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Abstract

We present the Darwin—Godel Discovery Machine (DGDM), a dual-loop framework
for bounded-risk self-improving Al4Science. The inner Darwinian loop evolves
candidate solutions—demonstrated here with molecular ligands—through rein-
forcement learning (RL) guided variation, fitness evaluation, and constraint-based
retention, ensuring validity and incremental improvement. The outer Godelian loop
adapts the discovery pipeline itself, governed by statistical safeguards (PAC—style)
that limit harmful modifications. In a proof-of-concept docking study on four
seed ligands, DGDM improved median binding affinity from —4.457 to —5.422
kcal/mol while preserving 100% chemical validity. These results illustrate how
bounded-risk inner-loop evolution can yield scientifically meaningful advances,
while motivating future extensions of the outer loop for trustworthy pipeline op-
timization. Although preliminary in scope, this work highlights the potential
of dual-loop architectures to push the boundaries of Al in scientific discovery
while explicitly accounting for risk. Looking ahead, RL strategies and large lan-
guage models with domain-grounded retrieval offer natural mechanisms to enrich
inner-loop adaptation and outer-loop self-improvement, advancing the vision of
trustworthy, self-improving Al4Science. An anonymized reproducibility package
will be released to facilitate community feedback.

1 Introduction

Atrtificial intelligence (AI) has begun to transform scientific discovery, from protein folding [1]] to
climate modeling [2]. Yet a fundamental challenge remains: how can we design Al systems that
not only advance individual tasks but also continuously improve the pipelines that integrate them
into end-to-end scientific discovery? The notion of a Godel Machine [3] provides a theoretical “yes,”
as it guarantees improvement whenever a provably better modification is found—but such proofs
are rarely feasible in practice. By contrast, most existing systems function as fixed pipelines: once
trained, they are applied in a static manner without the capacity for self-improvement. At the other
extreme, unconstrained self-modification can lead to unreliable trajectories of improvement, including
performance degradation, systematic errors, and invalid outputs. The central challenge, therefore, is
to develop Al frameworks capable of self-improvement at both the task and pipeline levels, while
ensuring progress under bounded risk.

Recent advances illustrate both the promise and the limits of current approaches. In molecular discov-
ery, generative models for de novo design [4} 5], reinforcement learning for synthesis and property
optimization [6} [7]], and autonomous laboratory platforms for iterative experimentation [8H11]] have
shown the potential of self-directed Al These “self-driving labs” close the loop between hypothesis
generation and wet-lab validation, offering a physical realization of self-improving pipelines. At
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the protein level, breakthroughs in structure prediction [, [12] and structure-conditioned generators
such as ProteinMPNN and Chroma [13| [14]], together with language-model-based predictors (e.g.,
ESM-2) and diffusion-based docking approaches such as DiffDock [[15}[16]], have expanded the design
space and improved accuracy. Meanwhile, classical docking workflows—including AutoDock Vina,
Vinardo, RDKit, and OpenBabel—remain widely adopted [17-20]. Beyond chemistry, coding-agent
frameworks such as the Darwin Godel Machine [21] illustrate the potential of self-improving agents,
but direct transfer to molecular discovery is challenging due to noisy, continuous chemical spaces
with strict validity and safety requirements. Overall, current systems demonstrate creativity but
still operate within largely fixed pipelines and often lack explicit safeguards against invalid or risky
outcomes.

To address this gap, we propose the Darwin—Godel Discovery Machine (DGDM), a two-level
dual-loop framework for bounded-risk self-improvement in Al4Science. The DGDM integrates two
complementary principles: a Darwinian inner loop, which evolves candidate solutions—demonstrated
here with molecular ligands—uvia reinforcement-learning—guided variation and selection, ensuring
validity and incremental improvement; and a Godelian outer loop, which adapts the discovery pipeline
itself, but only under statistical safeguards (PAC-style) that limit harmful modifications. Together,
these loops couple the creativity of evolutionary search with the rigor of principled safeguards. While
our proof-of-concept experiments focus on drug discovery, the framework is designed for general
application across scientific domains.

Contributions. Our contributions are threefold:

1. We introduce a bounded-risk dual-loop self-improving AI framework designed for
Al4Science, with initial experiments in drug discovery to demonstrate feasibility.

