
Appendix for Implicit Behavioral Cloning

Contents

A Contributions Statement 2

B Energy-Based Model Training and Implicit Inference Details 2

B.1 Method with Derivative-Free Optimization. 2

B.2 Method with Autoregressive Derivative-Free Optimization. 3

B.3 Method with Gradient-based, Langevin MCMC . 4

B.3.1 Gradient Penalty . 4

B.4 Comparison of EBM Variants . 4

C Additional Experimental Details and Analysis 5

C.1 Per-Task Summary of # Demonstrations and Environment Dimensionalities 5

C.2 Training and Inference Times, Implicit vs. Explicit Comparison 5

C.3 Additional Real-World Experimental Details . 6

C.3.1 Robot Hardware Configuration, Workspace, and Objects 6

C.3.2 Robot Policy and Controller . 6

C.4 Nearest-Neighbor Baseline . 6

C.5 N-D Particle Environment Description . 7

C.6 Analysis: Training Data Sparsity in theN-D Particle Tasks 7

C.7 Additional D4RL tasks . 7

D Policy Learning Results Overview and Protocol 8

D.1 D4RL Experiments . 8

D.2 Simulated Pushing Experiments . 9

D.3 SimulatedN-D Particle Environment Experiments . 11

D.4 Simulated Sweeping Experiments . 12

D.5 Real-world Pushing Experiments . 13

E Model Architectures 14

E.1 MLPs . 14

E.2 ConvMLPs . 14

F Proofs 14

F.1 Definitions . 14

F.2 Proofs . 15

G Theory Implications and Discussion 18

H Limitations 18

1

A Contributions Statement

Due to space constraints we did not include a comprehensive contributions statement in the main
manuscript, but include one here for clarity:

1. We present Implicit Behavioral Cloning (Implicit BC), which is a novel, simple method for
imitation learning in which behavioral cloning is cast as a conditional energy-based modeling
(EBM) problem, and inference is performed via sampling-based or gradient-based optimization.

2. We validate Implicit BC in real-world robot experiments, in which we demonstrate physical robots
performing several end-to-end, contact-rich pushing tasks (including precision insertion, and
multi-item sorting) driven with only images as input, and only human demonstrations provided as
training data. Implicit BC performs significantly better than our explicit BC baseline across all real-
world tasks, including an order-of-magnitude increase in performance on the precision insertion
task. On the sorting task, the models are shown to be capable of solving an up-to-60-second
horizon for a contact-rich, combinatorial task with complex multi-object collisions.

3. We present extensive simulation experiments comparing Implicit BC to both comparable
explicit models from the same codebase, and also author-reported quantitative results on the
human-expert tasks from the standard D4RL benchmark. We find both our explicit BC and
implicit BC models provide competitive or state-of-the-art performance on D4RL tasks with
human-provided demonstrations, despite using no reward information. Averaged across all tasks,
we find implicit BC outperforms our own best explicit BC models.

4. We analyze the nature of implicit models in simple 1D-1D examples, and we highlight aspects of
implicit models that we believe are not known to the generative modeling community, including
their behavior (i) at discontinuities and (ii) in extrapolation.

5. We provide theoretical insight into implicit models, including proofs of their (i) representational
abilities (Thm. 1), and (ii) approximation abilities (Thm. 2), which are shown to be distinct from
continuous explicit models in their ability to handle discontinuities and set-valued functions.

B Energy-Based Model Training and Implicit Inference Details

Our results critically depend on energy-based model (EBM) training, but we do not consider the specific
methods we use to be our main contributions (see Sec. A for a list). That said, after considerable experience
training conditional EBMs on both simple function-fitting tasks, and on policy learning tasks, we believe
it is useful to the research community to describe method specifics in detail. Our goal is to emphasize
simplicity when possible, in order to encourage more folks to use implicit energy-based regression rather
than explicit regression. We first review our approach using derivative-free optimization, then our autore-
gressive version, and then our approach using Langevin gradient-based sampling. For each, we discuss
(i) how to train the models, and (ii) how to perform inference with the models. For a more comprehensive
overview of training EBMs, see [1]. Note we will release code as well for training and inference.

