A Almost Sure Convergence of Sequence of Normal Random Variables

In this paper, we need a sequence of random variables {X,,},>1 such that X,, ~ N(0,02),
lim, 4o 0p, = 0, and X,;, — 0 almost surely. The following lemma shows the existence of
such a sequence.

Lemma 12. There exist a sequence of random variables { X, }n>1 such that X, ~ N(0,02),
limy, 400 0 =0, and X,, — 0 almost surely.

Proof. Let o, = 1/n? and X,, ~ N(0,02). Define the event E,, = {|X,,| > ¢}. We have

S BB = S BN(O, 1| > /o) < 3 Te o < Z Wy g < oo,
n=1 n=1 n=1 n=1

By the Borel-Cantelli lemma, we have P(limsup,,_,, ., £,) = 0, which implies that X,, — 0
almost surely. O

B Proofs for Underparametrized Regime

B.1 Proof of Lemma 2

By [7, Theorem 1], we have
AT]T _ _
| = [U-@auTa - i ]

Define r = ATb € RY. Since A has linearly independent columns, the Gram matrix G = AT A is
non-singular. The Sherman-Morrison formula gives
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where we use the facts 7 = AThand AG™! = (A™) " in the last equality. Therefore, we deduce
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Observe that
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Therefore, we obtain the desired expression.

B.2 Proof of Theorem 3

First, we rewrite the expression as follows
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where P, Q, z are defined in Lemma 2. Since a; has mean 0 and is independent of other random
variables, so that the cross term vanishes under expectation over b and a:

Bo | (7= QU+ PQ/AN o s )| =0,

where (-, -) denotes the inner product. Therefore taking the expectation of (6) over b and a; yields
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We simplify the third term. Recall that ] — P = I — AA™ is an orthogonal projection matrix and
thus idempotent

2 2 2

(I-P)b B aj 2 aj
‘ || T o e T PR = sy (10)
Thus we have
2
AT + x T 112
Eb,q, {br} [al] | —[](A") "] (11)
2
_ . NT 2 T2 ai
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‘We consider the first and second terms. We write v = (A+)Tm and define z = W. The sum
of the first and second terms equals
I(I = Q) + PQ/2)v||* = ||| = —v" M, (13)
where P P ) POP
MAQQ§Q+(z )QPQ+Q orQ.

The rank of M is at most 2. To see this, we re-write M in the following way

- [o(£ (- 3) o O[22

z

Notice that rank(M7) < rank(Q), rank(M>) < rank(@), and rank(Q) = 1.

It follows that rank(M) < rank(M;) + rank(Ms) = 2. The matrix M has at least n — 2 zero
eigenvalues. We claim that M has two non-zero eigenvalues and they are 1 — 1/z < 0 and 1.

Since

rank(PQ) < rank(Q) =
and T

tr(PQ) = beﬂ;b =1-z,

thus P has a unique non-zero eigenvalue 1 — z. Let u # 0 denote the corresponding eigenvector
such that PQu = (1 — z)u. Since u € im P and P is a projection, we have Pu = u. Therefore we
can verify that

Mu:(l—;)u.
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To show that the other non-zero eigenvalue of M is 1, we compute the trace of M

tr(M):tr(Q)—w+(2 1>tr(PQ)—|—tr((PQ)2)=2—l,

z 2 22
where we use the fact that tr(Q) = 1, tr(PQ) = 1 — z,

2y (POOTPRTY _(TPOGTPYY
“w®>‘t< LE )‘t< LE )‘“ )y

We have shown that M has eigenvalue 1 — 1/z and M has at most two non-zero eigenvalues.
Therefore, the other non-zero eigenvalue is tr(M) — (1 — 1/z) = 1.

We are now in a position to upper bound (13) as follows:

—v' Mo < —(1—1/2)|jv|]?.

Putting all three terms of the change in the dimension-normalized generalization loss yields

S

Therefore, we get

N |2 2 a
Epa, At SEmlﬁu—mnnw|+].

bT(I—P)b

1 2 af
< Epa, ;||U|| +m :

For by, ... bp,a1 %4 N(0,1), we have E[a2] = 1. Moreover, b' (I — P)b follows y2(n — d) a

distribution. Thus Walgﬂ) follows an inverse-chi-squared distribution with mean ﬁ. Therefore

2
the expectation E[jr 7 py;] = 75—

Notice that 1/z follows a 1 + ﬁF(d, n — d) distribution and thus E[1/z] = 1 + n_‘é_Q.