2. We provide a proof-of-concept docking study showing that DGDM improved median
binding affinity across four seed ligands while preserving 100% chemical validity.

3. We outline a roadmap for extending the Goédelian outer loop with PAC-style acceptance
rules, reinforcement learning, and language model—driven hypothesis generation.

Taken together, these contributions suggest that bounded-risk dual-loop architectures can produce
scientifically meaningful improvements while advancing more trustworthy forms of self-improving
Al This paper presents a work-in-progress framework: the Darwinian inner loop is validated in a
molecular docking setting, while the Godelian outer loop is developed at the level of mathematical
formulation and PAC-style derivation, with experimental validation left for future work.

Godel Pipeline Evolution

(Outer Loop)
Novelty Repository
Pipeline @
Pipeline Proposal Pipeline Evaluation
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Variation Selection ) Survivor
Assessment
Agent
Action Reward

Molecular Evolution
(Inner Loop)

Figure 1: Conceptual schematic of the Darwin—Godel Discovery Machine (DGDM). The dual-loop
design couples inner-loop solution evolution with outer-loop pipeline adaptation. Molecules are
generated, modified, and optimized under reinforcement-learning—based fitness assessment, while
the pipeline itself can adapt through proposed modifications to models, scoring functions, or search
strategies.
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2 Method

The Darwin—-Godel Discovery Machine (DGDM) is organized into two nested optimization loops
(Figure/[I)), enabling self-improvement at both the molecular and pipeline levels. The inner Darwinian
loop refines molecules via reinforcement learning—guided evolution, while the outer Gédelian loop
adaptively reconfigures the discovery pipeline under PAC—style statistical safeguards.

2.1 Inner Loop: Reinforcement-Learning—Guided Molecular Evolution

The inner loop follows a Darwinian cycle with four stages: (1) variation, (2) fitness assessment,
(3) selection, and (4) constraint-based retention. In our conceptual design, reinforcement learning
(RL) biases this process: docking scores and constraint outcomes provide reward signals that guide
exploration.

Variation. Molecular diversity is introduced via perturbations generated by diffusion models,
graph-based generators, or language-model-based chemistry models. RL agents parameterize these
operators, learning which transformations are most productive.

Fitness assessment. Modified ligands are docked against the target receptor. Scoring functions
(e.g., Vinardo in AutoDock Vina) provide approximate binding free energies, while AlphaFold [1] or
ESMFold [12] can supply receptor structures when needed. Docking energies serve as quantitative
rewards for RL.

Selection. High-affinity candidates are preferentially retained, maintaining evolutionary pressure
toward stronger binding while preserving structural diversity.

Constraint filtering. Survivors must satisfy chemical validity and drug-likeness checks (e.g.,
Lipinski’s rules, synthetic accessibility, toxicity alerts). Failures provide negative reinforcement,
discouraging unproductive modification strategies.

This RL-augmented Darwinian cycle balances stochastic exploration (via generative perturbations)
with directed exploitation (via docking and constraints), producing progressively higher-quality
ligands across generations.

2.2 QOuter Loop: Godelian Pipeline Self-Adaptation

The outer loop adapts the pipeline configuration—the sequence and parameters of operators control-
ling molecular search. Inspired by the Gédel Machine [3], it introduces meta-level self-modification,
but replaces infeasible proof-based guarantees with tractable PAC—style statistical safeguards.

Proposal generation. Candidate modifications are generated, e.g., by large language models (LLMs)
augmented with retrieval-augmented generation (RAG). Examples include inserting refinement steps
or altering filtering thresholds.

PAC acceptance test. Define the paired improvement (gain) for replicate 4 as
Y, =Ry, — Ri1,; (largeris better),

so that negative values correspond to degradation. Let

= %iji
i=1

denote the empirical mean improvement across n paired runs. Assuming each Y; € [a, b] (enforced
by clipping), Hoeffding’s inequality gives

Pr<p<ﬂ(ba)1/21nln§> <0,

where p = E[Y;] is the true mean gain. We therefore accept the pipeline modification only if

fi—(b—a)y/5m2 > 0,

2n =

which guarantees (with probability at least 1 — §) that the modification does not reduce performance
on average.
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In practice, we use paired ¢-tests as an exploratory check of statistical significance, while the PAC-
style acceptance rule serves as the formal safeguard that bounds the risk of harmful changes. A full

derivation is provided in
2.3 Loop Interaction

The inner loop evolves ligands under a fixed pipeline until convergence or stagnation:
Ay < e for K generations,

or until a maximum budget 7}, is reached. Its outcomes are aggregated and passed to the outer
loop, which then decides whether to accept a proposed pipeline modification. A single outer-loop
update typically relies on many inner-loop cycles, grounding meta-level decisions in stable evidence.
Note that here A refers to the median docking score difference per ligand, whereas i in the outer
loop analysis refers to the mean improvement across paired runs.

