
[Supplementary]
Reproducibility Report

Rigging the Lottery: Making All Tickets Winners

Anonymous Author(s)
Affiliation
Address
email

1 Architecture Specific Details—ResNet-50 on CIFAR1001

Table 1: ResNet-50 architecture used on CIFAR100. Building blocks are shown in brackets, with the numbers of
blocks stacked. Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

Layer Name Output Size ResNet-50

conv1 32×32 3×3, 64, no stride

conv2_x 32×32

[
1×1, 64
3×3, 64

1×1, 256

]
×3

conv3_x 16×16

[
1×1, 128
3×3, 128
1×1, 512

]
×4

conv4_x 8×8

[
1×1, 256
3×3, 256

1×1, 1024

]
×6

conv5_x 4×4

[
1×1, 512
3×3, 512

1×1, 2048

]
×3

1×1 average pool, 100-d fc, softmax

FLOPs 2.59e9

We use a variant of the originally proposed ResNet architecture (He et al. [2016]). Particularly, we replace the initial2

7 × 7 conv layer with a 3 × 3 conv layer. Here, “conv layer” refers to convolution followed by batchnorm (Ioffe3

and Szegedy [2015]) and ReLU activation. This is intended to not excessively downsample the image—CIFAR-1004

(Alex Krizhevsky [2009]) has images of dimensions 32 × 32, compared to Imagenet’s (Russakovsky et al. [2015])5

224 × 224. Each block used (conv2_x, conv3_x, etc.) is a bottleneck block, and uses the conv-batchnorm-ReLU6

ordering.7

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



2 FLOP Counting Procedure8

Following Evci et al. [2020], we base our counting procedure on the Micronet Challenge1, which was conducted as9

a part of NeurIPS 2019. Support for unstructured sparsity is assumed while computing the number of additions and10

multiplication operations. The sum of these two gives us the theoretical FLOPs for a single forward pass through the11

model.12

Concretely, let the FLOPs required for a forward pass through a dense model be fd and the corresponding for a sparse13

model (or small-dense model) be fs. Then, the FLOPs for training a dense model are 3fd—since the backward pass14

involves computing gradients with respect to each weight and activation. fs can be computed for a model given its15

sparsity distribution via the counting procedure. The FLOPs required to train a sparse model depend on the technique16

used, as detailed below.17

2.1 Inference FLOPs18

Small-Dense, RigL, SET, Static These methods involve constant layer-wise sparsity throughout training, hence the19

FLOP count can be determined during any step. The FLOP count for Random initialized models are (1− s) times the20

Dense FLOPs.21

SNFS, Pruning Both methods involve varying layer-wise sparsity during training, and hence non-constant FLOP22

consumption. The final weights are used to determine inference FLOPs in this case.23

2.2 Train FLOPs24

Small-Dense, Static Dense gradients are not required by these models, and hence have a train FLOP count of 3fs.25

SET Dense gradients are not required, and random growth can be implemented quite efficiently. Thus, the train FLOP26

count is 3fs.27

RigL Dense gradients are required only every ∆T steps, hence the corresponding train FLOP count is: 3∆Tfs+2fs+fd
∆T+1 .28

We note that since ∆T is typically set between 100–1000, the preceding expression is quite close to 3fs.29

SNFS Dense gradients are required at each training step, resulting in 2fs + fd FLOPs consumed at each step. Since30

the sparse FLOP count varies as we train, the average FLOP count is: 2E[fs,t] + fd, where fs,t is the sparse inference31

FLOPs at train step t.32

Pruning Does not require dense gradients, but the sparsity increases smoothly from 0% to the target value as we train.33

The FLOP consumption here is 3E[fs,t], , where fs,t is the sparse inference FLOPs at train step t.34

To determine E[fs,t], we compute a running average of the FLOP consumption after every epoch. Notably, we find35

that the inference cost of Pruning is often close to a Random initialized sparse network, while SNFS, regardless of36

initiazation, is compute-intensive.37

3 Trial Space of Hyperparameter Tuning38

Figure 1 shows the hyper-parameter study for tuning (α,∆T ) as a contour plot. We observe that for multiple39

initialization-density configurations, the reference choice (α = 0.3,∆T = 100), is quite close to the optimal hyper-40

parameters. Furthermore, where they differ, the difference is within standard deviation bounds (Table 4 of the main41

report).42

4 Dynamic Structured Sparsity43

Present hardware accelerators lack efficient implementations for unstructured sparsity. As a result, in practice, the44

reduced FLOP requirement of sparse methods rarely translate to wall-clock improvements. In comparison, there are45

efficient implementations available for structured (or block) sparsity which reach theoretical speedups (Gray et al.46