For all methods, to compute ymin and ymax we (1) take the per-dimension min and max over the training
data, (2) add a small buffer, typically 0.05(ymax−ymin) on each side, and then (3) clip these min and
max values to the environments’ allowed min/max values. For agents that do not use the full range of the
environments’ allowed values for a given dimension, this enables more precision on that action dimension.
Also all methods use Adam optimizer with default β1=0.9, β2=0.999 values.

B.1 Method with Derivative-Free Optimization.

For training, this method is very simple. For counter-examples we draw from the uniform random
distribution: ỹ∼U(ymin,ymax), where ymin,ymax ∈Rm. Training consists of drawing batches of data,
sampling counterexamples for each sample in each batch, and applying LInfoNCE (Sec. 2). We typically
use a batch size of 512, with 256 counter-examples per sample in the batch. All {x} and {y} (i.e. o and
a for observations and actions), in the training dataset are normalized to per-dimension zero-mean, unit
variance. We use typically a 1e−3 initial learning rate and an exponential decay, 0.99 decay each 100
steps. We find that regularizing the models with Dropout does not help performance, perhaps because the
stochastic training process (counter-example sampling in each training step) self-regularizes the models.

2

Given a trained energy model Eθ(x,y), we use the following derivative-free optimization algorithm to
perform inference:

Algorithm 1: Derivative-Free Optimizer
Result: ŷ
Initialize: {ỹi}

Nsamples
i=1 ∼U(ymin,ymax), σ=σinit ;

for iter in 1, 2, ...,Niters do
{Ei}

Nsamples
i=1 ={Eθ(x,ỹi)}

Nsamples
i (compute energies);

{p̃i}
Nsamples
i=1 ={ e−Ei∑Nsamples

j=1 e−Ej
} (softmax);

if iter <Niters then
{ỹi}

Nsamples
i=1 ←∼Multinomial(Nsamples,{p̃i}

Nsamples
i=1 ,{ỹi}

Nsamples
i=1) (resample with replacement);

{ỹi}
Nsamples
i=1 ←{ỹi}

Nsamples
i=1 + ∼N (0,σ) (add noise);

{ỹi}
Nsamples
i=1 =clip({ỹi}

Nsamples
i=1 ,ymin,ymax) (clip to y bounds) ;

σ←Kσ (shrink sampling scale) ;
ŷ=argmax({p̃i},{ỹi})

Where Multinomial(Nsamples,{p̃i}
Nsamples
i=1 ,{ỹi}

Nsamples
i=1) refers to samplingNsamples times from the multinomial

distribution with probabilities {p̃i}
Nsamples
i=1 returning associated elements {ỹi}

Nsamples
i=1 . For simplicity the noise

is written as being drawn from∼N (0,σ), but this should be anNsamples-dimensional vector with an indepen-
dent Gaussian noise sample for each element. This algorithm is very similar to the Cross Entropy Method
[2], but has a few differences: (i) our algorithm does not use a fixed number of elites, (ii) re-sampling with re-
placement, and (iii) we shrink the sampling variance via a prescribed schedule rather than computing empir-
ical variances. We typically use σinit =0.33, K=0.5, Niters =3, Nsamples =16,384, unless otherwise noted.

While the above method works great for up to y of 5 dimensions or less (Sec. B.4), we look at both
autoregressive and gradient-based methods for scaling to higher dimensions.

B.2 Method with Autoregressive Derivative-Free Optimization.

In the autoregressive version we interleave training and inference with m models, for y∈Rm, i.e. one
model Ejθ(x,y

:j) for each dimension j=1,2,...,m. Model Ejθ(x,y
:j) takes in all y dimensions up to j.

This isolates sampling to one degree of freedom at a time, and enables scaling to higher dimensional action
spaces. For more on autoregressive energy models, see [3].