2.4 Evaluation Setup

To ensure reproducibility, each ligand’s binding score was reported as the median across three docking
poses. Baseline (R0) and modified (R1) pipelines were run under identical frozen settings. Metrics
include:

* Binding affinity: docking energies (kcal/mol) from Vinardo.

* Score improvement: A = R1 median — RO median (negative A = improvement).

* Pass rate: proportion of ligands satisfying chemical validity and drug-likeness constraints.
* Trajectory analysis: qualitative tracing of modifications leading to observed improvements.

Note: we report A = R1 — RO (negative A indicates improvement), while the PAC test uses
Y := RO — R1 = —A so that larger is better.

All runs used fixed seeds and parameter settings; full environment manifests are provided in the
supplementary repository. While evaluated here in molecular docking, the DGDM framework is
domain-agnostic and in principle applicable across Al4Science tasks requiring bounded-risk self-
improvement.

Figure 2: Docked pose of DGDM-optimized Aspirin_mut2 (green) in the target pocket (teal).

3 Experiments

We conducted a proof-of-concept (PoC) study to test whether DGDM can improve docking-based
binding affinity predictions under bounded-risk constraints. Four seed ligands (Aspirin, LIG3, LIG4,
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Figure 3: Structural comparison of baseline Aspirin (R0) and optimized variant Aspirin_mut2 (R1).
Red highlights the DGDM-induced modification.

and Pyridine) were chosen to span diverse scaffolds and pharmacophores. Each ligand was docked in
two stages: a baseline run (R0) and an optimized run (R1) where DGDM-generated variants were
filtered and re-docked under identical conditions.

3.1 Setup

Docking was performed using AutoDock Vina with the Vinardo scoring function, exhaustiveness
fixed at 12. For each ligand, three poses were sampled and the median score reported. Constraint
filters (Lipinski, synthetic accessibility, toxicity/reactivity alerts) ensured chemical validity; invalid
candidates were discarded and penalized. Docking scores are interpreted as relative indicators of
binding propensity, consistent with prior work.

3.2 Metrics
We report four metrics: (1) median docking affinity (kcal/mol); (2) improvement A (R1-RO0, neg-

ative = stronger binding); (3) chemical validity pass rate; and (4) qualitative trajectory analysis of
modifications contributing to observed gains.

3.3 Results
DGDM consistently improved median binding affinity across all ligands while preserving 100%
chemical validity (Table[I)). Improvements ranged from -0.8 to -1.5 kcal/mol, with Aspirin showing

the strongest enhancement (A = —1.27 kcal/mol).

Table 1: Proof-of-concept docking outcomes. Negative A indicates improvement.

Ligand RO Median RI1 Median A (R1-R0) Pass Rate (%)

Aspirin -4.752 -6.022 -1.270 100
LIG3 -4.374 -5.181 -0.807 100
LIG4 -4.541 -6.020 -1.479 100
Pyridine -3.428 -4.260 -0.832 100
Median -4.457 -5.422 -0.965 100

3.4 Limitations of Proof-of-Concept

This proof-of-concept study has several limitations. Evaluation was restricted to a small ligand
panel and a single protein target, with docking scores serving only as approximate surrogates for
binding affinity. Furthermore, the present experiments validate only the inner loop of DGDM,;
extending to the outer loop—where pipeline modifications are statistically tested under PAC-style
safeguards—remains future work. These caveats underscore that the reported results should be
interpreted as preliminary, motivating larger-scale benchmarking and experimental validation.
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3.5 Qualitative Insights

Trajectory analysis revealed chemically interpretable improvements: variants typically introduced
or repositioned hydrogen-bond donors/acceptors while reducing steric clashes. The top candidate,
Aspirin_mut2 (Figure[2] [3), achieved a Vinardo score of -6.022 kcal/mol by adding a polar substitution
that improved complementarity within the binding pocket. Notably, no ligand regressed relative to its
baseline, underscoring the role of constraint-based survivor retention and PAC-style safeguards in
preventing detrimental modifications.

