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HoleGest: Decoupled Diffusion and Motion Priors for Generating Holisticly
Expressive Co-speech Gestures

Supplementary Material

1. Supplementary Information on Quantitative001

Experiments002

Our model is trained in two ways. For the video, we used003
all 25 English users from the BEATX dataset. For quantita-004
tive experiments, we retrained the model only on Speaker2005
to achieve a fair comparison and maintain consistency with006
the EMAGE setup. We also added metrics for all BEATX007
sequences: DSG (FGD=11.742, BA=7.3368, DIV=11.121),008
EMAGE (FGD=7.305, BA=7.709, DIV=10.948), and009
HoloGest (FGD=6.457, BA=8.0281, DIV=13.525). Al-010
though the FGD slightly decreased on the complete BEATX011
set, HoloGest scored the highest in all major metrics, prov-012
ing its effectiveness.013

2. Some Explanations in the Video014

In the video, we showcase the dynamic styles of two walk-015
ing speakers, Speaker2 and Speaker4, reflecting their true016
label motions with continuous pacing. This highlights the017
superiority of our method over contemporary approaches,018
such as EMAGE and DSG, which only produce refined019
in-place actions. Moreover, our method remains stable in020
static styles, as demonstrated in the NPC dialogue scenario021
in the video’s demo section. Upon paper acceptance, we022
will open-source the entire code repository and project023
homepage, which will include generated results for var-024
ious styles.025

3. Technical Details and Effectiveness Analysis026

In this section, we conduct an effectiveness analysis of the027
decoupling mechanism, SIDD module, and semantic align-028
ment module to substantiate the rationale and importance of029
these three modules in the main text.030

3.1. Decoupling Mechanism Analysis031

We retrained the baseline models DSG, EMAGE,032
HoloGest– with only hand and body decoupling, and033
HoloGest with upper and lower body and finger decou-034
pling. As shown in Table 1, we evaluated the FGD metrics035
of the decoupled body and fingers, finding that fingers036
are more challenging to learn compared to the body. We037
speculate that this is due to the stronger correlation of038
fingers with semantics and upper limb movements, and039
their weaker relation to audio melody features. If learned as040
a whole, the finger motion distribution would be averaged041
into the body distribution. Based on this, our system042

Method BEATX
FGD↓ FGD body↓ FGD hands↓ FGD upper↓ FGD down↓

DSG [10] 8.811 4.81 6.82 5.79 5.11
EMAGE [4] 5.512 3.6 5.08 3.27 4.87
HoloGest–(Ours) 6.203 4.02 4.93 4.02 4.37
HoloGest(Ours) 5.3407 3.86 4.41 3.73 3.96

Table 1. Evaluation of FGD Objective Metrics for Decoupled
Components.

decouples the body and fingers, learning their independent 043
distributions to improve the generation quality of each part. 044
The semi-implicit denoising process significantly reduces 045
the inefficiency caused by this decoupling method and the 046
original DDPM denoising method. Furthermore, there is a 047
significant difference between the data distributions of the 048
upper and lower body, and the lower body movements are 049
often weakly correlated with the audio, posing challenges 050
for uniform learning in the diffusion model. To address 051
this issue, we decouple these parts and learn them individ- 052
ually. We validate this by comparing the FGD component 053
metrics of DSG, HoloGest–, and HoloGest. Decoupling 054
improves the FGD of each part, with the most significant 055
improvement in the lower body, close to one point. 056

In addition, although the decoupling approach of 057
EMAGE is consistent with HoloGest, the high-fidelity gen- 058
eration results of our semi-implicit diffusion model lead to 059
superior performance compared to EMAGE and almost all 060
VAE-based methods. 061

3.2. Ablation Study on the SIDD Module 062

In this section, we investigate the impact of diffusion step 063
size, reconstruction loss weight, and auxiliary forward loss 064
on SIDD Module performance. All ablation studies were 065
conducted on the BEATX dataset, with results shown in Ta- 066
ble 2. 067
Ablation on Sampling Step Size. In this experiment, we 068
investigate the impact of varying sampling step sizes on 069
model performance. Specifically, we train models with the 070
same structure using 1, 5, 10, 20, 30, and 50 steps respec- 071
tively. The final results, as shown in Table 2, indicate that 072
the FGD value tends to stabilize after 50 steps, but an in- 073
crease in step size also results in slower speed. When the 074
step size is 1, our structure reverts to a traditional GAN 075
model, leading to a drastic drop in the quality of the gen- 076
erated gestures. 077
Impact of Reconstruction Loss. When the reconstruction 078
loss weight is set to 0, the model degenerates to a pro- 079
cess similar to the inverse of the original diffusion model, 080
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Steps Recon loss AFD loss
num FGD↓ Inf. time↓ weight FGD ↓ FGD↓