Algorithm 2: Autoregressive Derivative-Free Optimizer
Result: ŷ
Initialize: {ỹi}

Nsamples
i=1 ∼U(ymin,ymax), σ=σinit ;

for iter in 1, 2, ...,Niters do
for j in 0, 1, ...,m do
{Ei}

Nsamples
i=1 ={Ejθ(x,ỹ

:j
i)}Nsamples

i (compute energies);
{p̃i}

Nsamples
i=1 ={ e−Ei∑Nsamples

j=1 e−Ej
} (softmax);

→ if training, apply LInfoNCE and update parameters ofEjθ
if iter <Niters then
{ỹ:j
i }

Nsamples
i=1 ←∼Multinomial(Nsamples,{p̃i}

Nsamples
i=1 ,{ỹ:j

i }
Nsamples
i=1) (resample with replacement);

{ỹji}
Nsamples
i=1 ←{ỹji}

Nsamples
i=1 + ∼N (0,σ) (add noise);

{ỹi}
Nsamples
i=1 =clip({ỹi}

Nsamples
i=1 ,ymin,ymax) (clip to y bounds) ;

σ←Kσ (shrink sampling scale) ;
ŷ=argmax({p̃i},{ỹi})

3

B.3 Method with Gradient-based, Langevin MCMC

For gradient-based MCMC (Markov Chain Monte Carlo) training we use the approach described in [4, 5]
which uses stochastic gradient Langevin dynamics (SGLD) [6]:

kỹji =k−1ỹji−λ
(1

2
∇yEθ(xi,

k−1ỹji)+ωk
)
, ωk∼N (0,σ)

Note that in the conditional case, ∇ is respect to only y, and not x. As in [4, 5] we initialize {0ỹ}
from the uniform distribution, similar to Sec. B.1, but then optimize these contrastive samples with
MCMC. For each Nneg, we run NMCMC steps of the MCMC chain. As recommended in [7] we use a
polynomially-decaying schedule for the step-size λ. Note backpropagation is not performed backwards
through the chain, but rather a stop_gradient() is used after implicitly generating the samples [4].
Also as in [4] we clip gradient steps, choosing to clip the full ∆y value, i.e. after the gradient and noise
have been combined. Additionally for inference we run the Langevin MCMC chain a second time, giving
twice as many inference Langevin steps as were used during training. Also, for Langevin, all {y} (i.e. a
for actions), in the training dataset are normalized per-dimension to span the range [ymin =−1, ymax =1].

B.3.1 Gradient Penalty

For additional stability of training, we use both spectral normalization [8] as in [4], and also add gradient
penalties. Gradient penalties are well known in the GAN community, and the form of our gradient penalty
is inspired by [9]:

Lgrad=

N∑
i=1

Nneg∑
j=1

∑
k={·}

max

(
0 , (||∇yEθ(xi,

kỹji)||∞−M)

)2

Where the sums over i, j, k, represent respectively the sum over training samples, counter-examples per
each data sample, and some subset of iterative chain samples for which we find it is sufficient to use only
the final step, k= {NMCMC}. M controls the scale of the gradient relative to the noise ω in SGLD. If
M is too large, then the noise in SGLD has little effect; ifM is too small, then the noise overpowers the
gradient. Empirically we findM=1 is a good setting. On each step of training, the gradient penalty loss
is simply added to the InfoNCE loss, i.e. L=Lgrad+LInfoNCE. Lastly, we note there are other approaches
for improving stability of Langevin-based training, such as loss functions with entropy regularization [10].

To aid intuition on why constraints on the gradients ∇E(·) are allowable restrictions for the model,
Corollary 1.1 shows that the energy model is capable of having an arbitrary Lipschitz constant.

B.4 Comparison of EBM Variants

Figure 1. Comparison of used EBM methods on theN-D particle
environment, showing methods using DFO (derivative-free opti-
mization, Sec. B.1), autoregressive DFO (Sec. B.2), or Langevin
dynamics (Sec. B.3).

A key comparison between these methods is the tradeoff
of simplicity for higher-dimensional action spaces. As
shown in Fig. 1, with only 2,000 demonstrations in the
N-D particle environment, the joint-dimensions-optimized
derivative-free version (Sec. B.1) fails to solve the environ-
ment past N =5 dimensions, due to the curse of dimen-
sionality and its naive sampling. Both the autoregressive
(Sec. B.2) and Langevin (Sec. B.3) versions are able to
solve the environment reliably up to 16 dimensions, and
with nonzero success at 32 dimensions. The autoregres-
sive version requires no new gradient stabilization, and can
use only the same loss function, LInfoNCE, but is memory-
intensive, requiringN separate models forN dimensions.
The Langevin version scales to high dimensions with only
one model, but requires gradient stabilization. For more on autoregressive and Langevin generative EBMs,
see [3] and [4, 10]. Which variant is used for each of our evaluation tasks is enumerated in Section D.