As a result, we obtain

2
= Alar 2] - =2l
bia1 bT ay - n—-d-2
Forby,...,b,, a1 i gjil", we need the following lemma.

Lemma 13 (Proof in Appendix B.3). Assume d, n > d + 2 and P are fixed, where P € R™*"™ is an
T
orthogonal projection matrix whose rank is d. Define z £ W, where b = [by,...,b,]T € R™

Ifay, by, , by 4 N™, e have B[1/2] < =252 qnd B[a2/bT (I — P)b] < 2B+

o1 n n—d—2

Lemma 13 implies that

Eb7¢11 [1/2] <

n—2+d [ a? ]<2/(ia;)_+21.

Therefore, we conclude that

] L

=24 VDl 2/Be%) + 1

Epq
b1 - n—d—2
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B.3 Proof of Lemma 13

Lemma 14 shows that a noncentral x? distribution first-order stochastically dominates a central >
distribution of the same degree of freedom. It will be needed in the proof of Lemma 13.

Lemma 14. Assume that random variables X ~ x?(k,\) and Y ~ x?(k), where X\ > 0. For any
¢ > 0, we have
P(X >c) > P(Y > o).

In other words, the random variable X (first-order) stochastically dominates Y .

Proof. Let Y1, Xq,..., X} g N(0,1) and X; ~ N(v/A, 1) and all these random variables are
jointly independent. Then X’ £ Zle X2 ~x2%(k,\)and Y 2 Y2 + Zf:z X2 ~x2(k).

It suffices to show that P(X’ > ¢) > P(Y’ > ¢), or equivalently, P(|JN (1, 1)| > ¢) > P(JN(0,1)] >
¢) forall ¢ > 0and i £ /A > 0. Denote F.(t) = P(|N(u,1)| > ¢) and we have

Fc(u)zl—\/%/ccexp <_(”3_2“)2> dx:1—¢127/cciexp (-f) de,

and thus
0 o (527) e (57)

This shows P(JN (1, 1)] > ¢) > P(JNV(0,1)| > ¢) and we are done.

O

Proof of Lemma 13. Since b; ud j,“‘l" we can rewrite b = u + w where w ~ N(0,021,,) and the

entries of u satisfy u; % Unif ({—1,0,1}). Furthermore, v and w are independent. Similarly, we
can write a; = @ + w0, where @ ~ Unif({—1,0, 1}) and @& ~ N(0, 0%) are independent. To bound
E[a?], we have

E[a?] = E[(4 + 0)?] = E[a?] + E[w?] = 2 +0?.

3
Note that
1 b (u+w) " Pu+w)
z bI(I-P)b (u+w)T(I - P)(u+w)

Since P is an orthogonal projection, there exists an orthogonal transformation O depending only on
P such that

(u+w) " Pu+w) = [O(u+w)] " Da[O(u+w)]
where D; = diag([1,...,1,0...,0]) with d diagonal entries equal to 1 and the others equal to 0. We
denote @ = O(u), which is fixed (as u and O are fixed), and w = O(w) ~ N(0,021,). It follows
that

U, @r®)TDs@+d) o S +d)? P (@) o
z (a+w)T(I - Dd)(ﬂ‘i'w) Z?:d+1(ai +d’i)2 Z?:d+1(ai +d’z’)2/02 .
Observe that

d

Z (1 -‘rﬁ)i)z/(fz ~ X2 n—d,
i=d+1

and that these two quantities are independent. It follows that

d
E [Z(fbl + ’U~)i)2/(72

i=1

u] =d+
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By Lemma 14, the denominator »_" , , (@; +w;)? /o first-order stochastically dominates x?(n—d).
1

Therefore, we have
1 1
E <E = .
n U; + Ww;)2 /o 4= x2(n —d n—d—2
i=d+1 2 2

Putting the numerator and denominator together yields

d ~2
1 d+ iq WS —9
E[u}ﬁl—f— \/Z 1 <14 d++d n +d
z

Similarly, we have

n—d—2 - n—d—2 n—-d-—-2"

