop adapts the pipeline configuration—the sequence and parameters of operators control-93

ling molecular search. Inspired by the Gödel Machine [3], it introduces meta-level self-modification,94

but replaces infeasible proof-based guarantees with tractable PAC–style statistical safeguards.95

Proposal generation. Candidate modifications are generated, e.g., by large language models (LLMs)96

augmented with retrieval-augmented generation (RAG). Examples include inserting refinement steps97

or altering filtering thresholds.98

PAC acceptance test. Define the paired improvement (gain) for replicate i as99

Yi := R0,i −R1,i (larger is better),

so that negative values correspond to degradation. Let100

µ̂ = 1
n

n∑
i=1

Yi

denote the empirical mean improvement across n paired runs. Assuming each Yi ∈ [a, b] (enforced101

by clipping), Hoeffding’s inequality gives102

Pr

(
µ < µ̂− (b− a)

√
1
2n ln 2

δ

)
≤ δ,

where µ = E[Yi] is the true mean gain. We therefore accept the pipeline modification only if103

µ̂− (b− a)
√

1
2n ln 2

δ ≥ 0,

which guarantees (with probability at least 1− δ) that the modification does not reduce performance104

on average.105
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In practice, we use paired t-tests as an exploratory check of statistical significance, while the PAC-106

style acceptance rule serves as the formal safeguard that bounds the risk of harmful changes. A full107

derivation is provided in Appendix 1.108

2.3 Loop Interaction109

The inner loop evolves ligands under a fixed pipeline until convergence or stagnation:110

∆t < ϵ for K generations,
or until a maximum budget Tmax is reached. Its outcomes are aggregated and passed to the outer111

loop, which then decides whether to accept a proposed pipeline modification. A single outer-loop112

update typically relies on many inner-loop cycles, grounding meta-level decisions in stable evidence.113

Note that here ∆ refers to the median docking score difference per ligand, whereas µ̂ in the outer114

loop analysis refers to the mean improvement across paired runs.115

2.4 Evaluation Setup116

To ensure reproducibility, each ligand’s binding score was reported as the median across three docking117

poses. Baseline (R0) and modified (R1) pipelines were run under identical frozen settings. Metrics118

include:119

• Binding affinity: docking energies (kcal/mol) from Vinardo.120

• Score improvement: ∆ = R1 median − R0 median (negative ∆ = improvement).121

• Pass rate: proportion of ligands satisfying chemical validity and drug-likeness constraints.122

• Trajectory analysis: qualitative tracing of modifications leading to observed improvements.123

Note: we report ∆ = R1 − R0 (negative ∆ indicates improvement), while the PAC test uses124

Y := R0− R1 = −∆ so that larger is better.125

All runs used fixed seeds and parameter settings; full environment manifests are provided in the126

supplementary repository. While evaluated here in molecular docking, the DGDM framework is127

domain-agnostic and in principle applicable across AI4Science tasks requiring bounded-risk self-128

improvement.129

Figure 2: Docked pose of DGDM-optimized Aspirin_mut2 (green) in the target pocket (teal).

3 Experiments130

We conducted a proof-of-concept (PoC) study to test whether DGDM can improve docking-based131

binding affinity predictions under bounded-risk constraints. Four seed ligands (Aspirin, LIG3, LIG4,132

4



Figure 3: Structural comparison of baseline Aspirin (R0) and optimized variant Aspirin_mut2 (R1).
Red highlights the DGDM-induced modification.

and Pyridine) were chosen to span diverse scaffolds and pharmacophores. Each ligand was docked in133

two stages: a baseline run (R0) and an optimized run (R1) where DGDM-generated variants were134

filtered and re-docked under identical conditions.135

3.1 Setup136

Docking was performed using AutoDock Vina with the Vinardo scoring function, exhaustiveness137

fixed at 12. For each ligand, three poses were sampled and the median score reported. Constraint138

filters (Lipinski, synthetic accessibility, toxicity/reactivity alerts) ensured chemical validity; invalid139

candidates were discarded and penalized. Docking scores are interpreted as relative indicators of140

binding propensity, consistent with prior work.141

3.2 Metrics142

We report four metrics: (1) median docking affinity (kcal/mol); (2) improvement ∆ (R1-R0, neg-143

ative = stronger binding); (3) chemical validity pass rate; and (4) qualitative trajectory analysis of144

modifications contributing to observed gains.145

3.3 Results146

DGDM consistently improved median binding affinity across all ligands while preserving 100%147

chemical validity (Table 1). Improvements ranged from -0.8 to -1.5 kcal/mol, with Aspirin showing148

the strongest enhancement (∆ = −1.27 kcal/mol).149

Table 1: Proof-of-concept docking outcomes. Negative ∆ indicates improvement.