4

C Additional Experimental Details and Analysis

C.1 Per-Task Summary of # Demonstrations and Environment Dimensionalities

In this section, with the table below, we highlight key aspects of the different evaluated policy learning
experimental tasks, specifically the # of demonstrations for each task and the dimensionalities of the
environments (comprised of the observation spaces, state spaces, and action spaces). As is highlighted in
the table, the various tasks cover a wide set of challenges, including: low-data-regime tasks, and tasks with
high observation, state, and/or action dimensionalities.

Demonstrations Dimensionalities

Domain Task Name # Observations States Actions Results Shown In Comment

D4RL Human-Experts

kitchen-complete 19 60 60 9

Table 2

kitchen-partial 601 60 60 9
kitchen-mixed 601 60 60 9
pen-human 50 45 45 24
hammer-human 25 46 46 26
door-human 25 39 39 28
relocate-human 25 39 39 30

Particle Integrator

"1D"-Particle 2,000 4 4 1

Figure 6

"2D"-Particle 2,000 8 8 2
"3D"-Particle 2,000 12 12 3
"4D"-Particle 2,000 16 16 4
"5D"-Particle 2,000 20 20 5
"6D"-Particle 2,000 24 24 6
"8D"-Particle 2,000 32 32 8
"16D"-Particle 2,000 64 64 16
"32D"-Particle 2,000 128 128 32

Simulated Pushing
Single Target, States 2,000 10 10 2

Table 3Multi Target, States 2,000 13 13 2
Single Target, Pixels 2,000 129,600 10 2 180x240x3 image

Planar Sweeping Image input 50 27,648 203 3 Table 4 96x96x3 image
State input 50 203 203 3

Bi-Manual Sweeping Image-and-state input 1,000 27,660 372 12 Table 5 96x96x3 image

Real Robot

Push-Red-Then-Green 95 32,400 8 2

Table 6 90x120x3 image.Push-Red/Green-Multimodal 410 32,400 8 2
Insert-Blue 223 32,400 8 2
Sort-Blue-From-Yellow 502 32,400 26 2

Table 1. Summary of the # demonstrations and observation/state/action-dimensionalities for each of the environments used in policy learning experi-
ments. Highlighted in color are (red), low-data-regime tasks with # demos under 100, (green), high observation dimensionality above 25, (blue),
high state dimensionality above 25, and (cyan), high action dimensionality at or above 9.

C.2 Training and Inference Times, Implicit vs. Explicit Comparison

D4RL Train+Eval Times. Table 2 compares example training + evaluation times for the chosen best-
performing models on the D4RL tasks. We report both the training steps/second, and then also the full
time for running an experiment, which comprises training to 100k steps with intermittently evaluating 100
episodes every 10k steps.

Implicit BC Explicit BC Comment
Configuration As in Section D.1 As in Section D.1
Summary: 512 batch size 512 batch size

512x8 MLP 2048x8 MLP
100 Langevin iterations
8 counter examples

Device TPUv3 TPUv3
Task door-human-v0 door-human-v0
Training rate (steps/sec) 17.9 101.3
Total train + eval time (hrs) 3.4 0.66 100k train steps, 100 evals every 10k steps

Table 2. Comparison of training+evaluation times for implicit vs. explicit models on an example D4RL task.

As is shown in Table 2, the best-performing implicit models, which are 100-iteration Langevin models,
take 5.6x the train+eval time compared to the best-performing explicit models. Note that even the 3.4-hour
full train+eval time for the implicit model is considerably faster than what has been reported [11] for
completing a train+eval on a comparable D4RL task for CQL: 16.3 hours.

