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HoleGest: Decoupled Diffusion and Motion Priors for Generating Holisticly
Expressive Co-speech Gestures

Supplementary Material

1. Supplementary Information on Quantitative
Experiments

Our model is trained in two ways. For the video, we used
all 25 English users from the BEATX dataset. For quantita-
tive experiments, we retrained the model only on Speaker2
to achieve a fair comparison and maintain consistency with
the EMAGE setup. We also added metrics for all BEATX
sequences: DSG (FGD=11.742, BA=7.3368, DIV=11.121),
EMAGE (FGD=7.305, BA=7.709, DIV=10.948), and
HoloGest (FGD=6.457, BA=8.0281, DIV=13.525). Al-
though the FGD slightly decreased on the complete BEATX
set, HoloGest scored the highest in all major metrics, prov-
ing its effectiveness.

2. Some Explanations in the Video

In the video, we showcase the dynamic styles of two walk-
ing speakers, Speaker2 and Speaker4, reflecting their true
label motions with continuous pacing. This highlights the
superiority of our method over contemporary approaches,
such as EMAGE and DSG, which only produce refined
in-place actions. Moreover, our method remains stable in
static styles, as demonstrated in the NPC dialogue scenario
in the video’s demo section. Upon paper acceptance, we
will open-source the entire code repository and project
homepage, which will include generated results for var-
ious styles.

3. Technical Details and Effectiveness Analysis

In this section, we conduct an effectiveness analysis of the
decoupling mechanism, SIDD module, and semantic align-
ment module to substantiate the rationale and importance of
these three modules in the main text.

3.1. Decoupling Mechanism Analysis

We retrained the baseline models DSG, EMAGE,
HoloGest— with only hand and body decoupling, and
HoloGest with upper and lower body and finger decou-
pling. As shown in Table 1, we evaluated the FGD metrics
of the decoupled body and fingers, finding that fingers
are more challenging to learn compared to the body. We
speculate that this is due to the stronger correlation of
fingers with semantics and upper limb movements, and
their weaker relation to audio melody features. If learned as
a whole, the finger motion distribution would be averaged
into the body distribution. Based on this, our system

Method BEATX

FGD| FGD_body| FGD_hands| FGD_upper] FGD_down|
DSG [10] 8.811 4.81 6.82 5.79 5.11
EMAGE [4] 5512 3.6 5.08 3.27 4.87
HoloGest—(Ours)  6.203 4.02 493 4.02 4.37
HoloGest(Ours)  5.3407 3.86 441 3.73 3.96

Table 1. Evaluation of FGD Objective Metrics for Decoupled
Components.

decouples the body and fingers, learning their independent
distributions to improve the generation quality of each part.
The semi-implicit denoising process significantly reduces
the inefficiency caused by this decoupling method and the
original DDPM denoising method. Furthermore, there is a
significant difference between the data distributions of the
upper and lower body, and the lower body movements are
often weakly correlated with the audio, posing challenges
for uniform learning in the diffusion model. To address
this issue, we decouple these parts and learn them individ-
ually. We validate this by comparing the FGD component
metrics of DSG, HoloGest—, and HoloGest. Decoupling
improves the FGD of each part, with the most significant
improvement in the lower body, close to one point.

In addition, although the decoupling approach of
EMAGE is consistent with HoloGest, the high-fidelity gen-
eration results of our semi-implicit diffusion model lead to
superior performance compared to EMAGE and almost all
VAE-based methods.

3.2. Ablation Study on the SIDD Module

In this section, we investigate the impact of diffusion step
size, reconstruction loss weight, and auxiliary forward loss
on SIDD Module performance. All ablation studies were
conducted on the BEATX dataset, with results shown in Ta-
ble 2.

Ablation on Sampling Step Size. In this experiment, we
investigate the impact of varying sampling step sizes on
model performance. Specifically, we train models with the
same structure using 1, 5, 10, 20, 30, and 50 steps respec-
tively. The final results, as shown in Table 2, indicate that
the FGD value tends to stabilize after 50 steps, but an in-
crease in step size also results in slower speed. When the
step size is 1, our structure reverts to a traditional GAN
model, leading to a drastic drop in the quality of the gen-
erated gestures.

