
! README.md

[Reproducibilty Challenge] RigL

This repository hosts source code for our reproducibility report on Rigging the Lottery: Making all Tickets Winners, published at ICML
2020.

Figure Courtsey: Evci et al. 2020.

Getting Started

Install

python3.8

pytorch : 1.7.0+ (GPU support preferable).

Then,

make install

W&B API key

Copy your WandB API key to wandb_api.key . Will be used to login to your dashboard for visualisation. Alternatively, you can skip W&B
visualisation, and set wandb.use=False while running the python code or USE_WANDB=False while running make commands.

Unit Tests

make test . Run make help to see specific make commands.

API Documentation

See docs/index.html , autogenerated via Sphinx. Run make docs.github to refresh.

Example Code

Train WideResNet-22-2 with RigL on CIFAR10

Change DENSITY incase you want to use a different density (1 - sparsity) level. See outputs/CIFAR10/RigL_ERK/0.2/ for
checkpoints etc.

make cifar10.ERK.RigL DENSITY=0.2 SEED=0

https://arxiv.org/abs/1911.11134
http://localhost:6419/img/dyn_sparse_train.png

Train ResNet-50 with SNFS on CIFAR100

See outputs/CIFAR100/SNFS_ERK/0.2 for checkpoints etc.

Evaluate WideResNet-22-2 with RigL on CIFAR10

Either train WRN-22-2 with RigL as described above, or download checkpoints from here. Place under
outputs/CIFAR10/RigL_ERK/0.2/+specific=cifar10_wrn_22_2_masking,seed=0 .

Evaluate ResNet-50 with SNFS on CIFAR100

Either train ResNet-50 with SNFS as described above, or download checkpoints from here. Place under
outputs/CIFAR100/SNFS_ERK/0.2/+specific=cifar100_resnet50_masking,seed=0 .

Main Results

Pre-trained Models

All checkpoints can be found here. Place folders under outputs/ .

Commands

The following make command runs all the main results described in our reproducibility report.

Use the -n flag to see which commands are executed. Note that these runs are executed sequentially, although we include parallel
processes for cifar10 runs of a particular method. Eg: cifar10.Random.RigL runs RigL Random for densities 0.05,0.1,0.2,0.5 ,
seed=0 in parallel.

It may be preferable to run specific make commands in parallel for this reason. See make help for an exhaustive list.

Table of Results

Shown for 80% sparsity (20% density) on CIFAR10. For exhaustive results and their analysis refer to our report.

make cifar100.ERK.SNFS DENSITY=0.2 SEED=0

make cifar10.ERK.RigL DENSITY=0.2 SEED=0

make cifar100.ERK.SNFS DENSITY=0.2 SEED=0

make cifar10 DENSITY=0.05,0.1,0.2,0.5
make cifar100 DENSITY=0.05,0.1,0.2,0.5
make cifar10_tune DENSITY=0.05,0.1,0.2,0.5

Method Accuracy (Test) FLOPS (Train, Test)

Small Dense 91.0 ± 0.07 0.20x, 0.20x

Static 91.2 ± 0.16 0.20x, 0.20x

SET 92.7 ± 0.28 0.20x, 0.20x

RigL 92.6 ± 0.10 0.20x, 0.20x

SET (ERK) 92.9 ± 0.16 0.35x, 0.35x

RigL (ERK) 93.1 ± 0.09 0.35x, 0.35x

Pruning 93.2 ± 0.27 0.41x, 0.27x

RigL_2x 93.0 ± 0.21 0.41x, 0.20x

https://drive.google.com/drive/folders/1f_q5pm5DR2a3GTGIa-xagWU3Nici8Lq-?usp=sharing
https://drive.google.com/drive/folders/1iSooN25SiAsNWF4uKgYnU-9fU-wUp0Hc?usp=sharing
https://drive.google.com/drive/folders/17LWYh9mgPUgk4Xe5YKLglzWyWDGk_aYg?usp=sharing

Visualization & Plotting Code

Run make vis .

Misc

This section may be useful if you desire to extend this code base or understand its structure. main.py is the python file used for
training-evaluating, and the make commands serve as a wrapper for it.

Print current config

We use hydra to handle configs.

See conf/configs for a detailed list of default configs, and under each folder of conf for possible options.

Understanding the config setup

We split configs into various config groups for brevity.

Config groups (example):

masking

optimizer

dataset etc.

Hydra allows us to override these either group-wise or globally as described below.

Overrriding options / group configs

python main.py masking=RigL wandb.use=True

Refer to hydra's documentation for more details.

Exhaustive config options

See conf/config.yaml and the defaults it uses (eg: dataset: CIFAR10 , optimizer: SGD , etc.).

Using specific configs

Sometimes, we want to store the specific config of a run with tuned options across mutliple groups (masking, optimizer etc.)

To do so:

store your config under specific/ .

each YAML file must start with a # @package _global_ directive. See specific/ for existing examples.

override only what has changed, i.e., donot keep redundant arguments, which the base config (config.yaml) already covers.

Syntax:

python main.py +specific=cifar_wrn_22_2_rigl

References

1. Rigging the Lottery: Making All Tickets Winners, Original Paper.

2. Our report on OpenReview.

RigL_2x (ERK) 93.3 ± 0.09 0.70x, 0.35x

python main.py --cfg job

https://hydra.cc/docs/intro
https://arxiv.org/abs/1911.11134