= [l =2 | 1 g
—_— Y |u| = U
bT (I — P)b [O(u +w)]T(I — Dg)[O(u + w)]
2
]E|: ) 1~/0- ) 3 ’U,:|
Y iz (Ui +wi)? /o
1 1
< —E|—"—"—
~ o’ {XZ nd)}
_ 1 L
T o2 n—d-2'
Thus, we obtain
n—2++d 1 1 1
E[1/,] < — =122 — | <.
WA =S == {bT(I—P)b}_UQ n—d—2
It follows that
a? 2/3+ o2 1 2/(30%) +1
E S . = .
bT (I — P o2 n—d—2 n—d—2

B.4 Proof of Theorem 4

We start from (12). Taking expectation over all random variables gives
AT 2 ’
o ]
2

=B |17~ QI+ PQUAT) el = (A% o + gy

E —|[(ah)Tz|”

2

> —E|(AT) 22+ E | =t | .

> B4 el +E | s
Our strategy is to choose o so that E {ﬁ{ib?} is sufficiently large. This is indeed possible as we
immediately show. Define independent random variables u ~ Unif({—1,0, 1}) and w ~ N(0, o2).
Since aq has the same distribution as © + w, we have

Elat] = E[(u +w)’] = E[u”] + E[w’] >

Wl o

On the other hand,

Z?:l b’%

max |b;| < 0}

e[ 2P E|
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Together we have
E a? ] S 1
ST b2 T bntlng?

=1 "1 J

eilld

As a result, we conclude
2

lim E - H(A*)T%H2 = 400,

o—0t

which completes the proof.

C Proofs for Overparametrized Regime

C.1 Proof of Lemma 6
Since A and B have full row rank, (AAT)~! and (BBT)~! exist. Therefore we have
BT =B"(BB")™L.

The Sherman-Morrison formula gives

Gbb' G
Ty-1_ T TV-1_ o GO G _ _
(BB' )" =(AA" +bb' )" =G T b7 G —Gbu=G((I —bu).
Hence, we deduce
ATG(I — bu) AT (I — bu) AT (I — bu)
+ T _ — — —
BT =14t G —bu) = [bTG(I—bu)} - {bTG(Jbu) = u :

Transposing the above equation yields to the promised equation.

C.2 Proof of Lemma 7

Let us first denote
vE (AT
and
G L (AAT>—1 c R»X",
First note that by Cauchy-Schwarz inequality, it suffices to show there exists D such that
E[M\: . (G)] < +oo and E||v||* < +oc.

We define A; € R™*? to be the submatrix of A that consists of all n rows and first d columns. Denote
Gy = (AdAJY1 € R™*™,
We will prove E[A%. (G)] < +o0 by induction.

The base step is d = n + 8. Recall Djy.,,1.5) = N(0, [, 45). We first show E[Amax (Gris)]* < 400.
Note that since G, g is almost surely positive definite,

EXmax (Gn8)] = EAmax (Ginys)] < Etr(Grys) = Etr((AnssAnys) ™) = r(E[(AnssAnis) ™).

By our choice of D[y.y,4g), the matrix (Anig Al 4s) "' is an inverse Wishart matrix of size n x n

with (n + 8) degrees of freedom, and thus has finite fourth moment (see, for example, Theorem 4.1
in [57]). It then follows that

EXmax (Grrs)] < tr(E[(Anys A, 45) ) < +o0.

For the inductive step, assume E[Apax (Gq)]* < 400 for some d > n + 8. We claim that
)\max(Gd+1) S )\max(Gd)a

or equivalently,
Amin(AaAg) < Amin(Aat14011) -
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Indeed, this follows from the fact that
AgAg < AgA] +bb" = Agp1 AL,
under the Loewner order, where b € R™*! is the (d + 1)-th column of A. Therefore, we have
ENmax (Gar1)] < By (Ga)l
and by induction, we conclude that E[\%_ (G)] < +oo foralld > n + 8.
Now we proceed to show E|[v||* < +00. We have
lvll* = [(AAT) " Az||* < [I(AAT) 1A, - [l=]*,

where || - ||op denotes the 2 — ¢% operator norm. Note that

I(AAT) T Allg, = A3

2o (((A4T) 1) T (44T) 1 4)
= Anax (A7(AAT)724)
= A ((AT(44T)2)°) |
Svlgare the last equality uses the fact that AT(AAT)~2A is positive semidefinite. Moreover, we
educe

I(AAT) A1, = Amax (AT (AAT) 72 4)
<tr(AT(AAT)34)
=tr ((AAT)’BAAT)
=tr ((4A7)7?) .
Using the fact that AgA] < Agi14,) 4 established above, induction gives
(AAT) ™2 3 (AntsAnys) 2
It follows that

E[[|(AAT) 1 AL] <E [tr ((AHSALS)’Q)] — tr (E [(AHSALS)*QD <400, (14)

. . . . -1 .
where again we use that fact that inverse Wishart matrix (An+8AI +s) has finite second moment.