[2017], Teja Vooturi et al. [2019]). Motivated by this, we try modifying RigL to explicitly work on structured sparsity.47

1https://micronet-challenge.github.io/

2



(a) ERK, 1 − 𝑠 = 0.1 (b) ERK, 1 − 𝑠 = 0.2 (c) ERK, 1 − 𝑠 = 0.5

(d) Random, 1 − 𝑠 = 0.1 (e) Random, 1 − 𝑠 = 0.2 (f) Random, 1 − 𝑠 = 0.5

Figure 1: Trial space of tuning (α,∆T ), shown as a countor plot. Here, black circle corresponds to (α = 0.3,∆T =
100), while black triangle corresponds to the optimal hyper-parameter pair found. We plot the convex hull of the trial
space, so in a few cases the reference point lies on the border of this space.

Table 2: Modifying RigL for structured sparsity, compared on CIFAR-10 and CIFAR-100 datasets. RigL-struct
fails to match the accuracy of RigL and just matches Small-Dense in performance.

Method
CIFAR-10 CIFAR-100

1− s = 0.1 1− s = 0.2 1− s = 0.1 1− s = 0.2

Accuracy ↑
(Test) Wall Time ↓ Accuracy ↑

(Test) Wall Time ↓ Accuracy ↑
(Test) Wall Time ↓ Accuracy ↑

(Test) Wall Time ↓

Small-Dense 89.0 ± 0.35 0.11x 91.0 ± 0.07 0.20x 70.8 ± 0.22 0.11x 72.6± 0.93 0.20x

Random Initialization

RigL 91.7 ± 0.18 1.0x 92.9 ± 0.10 1.0x 71.8 ± 0.33 1.0x 73.5 ± 0.04 1.0x
RigL-Struct 87.0 ± 0.09 0.10x 90.4 ± 0.27 0.20x 69.1 ± 0.11 0.10x 71.9 ± 0.13 0.20x

ERK Initialization

RigL 92.4 ± 0.06 1.0x 93.1 ± 0.09 1.0x 72.6 ± 0.37 1.0x 73.4 ± 0.15 1.0x
RigL-Struct 89.6 ± 0.16 0.17x 91.3 ± 0.18 0.35x 71.1 ± 0.15 0.23x 72.9 ± 0.08 0.38x

We promote channel sparsity for convolutional layers and keep fully connected layers dense. Mask update steps also48

operate at the channel level, based on RigL’s growth and pruning criterion. We name this method as RigL-struct. Such49

an approach is enticing, as we can remove masked-out channels, and obtain practical speedups on accelerators without50

needing support for unstructured sparsity.51

Unfortunately, RigL-struct does not preserve the performance of originally proposed RigL (Table 2). In fact, it performs52

only as good as Small-Dense models, which negates the motivation behind such an experiment—Small-Dense models53

already achieve the intended speedups.54

References55

Geoffrey Hinton Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.56

3



Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making all tickets57

winners. In Proceedings of Machine Learning and Systems (ICML), July 2020.58

Scott Gray, Alec Radford, and Diederik P Kingma. Gpu kernels for block-sparse weights. arXiv preprint59

arXiv:1711.09224, 3, 2017.60

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings61

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.62

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal63

covariate shift. In International Conference on Machine Learning (ICML), July 2015.64

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,65

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-66

lenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.67

Dharma Teja Vooturi, Girish Varma, and Kishore Kothapalli. Dynamic block sparse reparameterization of convolutional68

neural networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops,69

Oct 2019.70

4


	Architecture Specific Details—ResNet-50 on CIFAR100
	FLOP Counting Procedure
	Inference FLOPs
	Train FLOPs

	Trial Space of Hyperparameter Tuning
	Dynamic Structured Sparsity