4 Conclusion

We presented DGDM, a Darwin—Go6del—-inspired dual-loop framework for molecular design that
evolves both candidate structures and the optimization process itself. In a proof-of-concept study,
DGDM consistently improved docking-based binding affinity while preserving chemical validity,
highlighting the feasibility of bounded-risk generative modification.

Looking ahead, scaling DGDM will require integration with rescoring, molecular dynamics, and
ultimately wet-lab assays to provide empirical feedback. Responsible deployment will also demand
transparent benchmarking, auditable operators, and strong governance, given the higher standards of
safety and reproducibility in drug discovery. While our experiments begin in molecular design, the
underlying bounded-risk self-improvement framework is general and holds promise across Al for
Science domains.

References

[1] John Jumper, Richard Evans, Alexander Pritzel, and et al. Highly accurate protein structure
prediction with alphafold. Nature, 596:583-589, 2021.

[2] E. Bevacqua, Laura Suarez-Gutierrez, Aglaé Jézéquel, F. Lehner, M. Vrac, P. Yiou, and
J. Zscheischler. Advancing research on compound weather and climate events via large ensemble
model simulations. Nature Communications, 14, 2023. doi: 10.1038/s41467-023-37847-5.

[3] Jiirgen Schmidhuber. Godel machines: Fully self-referential optimal universal self-improvers.
In Artificial general intelligence, pages 199-226. Springer, 2007.

[4] Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep
neural networks and symbolic ai. Nature, 555(7698):604-610, 2018.

[5] Benjamin Sdnchez-Lengeling, Emily Reif, Andrew Pearce, et al. A gentle introduction to
inverse molecular design: Machine learning for molecular discovery. ACS Central Science, 7
(8):1159-1173, 2021.

[6] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de
novo drug design. Science Advances, 4(7):eaap7885, 2018.

[7] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of
molecules via deep reinforcement learning. Scientific Reports, 9:10752, 2019.

[8] Aldo Enrique Gongora, Bin Xu, William S Perry, Chukwudi Okoye, and Rigoberto Hernandez.
Automatic discovery of materials and catalysts by quantum mechanics and machine learning.
Nature Reviews Materials, 5(7):531-550, 2020.

[9] Ben Burger, Phillip M Maffettone, Vladimir V Gusev, Christopher M Aitchison, Yu Bai, Xiao
Wang, Xiaobo Li, Ben M Alston, Bingqing Li, Robert Clowes, Neil Rankin, Jonathan B Harris,
R James Sprick, and Andrew I Cooper. A mobile robotic chemist. Nature, 583(7815):237-241,
2020.

[10] Connor W Coley, Nathaniel S Eyke, and Klavs F Jensen. Autonomous discovery in the chemical
sciences part ii: Outlook. Angewandte Chemie International Edition, 59(52):23414-23436,
2020.



202
203
204
205
206

207
208
209

210
211

212
213

214
215
216

217
218

219
220
221

222
223

224

225
226
227

228
229

230

231
232

233

234

240

[11] Benjamin P MacLeod, Fiona G L Parlane, T R Morrissey, Frédéric Hase, Luke M Roch, Kevin E
Dettelbach, Rafael Moreira, Luke P E Yunker, Michael B Rooney, Joel R Deeth, Vivian Lai,
Grace J Ng, Heather Situ, Rong Zhang, Mark S Elliott, Brandon Haley, Leroy Cronin, Jason E
Hein, Aldn Aspuru-Guzik, and Curtis P Berlinguette. Self-driving laboratory for accelerated
discovery of thin-film materials. Science Advances, 6(20):eaaz8867, 2020.

[12] Zeming Lin, Heewook Akin, Roshan Rao, and et al. Language models of protein sequences at
the scale of evolution enable accurate structure prediction. bioRxiv, 2023. doi: 10.1101/2022.
07.20.500902.

[13] Joél Dauparas, Ivan Anishchenko, and David Baker. Robust deep learning—based protein design
using structure-informed graph representations. Science, 378(6615):49-56, 2022.