Next, we demonstrate E||z|* < +oo. Recall that every D; is either a Gaussian or a Gaussian mixture
distribution. Therefore, every entry of  has a subgaussian tail, and thus E||z||* < 4o0. Together
with (14) and the fact that x and A are independent, we conclude that

Eloll* <E[I(AAT)7 AJ5,] - E [lz]*] < +o0.

C.3 Proof of Theorem 8
The randomness comes from A, x, a; and b. We first condition on A and x being fixed.

LetG 2 (AAT) "' e R and u & € R'*". Define

1+bTGb
vE ANz, r2140'Gb, H20bb'.

We compute the left-hand side but take the expectation over only a; for the moment

AT + T ’ NT 2
]Ey bT aq - ||(A ) x”
=E, || —bu v+u alH HUH2
= (T = bu) "0 ||* + BylluTar[|* — [|o]? (Ela1] = 0)
HGbH

= [I(7 = bu) "wl* + Ey[a) o Gl
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Let us first consider the first and third terms of the above equation:
(I —bu) " o|> = o> =v" ((I —bu)(I —bu)" — I
= bu +u'b" —buu’ bT)
o7 HG+GH HG’H
2 v.

Write G = VAV, where A = diag(\1,...,\,) € R”X” is a dlagonal matrix (\; > 0) and

V € R™*" is an orthogonal matrix. Recall b ~ N (0,021,,). Therefore w =2 Vb ~ N(0,021,,).
Taking the expectation over b, we have

TppT TppT T T
[HG#—GH} V7ibb' VA + AV "bb VVT} _VE [ww A+ Aww }VT.

Ey

—E, |V
’ { 1+b0TVAVTD 1+w! Aw

T T
Let R 2 E, {%} . We have

2\ w? °g 20,2
——n . 5| =0 U
T+ 3, Aw? MO [T 2 3T

R”_]Ew|: :|>0

and if i # j,

Rij:Ew{MMwﬁ}
1+Z’L lAw

Notice that for any w and j, it has the same distribution if we replace w; by —w;. As a result,

(Ai + Ajwi(=w;)
Ri; =E =—R;;.
Thus the matrix R is a diagonal matrix and
A diag(v)?
=202 —
it =20 1+o02vTAv
Thus we get
HG+GH 9 GV diag(v)?V' T
E —— | =20°E,, _
b,A { } 0" Epn(0,1,),4 [ T o2 Ay

Moreover, by the monotone convergence theorem, we deduce

[ + GV diag(v)2V'T

T o2 Ap v] =E N (0,1.), 4,2 [—’UTGV diag(V)ZVTU]

lim ]EI/NN(O I,),Ax
o—0t

=E[-v Gv].
It follows that as ¢ — 07,

+HG + GH
JTHEHGH
r

E |- v} ~ —202E[v" Gv] = —20°E [UT(AAT)*IU] = —207E[||(AT At z|?].

Moreover, by (4), we have

E v (AAT) 0] <E [Apax ((AAT)™H) [[(AT) T2[?] < +o0.

Next, we study the term HG?H /r?:
HG?H

]EbA[

T bbT A2 T bbT
}EhA[VJ/ VA2V ‘/VT}

(14+b6TVAVTH)?
ww T A2ww "
= Eopor(0.02 y o 2 T
w~N (0, I,L),A|: (1+U)TA'U})2 :|

TA2,,,,T
By vv' Avy T
=0 "Eyn0,1,),4 [VWW ]
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Again, by the monotone convergence theorem, we have
TA2,,,,T
vv' ANvv
lim E,. vV'V————VTy
il N(O,In),A,:v{ (1+ o207 Av)?

o—0

=E,n(0.1,),A2 [UTVWTAQWTVTU]

'V (2/\2 +1Y Af) VT

i=1
=E [’UT (2G2 + tr(Gz)In) v} .
It follows thatas ¢ — 07,

= EA,z

2
Ep a0 {HfQH}
~ 'R [vT (2G? + tr(G*)1,,) v]
= o'E [2[(AAT) " ol* + tr((AAT)72)|0]?] -
Moreover, by (4), we have
E [2[|(AAT) ]2 4+ tr((AAT) 72 [Jo[P] < (n+ 2)E Mac (AAT) T (A) T2[|*] < +oo.