Real-World Image-based Train and Inference Times. The following compares relevant training and
inference times for our real-world tasks. In contrast to the D4RL scenario discussed above, in this scenario
(a) there are large image observations to process, and (b) there are no simulated evaluations run during

5

training. We report the training steps/sec rate, as well as the total train time, which is performed on a server
of 8 GPUs. Once trained, the model is then deployed on a single-GPU machine, for which we report the
inference times.

Implicit BC Explicit BC Comment
Configuration As in Section D.5 As in Section D.5
Summary: 128 batch size 128 batch size

90x120 images 90x120 images
4-layer ConvMaxPool 4-layer ConvMaxPool
1024x4 MLP 1024x4 MLP
256 counter examples

Training Device 8x V100 GPU 8x V100 GPU
Task Push-Red-Then-Green Push-Red-Then-Green
Training rate (steps/sec) 4.7 5.5
Total train time (hrs) 5.8 5.0 100k train steps
Inference Device 1x RTX 2080 Ti GPU 1x RTX 2080 Ti GPU
Inference parameters 1024 samples

3 dfo iterations
Inference time (ms) 7.22 3.49

Table 3. Example comparison of training and inference times for implicit vs. explicit models used for a Real Robot task.

Table 3 shows that for these visual models, the training times are reasonably comparable for the implicit
and explicit models – 5.0 and 5.8 hours respectively. Compared to the previous D4RL scenario, this can be
explained because the training time is mostly dominated by visual processing. As the implicit models use
late fusion (Sec. E), the visual processing time is identical to the explicit models. For inference, the chosen
implicit models show a modest increase in inference time, up to 7.22 milliseconds (ms) from 3.49 ms for
the explicit model. This can be attributed to time spent on the iterative derivative-free optimization. Note
that the inference time of the implicit model can be adjusted by adding/decreasing the number of samples
and iterations. For example, using the same trained model but increasing the samples from 1024 to 2048
causes the inference time to increase to 9.25 ms.

C.3 Additional Real-World Experimental Details

C.3.1 Robot Hardware Configuration, Workspace, and Objects

Our real-world experiments make use of a UFACTORY xArm6 robot arm with all state logged at 100 Hz.
Observations are recorded from an Intel RealSense D415 camera, using RGB-only images at 640x360
resolution, logged at 30 Hz. The cylindrical end-effector is made from a 6 inch long plastic PVC pipe
sourced from McMaster-Carr (9173K515). The work surface is 24 x 18 inch smooth wood cutting board.
The manipulated objects are from the Play22 Baby Blocks Shape Sorter toy kit (Play22). The targets for
the tasks were constructed by hand out of wood and spraypainted black. All demonstrations were provided
by a mouse-based interface for providing real-time demonstrations.

The 6DOF robot is constrained to move in a 2D plane above the table. This aids in safety of the robot
during operation, since it is constrained to not collide with the table and cannot provide normal forces
against objects down into the table either.

C.3.2 Robot Policy and Controller

The learned visual-feedback policy operates at 5 Hz. On a GTX 2080 Ti GPU, the implicit models
(configuration in Sec. D.5) complete inference in under 10 ms (see Sec. C.2), and so could be run faster
than 5 Hz, but we find 5 Hz to be sufficient. The learned action space is a delta Cartesian setpoint, from the
previous setpoint to the new one. The setpoints are linearly interpolated from their 5 Hz rate to be 100 Hz
setpoints to our joint level controller. The joint level controller uses PyBullet [12] for inverse kinematics,
and sends joint positions to the xArm6 robot at 100 Hz.

C.4 Nearest-Neighbor Baseline

This baseline memorizes all training data, and performs inference by looking up the closest observation in
the training set and returning the corresponding action. Specifically, given a finite training dataset of pairs
{(x,y)}i, denote the inputs asX={x}i and outputs Y ={y}i, preserving the ordering in bothX and Y .

6

https://www.mcmaster.com/9173K515/
https://play22usa.com/shop/ols/products/16olfxvr5t

Given some new observation x′, the Nearest-Neighbor model,N(·), computes:

N(x′)=Y [argmin
i
|x′−X[i]|]

for some norm |·|. Specifically we used L2 norm. We experimented with normalizing all observations
per-dimension to be unit-variance, but did not find this to improve results. For environments with state-only
observations (no images), we can compute this exactly and quickly all in processor memory, but for the
image-observation Simulated Pushing task we tested, the dataset did not fit in memory. Accordingly,
we used a random linear projection, which is known to be a viable method for nearest-neighbor lookup
of image data [13], from the observation space to a 128-dimensional vector. We then stored all these
128-dimensional vectors in memory, and used these for Nearest-Neighbor lookups.