Ligand R0 Median R1 Median ∆ (R1–R0) Pass Rate (%)

Aspirin -4.752 -6.022 -1.270 100
LIG3 -4.374 -5.181 -0.807 100
LIG4 -4.541 -6.020 -1.479 100
Pyridine -3.428 -4.260 -0.832 100

Median -4.457 -5.422 -0.965 100

3.4 Limitations of Proof-of-Concept150

This proof-of-concept study has several limitations. Evaluation was restricted to a small ligand151

panel and a single protein target, with docking scores serving only as approximate surrogates for152

binding affinity. Furthermore, the present experiments validate only the inner loop of DGDM;153

extending to the outer loop—where pipeline modifications are statistically tested under PAC-style154

safeguards—remains future work. These caveats underscore that the reported results should be155

interpreted as preliminary, motivating larger-scale benchmarking and experimental validation.156
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3.5 Qualitative Insights157

Trajectory analysis revealed chemically interpretable improvements: variants typically introduced158

or repositioned hydrogen-bond donors/acceptors while reducing steric clashes. The top candidate,159

Aspirin_mut2 (Figure 2, 3), achieved a Vinardo score of -6.022 kcal/mol by adding a polar substitution160

that improved complementarity within the binding pocket. Notably, no ligand regressed relative to its161

baseline, underscoring the role of constraint-based survivor retention and PAC-style safeguards in162

preventing detrimental modifications.163

4 Conclusion164

We presented DGDM, a Darwin–Gödel–inspired dual-loop framework for molecular design that165

evolves both candidate structures and the optimization process itself. In a proof-of-concept study,166

DGDM consistently improved docking-based binding affinity while preserving chemical validity,167

highlighting the feasibility of bounded-risk generative modification.168

Looking ahead, scaling DGDM will require integration with rescoring, molecular dynamics, and169

ultimately wet-lab assays to provide empirical feedback. Responsible deployment will also demand170

transparent benchmarking, auditable operators, and strong governance, given the higher standards of171

safety and reproducibility in drug discovery. While our experiments begin in molecular design, the172

underlying bounded-risk self-improvement framework is general and holds promise across AI for173

Science domains.174
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Appendix 1 Error-Bounded Acceptance in the Gödel Loop230

We formalize the statistical safeguard used in the Gödelian outer loop. Recall: in the main text we231

define232

∆ = R1 −R0 (negative ∆ indicates improvement),

while for analysis we use233

Y := R0 −R1 = −∆,

so that larger Y indicates better performance of the modified pipeline.234

In particular, we adopt a Probably Approximately Correct (PAC)–style bound via Hoeffding’s in-235

equality, which provides a distribution-free guarantee that harmful modifications are accepted with236

probability at most δ.237

Lemma 1 (Hoeffding Confidence Bound). Let Y1, . . . , Yn ∈ [a, b] be i.i.d. paired improvements with238

true mean µ = E[Yi] and empirical mean239

µ̂ =
1

n

n∑
i=1

Yi.

Then for any δ ∈ (0, 1),240

Pr

(
µ < µ̂− (b− a)

√
1
2n ln 2

δ

)
≤ δ.
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Proof. Direct application of Hoeffding’s inequality for bounded random variables.241

Corollary 1 (PAC Acceptance Rule). With probability at least 1− δ, the true mean improvement µ242

is nonnegative provided that:243

µ̂− (b− a)
√

1
2n ln 2

δ ≥ 0.

Thus, adopting a pipeline modification under this criterion ensures that the risk of accepting a harmful244

modification is bounded by δ.245

Sample Size Requirement. To guarantee error tolerance ϵ > 0, it suffices to use246

n ≥ (b− a)2

2ϵ2
ln 2

δ .

Practical Note. In docking applications, Y is bounded by physical score limits. We clip to247

[a, b] = [−B,B] with B = 5 kcal/mol, consistent with typical Vinardo ranges. This bound is248

conservative, since docking scores rarely approach ±5 in practice; tighter thresholds could be249

obtained with variance-adaptive inequalities such as the empirical Bernstein bound. In practice,250

paired t-tests are also applied as exploratory diagnostics; however, only the Hoeffding-based PAC251

acceptance rule provides a distribution-free guarantee.252

Appendix 2 Algorithmic Details253

Algorithm 1 Outer Loop: Pipeline Self-Adaptation
Input: Initial configuration θ0, generator G, harnessH, max rounds T
Output: Final configuration θ⋆, registryR

1: θ ← θ0, R ← {(θ0, baseline)}
2: for t = 1 to T do
3: (C,m)← RUNINNERLOOP(θ,H)
4: if STAGNANT(m) then
5: θ′ ← PROPOSEEDIT(G, θ,R)
6: ∆← EVALUATEPAIR(H, θ, θ′, C)
7: if SIGNIFICANTIMPROVEMENT(∆) then
8: θ ← θ′, R ← R∪ {(θ′, accepted)}
9: else

10: R ← R∪ {(θ′, rejected)}
11: end if
12: end if
13: end for
14: return θ⋆ ← θ, R
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Algorithm 2 Inner Loop: Ligand Evolution (w/o RL)
Input: Current configuration θ, harnessH, population size M
Output: Candidate batch C, survivors S

1: C ← ∅, S ← ∅
2: for i = 1 to M do
3: x← SAMPLELIGAND(θ)
4: x′ ← MODIFYLIGAND(x)
5: s← EVALUATE(x′,H)
6: C ← C ∪ (x′, s)
7: if SURVIVES(s) then
8: S ← S ∪ x′

9: end if
10: end for
11: return (C,S)
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