We apply a similar method to the term ”Gb“ . We deduce
[Gb|? bTG2 B bTVAZV D
r2 (1+bTGb)?2  (1+bTVAVTH)?

It follows that
|Gb||? w' A%w 5 v A%y
E e :]E ~. o = El’"’
{ r2 w~N(0,021n),4 (1+wTAw)? o N(0.In),A (1+ 020 TAv)?
The monotone convergence theorem implies
v Ay T A2 2
Jlgn Evan(o,1,),4 [WZ/TAV)Q] Elv' A%v] = E[tr(G7)].

Thus we getas o — 0T

2
HGZ” ~ 0'4E[t1“(02)],

E, [a7]
(AAT)™H] < + .
Putting all three terms together, we have as o — 07
Lgy1 — Lg ~ —20°E[||(AT A) Tz |?].
Therefore, there exists o > 0 such that Ly — Lg < 0.

where E[tr(G?)] < nE[\2

max

C.4 Proof of Theorem 9

Again we first condition on A and z being fixed. Let G £ (AAT)~1 ¢ R™*" and u £ % c
R'*™ as defined in Lemma 6. We also define the following variables:

vE (AN Tz, r21+b7G0.

We compute L1 — Lg but take the expectation over only a; for the moment

AT + T ’ NT 2
]Ey bT aq - ||(A ) x”
=E, || —bu v+u alH HUH2
= (T = bu) "0 ||* + BylluTar[|* — [|o]? (Ela1] = 0)
HGbH

= [|(1 = bu) "v||* + Ey[a}] — vl (15)
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2
Our strategy is to make E[a? HCj—g”]

have

arbitrarily large. To this end, by the independence of a; and b we

Gb||? Gb|?
Euvs [ 1] e, [ 1L

By definition of V"%, with probability 2/3, a; is sampled from either N'(y,0%) or N'(—p,0?),

which implies E[a?] > 2. For each b;, we have

P(|b;| € [0,20]) > = %

W =
| =

Also note that G is positive definite. It follows that

IouRT [ llehl? Cunin (G)]B1])2 1\ X (G)no”
&[rz]‘Mhlwwm42mu+%mawm22ﬁﬁ EWTERTINE

Altogether we have

g[GP 1 i@
WU r2 | T 30120 (14 A (G)02)2
Let 1 = 1/02 and we have
, Gb||? . 1 nAnin (G)
1 E 2 || > ] E aan min
o0+ [al 12| = ohor AT 3090 52 (1 1 dndne(G)o?)2
1 nAZ, (G)
— Ea B, li min
Aafarb L0 {3 127 02(1 + 41 hmax(G)02)2

:+OO,

where we switch the order of expectation and limit using the monotone convergence theorem. Taking
full expectation over A, x, b and a; of (15) and using the assumption that E||v||? < +o0o we have

IGo)?

r2

Liti — Li=FEa pl|(I—bu) 0> +E [af } —Ea.|v|* = 400

aso — 0.

C.5 Proof of Theorem 10

If we define G 2 (AAT)™! € R™™ and u £ % € R, Lemma 6 implies

AT

{b—r} = [(], bu)T(A+)T,uT] .
It follows that
AtA - wwl

T

w 1|
T 1 r]

[Av b]+[A7 b] =

[ =g

T

where
w=ATb, r=1+0b"Gb.