Impact of Reconstruction Loss. When the reconstruction
loss weight is set to 0, the model degenerates to a pro-
cess similar to the inverse of the original diffusion model,
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Steps ‘ Recon loss ‘ AFD loss
num FGDJ Inf. time] weight FGD | FGDJ
1 55.44 0.03 0 63.10 w/o 269
5 29.91 0.23 1 9.41 w/ 5.34
10 8.87 0.29 10 5.34 - -
20 7.802 0.4 100 5.40 - -
30  6.110 0.64 - - - -
50 5.34 0.88 - - - -
80 5.48 1.26 - - - -
100 5.39 1.55 - - - -

Table 2. Ablation experiments for the SIDD module. We find that
when the diffusion steps reach 10, the FGD metric tends to sta-
bilize, while when simplified to a traditional GAN network with
only one step, the FGD metric sharply declines. The absence of
body reconstruction loss severely affects the quality of the gener-
ated gestures, but the weight of this constraint has little impact on
model learning. AFD explicitly constrains the difference between
the forward noise and the noise sampled from the denoising distri-
bution at the same time step, thereby further improving the quality
of the generated gesture sequences.

where the output corresponds to the sampling path of the
predicted noise distribution rather than the reconstructed
motion. In this case, the quality of the generated gestures
significantly deteriorates. Conversely, introducing an ex-
plicit reconstruction loss substantially improves the gesture
quality. Based on empirical evidence, we conducted experi-
ments with weights set to 1, 10, and 100, observing that the
magnitude of the weight does not affect the FGD metric and
the quality of the generated gestures.

Impact of Forward Noise Constraint. The term “w/o0” de-
notes that we eliminate the forward loss and train the model
solely based on adversarial learning. It is worth noting that
while pure adversarial training can help the model learn the
marginal distribution, the complexity of the large step-size
distribution still results in a significant discrepancy between
the posterior sampling outcomes and the forward process
noise at the same time step, leading to a substantial decline
in the FGD metric.

3.3. Comparison with Other Acceleration Methods

In Table 3, we juxtapose our proposed method with other
bespoke acceleration strategies specifically designed for
diffusion-based generative models. Specifically, our em-
pirical results are benchmarked against strategies that have
been accelerated employing DPM-Solver, as well as the
original configurations of DDGAN [8] and SIDDMs [9].
The experimental findings reveal that for the DPM-Solver
strategy, its first-order Taylor series expansion is tantamount
to the widely recognized DDIM sampling strategy. Merely
accelerating the sampling process by diminishing the num-
ber of sampling steps often culminates in imprecise approx-
imations of the intricate multimodal distributions, thereby
precipitating a drastic deterioration in the generation qual-

BEATX

FGD] SAT BAT DIV{ Inf. time] steps
DPM-Solver-1(DDIM) [5] _ 21.7 0.1l _ 6.0 - 027 10
DPM-Solver-2 [5] 1992 009 624 - 0.41 10
Naive DDGAN [8] 164 017 616 1094 028 10
Naive SIDDMs [9] 162 019 627 115 0.26 10
HoloGest(Ours) 887 061 747 1362 029 10

Table 3. Comparative results with contemporary accelerated diffu-
sion methods are presented. Ensuring fairness, all methods employ
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Figure 1. Illustration of training the gesture and transcription text
latent space alignment module based on contrastive loss.

ity. Owing to the presence of second-order derivatives, the
second-order Taylor series expansion necessitates invoking
the denoising function twice at the midpoint during the sam-
pling process, which inadvertently hampers the generation
speed, while only offering marginal enhancements in the
generation quality. Higher-order Taylor series expansions
demand more frequent invocations of the denoising func-
tion, which is incongruous with the principal objective of
acceleration.

Additionally, we conducted a comparative analysis of the
acceleration strategies of the original DDGAN and SIDDM.
Specifically, we trained an unconditional discriminator for
DiffGes on the BEAT dataset, eschewing the explicit geo-
metric loss (a deviation from our method), and juxtaposed
it against our proposed method. The outcomes (as delin-
eated in the table) underscore that the original configura-
tions of the implicit and semi-implicit strategies exhibit sub-
par performance in terms of the overall quality of the gen-
erated gestures. This can be attributed to the fact that un-
like images, human representations typically adhere to more
stringent geometric constraints and necessitate more spe-
cific constraints.