C.5 N-D Particle Environment Description

In this environment, the agent (i.e., particle) moves from its current configuration q ∈ RN to a goal
configuration g0 ∈ RN , followed by a second goal configuration g1 ∈ RN . Given its position q and
velocity q̇, its action is the target position q̂∈RN applied to a PD controller which computes acceleration q̈
according to: q̈=kp(q̂−q)+kd(ˆ̇q−q̇) where target velocity ˆ̇q=0, and kp and kd are environment-fixed
constant gains. Initial and goal particle configurations are randomized, for each dimension, in the range
[0,1] for each episode, and differ between training and testing. To generate demonstrations, a scripted
policy returns actions q=g0 until the agent falls within a radius r of g0, then returns actions q=g1 until
the agent falls within a radius r of g1. Agent state and goal positions are used as input to the policy, which
is trained to imitate the behavior of the scripted policy and tested on its capacity to generalize to new goal
configurations. This task can be thought of as modeling anN-dimensional step function while dealing with
compounding errors. The mode switch between goals presents a discontinuity that needs to be learned.

C.6 Analysis: Training Data Sparsity in theN-D Particle Tasks

Figure 2. Depiction of training data sparsity on theN-D particle
tasks, as N is varied. Shown, for each N-D variant of the task,
is the average distance of an evaluation episode initialization to
the training set of 2,000 demonstrations.

To complement other analyses on generalization, sample
complexity, and interpolation/extrapolation, we analyze in
Fig. 2 another notion of generalization: training data spar-
sity. In theN-D particle experiments, as we increase N but
hold the number of demonstrations constant, the training
data effectively becomes much sparser over the observa-
tion space. New test-time environments for evaluation are
accordingly, asN increases, on average farther and farther
away from the training set. This helps explain how the
Nearest-Neighbor baseline cannot solve this task well past
1D, since memorizing the training data is insufficient, and
to succeed in a higher-dimensional environment a model
must generalize. This analysis complements our simple
1D->1D figures on extrapolation/interpolation (Fig. 2 and
Fig. 3 in the main paper) and our visual generalization and sample complexity analysis (Fig. 4 in the main
paper).

C.7 Additional D4RL tasks

In the main paper we focused on the human-expert tasks from D4RL, but here provide results on additional
D4RL tasks as well. Note that the other tasks shown, except for ‘random’, use a reinforcement-learning-
trained agent for the task, and this reinforcement-learning agent itself has a policy that is a uni-modal
continuous, explicit function approximator, and it was optimized as such. Additionally, as expected,
supervised imitation learning methods, which do not make use of the additional reward information from
the provided demonstrations, perform comparatively worse on tasks with sub-optimal demonstrations. This
is true of all tasks with “*medium*” and “*random” in their task name. Additionally, as stated in Section D,
we choose the EBM hyperparameters to maximize performance on the human-expert based environments
(“Franka” and “Adroit” tasks) at the expense of lower performance on the “Gym”-mujoco tasks. However,
for fair comparison with other methods, and according to the standard D4RL evaluation protocol, a single
set of hyperparameters was used for all tasks rather than presenting results that maximize each environment.

7

Baselines Ours

Explicit Implicit Explicit Implicit
Method BC CQL [14] S4RL [15] BC (MSE) BC (EBM) BC (MSE) BC (EBM)

(from CQL) w/ RWR [16] w/ RWR [16]

Uses data (o,a) (o,a,r) (o,a,r) (o,a) (o,a) (o,a,r) (o,a,r)

Domain Task Name

Franka
kitchen-complete 1.4 1.8 3.08 1.76 ±0.04 3.37 ±0.19 1.22 ±0.18 3.37 ±0.01
kitchen-partial 1.4 1.9 2.99 1.69 ±0.02 1.45 ±0.35 1.86 ±0.26 2.18 ±0.05
kitchen-mixed 1.9 2.0 2.15 ±0.06 1.51 ±0.39 2.03 ±0.06 2.25 ±0.14