[14] John Ingraham et al. Chroma: Generative modeling of protein-ligand complexes. Nature, 2023.
doi: 10.1038/s41586-023-06728-8.

[15] Giacomo Corso, Hendrik Stirk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. International Conference on Learning
Representations (ICLR), 2023.

[16] Jack Qiu, Boyuan Pang, et al. Pocket-conditioned diffusion model for protein-ligand complex
generation. bioRxiv, 2023. doi: 10.1101/2023.11.22.568238.

[17] Jerome Eberhardt, Diogo Santos-Martins, Andreas F Tillack, and Stefano Forli. Autodock vina
1.2. 0: new docking methods, expanded force field, and python bindings. Journal of chemical
information and modeling, 61(8):3891-3898, 2021.

[18] Rodrigo Quiroga and Marcos A Villarreal. Vinardo: A scoring function based on autodock vina
improves scoring, docking, and virtual screening. PloS one, 11(5):e0155183, 2016.

[19] RDKit: Open-source cheminformatics. https://www.rdkit.org. accessed 2025/08/14.

[20] Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and
Geoffrey R Hutchison. Open babel: An open chemical toolbox. Journal of cheminformatics, 3
(1):33,2011.

[21] Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, and Jeff Clune. Darwin godel machine:
Open-ended evolution of self-improving agents. arXiv preprint arXiv:2505.22954, 2025.

Appendix 1 Error-Bounded Acceptance in the Godel Loop

We formalize the statistical safeguard used in the Godelian outer loop. Recall: in the main text we
define
A =R; — Ry (negative A indicates improvement),

while for analysis we use
Y:ZRole :7A,

so that larger Y indicates better performance of the modified pipeline.

In particular, we adopt a Probably Approximately Correct (PAC)-style bound via Hoeffding’s in-
equality, which provides a distribution-free guarantee that harmful modifications are accepted with
probability at most §.

Lemma 1 (Hoeffding Confidence Bound). Let Y1, ...,Y, € [a,b] be i.i.d. paired improvements with
true mean . = E[Y;] and empirical mean

Then for any 6 € (0,1),
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Proof. Direct application of Hoeffding’s inequality for bounded random variables. O

Corollary 1 (PAC Acceptance Rule). With probability at least 1 — 6, the true mean improvement |1

is nonnegative provided that:
i — (b—a)\/%lng > 0.

Thus, adopting a pipeline modification under this criterion ensures that the risk of accepting a harmful
modification is bounded by 0.

Sample Size Requirement. To guarantee error tolerance € > 0, it suffices to use

(b—a)?
> 5e2 In %.
Practical Note. In docking applications, Y is bounded by physical score limits. We clip to
[a,b] = [-B, B] with B = 5 kcal/mol, consistent with typical Vinardo ranges. This bound is
conservative, since docking scores rarely approach 45 in practice; tighter thresholds could be
obtained with variance-adaptive inequalities such as the empirical Bernstein bound. In practice,
paired t-tests are also applied as exploratory diagnostics; however, only the Hoeffding-based PAC
acceptance rule provides a distribution-free guarantee.

Appendix 2 Algorithmic Details

Algorithm 1 Outer Loop: Pipeline Self-Adaptation

Input: Initial configuration 6, generator G, harness H, max rounds T’
Output: Final configuration 6*, registry R

1: 0 < 6y, R < {(0y,baseline)}

2: fort =1toT do

3: (C,m) + RUNINNERLOOP(6, H)

4: if STAGNANT(m) then

5: ¢’ < PROPOSEEDIT(G, §,R)

6: A <+ EVALUATEPAIR(H, 0,6, C)

7: if SIGNIFICANTIMPROVEMENT(A) then
8: 00, R+ RU{(#,accepted)}
9: else

10: R+ RU{(0 ,rejected)}
11: end if
12: end if
13: end for

14: return 6* < 6, R




Algorithm 2 Inner Loop: Ligand Evolution (w/o RL)

Input: Current configuration 6, harness #, population size M
Output: Candidate batch C, survivors S

LC+0, 8«0

2: fori=1to M do

3: x < SAMPLELIGAND(6)
4: x’' <~ MODIFYLIGAND(z)
5: s < EVALUATE(z', H)

6: C+CuU(d,s)

7: if SURVIVES(s) then

8: S+ Sua

9: end if
10: end for

11: return (C,S)
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