1 55.44 0.03 0 63.10 w/o 26.9
5 29.91 0.23 1 9.41 w/ 5.34
10 8.87 0.29 10 5.34 - -
20 7.802 0.4 100 5.40 - -
30 6.110 0.64 - - - -
50 5.34 0.88 - - - -
80 5.48 1.26 - - - -

100 5.39 1.55 - - - -

Table 2. Ablation experiments for the SIDD module. We find that
when the diffusion steps reach 10, the FGD metric tends to sta-
bilize, while when simplified to a traditional GAN network with
only one step, the FGD metric sharply declines. The absence of
body reconstruction loss severely affects the quality of the gener-
ated gestures, but the weight of this constraint has little impact on
model learning. AFD explicitly constrains the difference between
the forward noise and the noise sampled from the denoising distri-
bution at the same time step, thereby further improving the quality
of the generated gesture sequences.

where the output corresponds to the sampling path of the081
predicted noise distribution rather than the reconstructed082
motion. In this case, the quality of the generated gestures083
significantly deteriorates. Conversely, introducing an ex-084
plicit reconstruction loss substantially improves the gesture085
quality. Based on empirical evidence, we conducted experi-086
ments with weights set to 1, 10, and 100, observing that the087
magnitude of the weight does not affect the FGD metric and088
the quality of the generated gestures.089

Impact of Forward Noise Constraint. The term ”w/o” de-090
notes that we eliminate the forward loss and train the model091
solely based on adversarial learning. It is worth noting that092
while pure adversarial training can help the model learn the093
marginal distribution, the complexity of the large step-size094
distribution still results in a significant discrepancy between095
the posterior sampling outcomes and the forward process096
noise at the same time step, leading to a substantial decline097
in the FGD metric.098

3.3. Comparison with Other Acceleration Methods099

In Table 3, we juxtapose our proposed method with other100
bespoke acceleration strategies specifically designed for101
diffusion-based generative models. Specifically, our em-102
pirical results are benchmarked against strategies that have103
been accelerated employing DPM-Solver, as well as the104
original configurations of DDGAN [8] and SIDDMs [9].105
The experimental findings reveal that for the DPM-Solver106
strategy, its first-order Taylor series expansion is tantamount107
to the widely recognized DDIM sampling strategy. Merely108
accelerating the sampling process by diminishing the num-109
ber of sampling steps often culminates in imprecise approx-110
imations of the intricate multimodal distributions, thereby111
precipitating a drastic deterioration in the generation qual-112

BEATX
FGD↓ SA↑ BA↑ DIV↑ Inf. time↓ steps

DPM-Solver-1(DDIM) [5] 21.7 0.11 6.0 - 0.27 10
DPM-Solver-2 [5] 19.92 0.09 6.24 - 0.41 10
Naive DDGAN [8] 16.4 0.17 6.16 10.94 0.28 10
Naive SIDDMs [9] 16.2 0.19 6.27 11.5 0.26 10
HoloGest(Ours) 8.87 0.61 7.47 13.62 0.29 10

Table 3. Comparative results with contemporary accelerated diffu-
sion methods are presented. Ensuring fairness, all methods employ
10-step denoising.

contrastive loss
NT-Xent Loss 

a few iterations

Figure 1. Illustration of training the gesture and transcription text
latent space alignment module based on contrastive loss.

ity. Owing to the presence of second-order derivatives, the 113
second-order Taylor series expansion necessitates invoking 114
the denoising function twice at the midpoint during the sam- 115
pling process, which inadvertently hampers the generation 116
speed, while only offering marginal enhancements in the 117
generation quality. Higher-order Taylor series expansions 118
demand more frequent invocations of the denoising func- 119
tion, which is incongruous with the principal objective of 120
acceleration. 121

Additionally, we conducted a comparative analysis of the 122
acceleration strategies of the original DDGAN and SIDDM. 123
Specifically, we trained an unconditional discriminator for 124
DiffGes on the BEAT dataset, eschewing the explicit geo- 125
metric loss (a deviation from our method), and juxtaposed 126
it against our proposed method. The outcomes (as delin- 127
eated in the table) underscore that the original configura- 128
tions of the implicit and semi-implicit strategies exhibit sub- 129
par performance in terms of the overall quality of the gen- 130
erated gestures. This can be attributed to the fact that un- 131
like images, human representations typically adhere to more 132
stringent geometric constraints and necessitate more spe- 133
cific constraints. 134