We obtain the expression for Eg41:

. 2
ATA—wel | wlrg
wl 1| |5 ’

T

= |:IT <A+AwaI>B+y'LUTﬂ+(£TU}ﬂ1 B a151]2
r r

Eip1 = ([CCT,CM]

r r

2
= {xT(A"‘A -1+ % (—2zTww B +a wh +arw’ B - alﬁl)} .
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fay,br,. .. by & NS oray,br, ..., b, “ N(0,02),itholds that Ela;] = 0 € R, E[z] = 0 € RY,
and E[b] = 0 € R™*L. Therefore we have

E [:J (ATA-1T) 5%:5%51_ =E _%:J (ATA-T) ﬂ:z:Tw] E[B] =0,

E {xT (A+A — I) ﬁ%aleﬁ- =E _mT (A+A — I) ﬁiE[al]wTﬁ] =0,

F |:.’17T (A+A _ [) 6%@161- =E J,‘T (A+A — I) BiE[al]ﬁl} =0.

It follows that
1
El€it1] =E [xT(A+A — 1)6]2 +E [7“2 (fxTwaB +a'wh +aw' f— alﬂl)Z]

+E {ixT(AJFA — I),B(—a:Twa,B)_ ,

which then gives
El€a+1] — E[&d]

=E le (—2Tww B +2 wh +arw’ B - a151)2_ +E {ixT(AJrA — I)ﬁ(—xTwaﬂ)} '

First, we consider the second term E [22 T (AT A — I)3(—z Tww " 8)]. Note that

E -ng(A+A - I)B(—x—rww—rﬂ)]

=E _—gx—r (ATA - I)BﬁTwax]

=E _%xT(I - A+A)]E[,BBT]wa4

2

= p’E {xT(I - A+A)waa:} )
r

where the second equality is because 3 is independent from the remaining random variables and the

third step is because of 3 ~ N(0, p?I). Recalling that w = ATbhand AT AAT = A, we have

E EN(AM - I)ﬂ(xTwaﬂ)]

2
= p’E {;J(J — A*A)A*bsz]
'
2
= p’E {xT(A+ — A+AA+)bwT:c]
r
=0.
Now we consider the first term E {T% (—zTww'B+z wh +aw'p — alﬂl)z} . Note that all

the cross terms vanishes since E[3] = 0 and E[8;] = 0. This implies

E % (—2Tww B +2 wh +aiw’ B - a1/31)2]
KA
=B | 5 (@ ww 5 + (@ wp)? + (w5 + (alﬂl)z)}

=E %2 (tr(zz"ww BT ww ") + Bz Tww " ) + af tr(ww BBT) + a%ﬁf)}

—~

2 (Pl e TwwT) T ) + adg? ol + )|

| =

= p’E | 5 (Jw]® + 1)((z"w)* + E[ai]) |,

[\

r
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where the third equality is because of [37, 81]T ~ N(0, p*I411). From the above calculation one
can see that E[Eq11] > E[&4).

Ifa,b1,...,0, s f,“;f, Theorem 9 implies that for any C' > 0, there exist i, o such that

E ‘ —E|[(4") 7|’ > C.

ST

Because E[€411] > E[£4], we obtain that for any C' > 0, there exist y, o such that Ly}, — Ly > C.

iid

If ag,b1,...,b, ~ N(0,0?), we have as o — 0,

1
E[ég+1] — Eléq] = p*0°E LQ(UQIINII2 + (AT 2]? + 1) | ~ pPo? (EIAT 2] +1) .

From the proof of Theorem 8, we know that as ¢ — 0T

2
AT 2

] H| —E[|(A7)%a]* ~ —20°E[I(AT 4) 2 ).
E[[[(AT A)*z||?]
E[ATTz[2+1 °

Ifp<n we have

Ly, = Lg® ~ —o® (2n°E[[[(AT A)Fa|’] - p* (E[A* 2| + 1)) < —o*n’E[[[(AT A) 2]

. T AV+ (12
As aresult, there exists ¢ > 0 such that for all p <n %m, we have LZ"}:l < LZXP.

D Discussion

Recently, there has been growing interest in the comparison and connection between deep learning
and classical machine learning methods. For example, clustering, a classical unsupervised machine
learning method, was adapted to end-to-end training of image data [17, 24-27]. This paper studied
the non-monotonic generalization risk curve of overparametrized linear regression. It would be an
interesting future work to study the multiple descent phenomenon in other classical machine learning
methods and theoretically understand this phenomenon in deep learning. Moreover, when the multiple
descent phenomenon arises in different machine learning models, it remains open whether there is
any deep reason in common that accounts for it.
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