3.4. Technical Details of Semantic Alignment Mod-
ule

Drawing inspiration from GestureCLIP [1], we introduce
a semantic gesture alignment module based on the JEPA
structure. This method maps gestures and text data into
a shared embedding space. Differing from GestureCLIP’s
JEA, we abstract the latent representation of the audio and
employ Speaker_id to bolster the prediction, seeking mutu-
ally predictable representations under supplementary con-
ditions. Our JEPA employs a 12-layer ViT (Vision Trans-
former) structure and is trained using a contrastive learning-
based strategy, as depicted in Figure 1. The gesture encoder
bears similarity to the VAE structure in MLD [2], with mod-
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Method PFC | BA 1 Dist, Dist,
GT 1.332 024 1061 748
Bailando [6] 1.754 0.23 7.92 7.72
FACT [3] 22543 022 1085 6.14
EDGE [7] 1.6815 0.27 9.17 7.22
HoloGest(Ours) 1.4913 0.292 9.81 7.49

Table 4. Quantitative comparison for the music and dance task.
Using EDGE as the baseline, our semi-implicit decoupled struc-
ture significantly accelerates the generation speed of diffusion
models while improving the generation quality. The introduction
of motion priors substantially enhances the PFC value.

ifications made solely to the dimensions of the input and
output. As illustrated in Table 1, our method outperforms
JEA and GestureCLIP in terms of the SA (Semantic Align-
ment) metric, with GestureCLIP’s SA=0.58 and HoloGest’s
SA=0.66. All evaluation configurations and computations
are maintained consistent with those in the original Ges-
tureCLIP manuscript.

3.5. Inference Efficiency Analysis

Compared to other diffusion methods, our approach re-
quires only 10 steps to generate output, with a 2-second mo-
tion slice taking just 0.29 seconds. For 50 steps, it takes 0.88
seconds. The transcription time from speech to text for each
slice is 0.33 seconds, and when combined with the genera-
tion time, it remains under 2 seconds. By setting a buffer
for two slices, we can satisfy the requirements of real-time
applications. The response latency for each slice ranges
from 0.62s (10 steps) to 1.21s (50 steps). After smooth-
ing the transition action between the two buffers over 12
frames, the generated speech action sequence is output. As
the maximum delay for each slice is 1.21s, which is less
than its demonstration time of 2 seconds, no additional de-
lay is needed for each slice after the two buffers.

4. Generalization Experiments

To evaluate our system’s core mechanisms, decoupled diffu-
sion and motion priors, in the human motion generation do-
main, we extended the framework to the music-driven dance
generation domain using the AIST++ [3] dataset. This
dataset, not obtained through marker-based motion capture,
contains artifacts like jitter and floating, causing physically
unnatural issues like skating in methods like EDGE [7] and
FACT [3].

We chose the diffusion-based EDGEE [7] as the base-
line model and introduced the decoupled structure and lo-
comotion prior module to validate our core ideas’ gener-
alization capability. We trained a music-to-dance genera-
tion model on AIST++ and compared it with contemporary
methods. Results in Table 4 show that our method signifi-

cantly improves generation quality and speed compared to
non-diffusion-based methods and EDGE, while producing
stable and natural motion results. PFC represents the phys-
ical feasibility of footsteps (lower values are better), BA
represents beat alignment, and Dist;, and Dist, represent
diversity measurements of generated dances on “dynamic”
and “geometric” levels, respectively. For more qualitative
comparisons, please refer to the accompanying video.

5. Applications

Our proposed method holds immense potential to revolu-
tionize various domains that involve real-time virtual hu-
man interaction. Below, we discuss two prominent appli-
cation areas where our method could have a significant im-
pact.

5.1. Virtual Assistants

Consider a scenario where a user is interacting with an ad-
vanced virtual assistant, such as an enhanced version of
ChatGPT. By incorporating our method, the virtual assistant
would not only be able to respond verbally but also utilize
gestures to communicate, adding a layer of non-verbal com-
munication that plays a crucial role in human interaction.
The real-time generation of gestures based on the user’s
speech input would make the interaction more engaging,
immersive, and lifelike, thereby elevating the overall user
experience.

5.2. Video Gaming

In the context of video gaming, our method could be em-
ployed to augment the realism of non-player characters
(NPCs). By leveraging our approach, NPCs could gener-
ate gestures for their dialogues in real-time, adding depth to
their character and enriching the gaming experience. This
application could potentially redefine the standards of char-
acter realism in video games, adding a new dimension to the
gaming experience and setting a new benchmark for future
advancements in the field.

We highly recommend the readers refer to the accompany-
ing video for the qualitative results obtained using our de-
veloped prototype system.
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