3.4. Technical Details of Semantic Alignment Mod- 135
ule 136

Drawing inspiration from GestureCLIP [1], we introduce 137
a semantic gesture alignment module based on the JEPA 138
structure. This method maps gestures and text data into 139
a shared embedding space. Differing from GestureCLIP’s 140
JEA, we abstract the latent representation of the audio and 141
employ Speaker id to bolster the prediction, seeking mutu- 142
ally predictable representations under supplementary con- 143
ditions. Our JEPA employs a 12-layer ViT (Vision Trans- 144
former) structure and is trained using a contrastive learning- 145
based strategy, as depicted in Figure 1. The gesture encoder 146
bears similarity to the VAE structure in MLD [2], with mod- 147
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Method PFC ↓ BA ↑ Distk Distg
GT 1.332 0.24 10.61 7.48
Bailando [6] 1.754 0.23 7.92 7.72
FACT [3] 2.2543 0.22 10.85 6.14
EDGE [7] 1.6815 0.27 9.17 7.22
HoloGest(Ours) 1.4913 0.292 9.81 7.49

Table 4. Quantitative comparison for the music and dance task.
Using EDGE as the baseline, our semi-implicit decoupled struc-
ture significantly accelerates the generation speed of diffusion
models while improving the generation quality. The introduction
of motion priors substantially enhances the PFC value.

ifications made solely to the dimensions of the input and148
output. As illustrated in Table 1, our method outperforms149
JEA and GestureCLIP in terms of the SA (Semantic Align-150
ment) metric, with GestureCLIP’s SA=0.58 and HoloGest’s151
SA=0.66. All evaluation configurations and computations152
are maintained consistent with those in the original Ges-153
tureCLIP manuscript.154

3.5. Inference Efficiency Analysis155

Compared to other diffusion methods, our approach re-156
quires only 10 steps to generate output, with a 2-second mo-157
tion slice taking just 0.29 seconds. For 50 steps, it takes 0.88158
seconds. The transcription time from speech to text for each159
slice is 0.33 seconds, and when combined with the genera-160
tion time, it remains under 2 seconds. By setting a buffer161
for two slices, we can satisfy the requirements of real-time162
applications. The response latency for each slice ranges163
from 0.62s (10 steps) to 1.21s (50 steps). After smooth-164
ing the transition action between the two buffers over 12165
frames, the generated speech action sequence is output. As166
the maximum delay for each slice is 1.21s, which is less167
than its demonstration time of 2 seconds, no additional de-168
lay is needed for each slice after the two buffers.169

4. Generalization Experiments170

To evaluate our system’s core mechanisms, decoupled diffu-171
sion and motion priors, in the human motion generation do-172
main, we extended the framework to the music-driven dance173
generation domain using the AIST++ [3] dataset. This174
dataset, not obtained through marker-based motion capture,175
contains artifacts like jitter and floating, causing physically176
unnatural issues like skating in methods like EDGE [7] and177
FACT [3].178

We chose the diffusion-based EDGEE [7] as the base-179
line model and introduced the decoupled structure and lo-180
comotion prior module to validate our core ideas’ gener-181
alization capability. We trained a music-to-dance genera-182
tion model on AIST++ and compared it with contemporary183
methods. Results in Table 4 show that our method signifi-184

cantly improves generation quality and speed compared to 185
non-diffusion-based methods and EDGE, while producing 186
stable and natural motion results. PFC represents the phys- 187
ical feasibility of footsteps (lower values are better), BA 188
represents beat alignment, and Distk and Distg represent 189
diversity measurements of generated dances on ”dynamic” 190
and ”geometric” levels, respectively. For more qualitative 191
comparisons, please refer to the accompanying video. 192

5. Applications 193

Our proposed method holds immense potential to revolu- 194
tionize various domains that involve real-time virtual hu- 195
man interaction. Below, we discuss two prominent appli- 196
cation areas where our method could have a significant im- 197
pact. 198

5.1. Virtual Assistants 199

Consider a scenario where a user is interacting with an ad- 200
vanced virtual assistant, such as an enhanced version of 201
ChatGPT. By incorporating our method, the virtual assistant 202
would not only be able to respond verbally but also utilize 203
gestures to communicate, adding a layer of non-verbal com- 204
munication that plays a crucial role in human interaction. 205
The real-time generation of gestures based on the user’s 206
speech input would make the interaction more engaging, 207
immersive, and lifelike, thereby elevating the overall user 208
experience. 209

5.2. Video Gaming 210

In the context of video gaming, our method could be em- 211
ployed to augment the realism of non-player characters 212
(NPCs). By leveraging our approach, NPCs could gener- 213
ate gestures for their dialogues in real-time, adding depth to 214
their character and enriching the gaming experience. This 215
application could potentially redefine the standards of char- 216
acter realism in video games, adding a new dimension to the 217
gaming experience and setting a new benchmark for future 218
advancements in the field. 219
We highly recommend the readers refer to the accompany- 220
ing video for the qualitative results obtained using our de- 221
veloped prototype system. 222
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