Adroit

pen-human 1121.9 1214.0 1419.6 2141 ±109 2586 ±65 2108 ±58.8 2446 ±207
hammer-human -82.4 300.2 496.2 -38 ±25 -133 ±26 -35.1 ±45.1 -9.3 ±45.5
door-human -41.7 234.3 736.5 79 ±15 361 ±67 17.9 ± 13.8 399 ±34
relocate-human -5.6 2.0 2.1 -3.5 ±1.1 -0.1 ±2.4 -3.7 ±0.3 3.6±2.5

Gym

halfcheetah-medium 4202 5232 5778 4273 4086
walker2d-medium 304 3637 4298 822 676
hopper-medium 923 1867 2548 966 2430
halfcheetah-medium-replay 4934 6101 4029 2766
walker2d-medium-replay 970 1392 480 433
hopper-medium-replay 940 1132 543 382
halfcheetah-medium-expert 4164 7467 9528 11758 4040
walker2d-medium-expert 520 4533 5152 640 745
hopper-medium-expert 3621 3592 3674 909 876
halfcheetah-expert 13004 12731 12802 9436
walker2d-expert 5772 7067 2677 3746
hopper-expert 3527 3557 3619 3549
halfcheetah-random -118 4115 6213 0 -392
walker2d-random 33 323 1145 145 -1.63
hopper-random 308 331 331 284 308

Table 4. Baseline comparisons on D4RL [17] tasks, including Mujoco gym tasks. Results shown are the average of 3 random training initialization
seeds, 100 evaluations each.

D Policy Learning Results Overview and Protocol

In each section below we describe the protocols for the individual simulation experiments. Note that Figure
5 was produced by averaging the performance of the best policies, for each type, within each domain across
the different tasks of that domain.

For EBM variants that were used for which task: Simulated Pushing and Real World, with action
dimensionality of 2, used derivative-free optimization (Sec. B.1). For Planar Sweeping, with action
dimensionality 3, and Bi-Manual Sweeping, with action dimensionality 12, we used autoregressive
derivative-free optimization (Sec. B.2). D4RL, with action dimensionality between 3 and 30, used Langevin
dynamics (Sec. B.3). Particle, with action dimensionality between 1 and 32, used Langevin dynamics as
well. See Sec. B.4 for a comparison of variants.

D.1 D4RL Experiments

For D4RL experiments, we run sweeps over several hyperparameters for both the Implicit BC (EBM)
and Explicit MSE-BC models. We choose the final hyperparameters based on max average performance
over 3 D4RL environments: hammer-human-v0, door-human-v0, and relocate-human-v0. We use the
same final hyperparameters across all D4RL tasks for the final results. Note that we paid closest attention
to the human-teleoperation task performance when selecting a single set of hyper parameters for D4RL,
particularly at the expense of slightly lower task performance on the gym-mujoco D4RL tasks. For all
evaluations, we report average results over 100 episodes for 3 seeds. To calculate the aggregate D4RL
performance metric “D4RL Human-Experts" in Figure 5 of the paper, we first calculated the normalized
performance metric for the kitchen-complete, kitchen-partial, kitchen-mixed, pen-human, hammer-human,
door-human and relocate-human environments, then calculated the average across all these tasks.

The following hyperparameters were used for D4RL evaluation:

8

D4RL Implicit BC (EBM)

Hyperparameter Chosen Value Swept Values
EBM variant Langevin
train iterations 100,000
batch size 512
learning rate 0.0005
learning rate decay 0.99
learning rate decay steps 100
network size (width x depth) 512x8 128x32, 512x8
activation ReLU swish, ReLU
dense layer type spectral norm regular, spectral norm
train counter examples 8 1, 8, 64
action boundary buffer 0.05 0.001, 0.05
gradient penalty final step only all steps, final step only
gradient margin 1 0.6, 1.0, 1.3
langevin iterations 100 100, 150
langevin learning rate init. 0.5 2.0, 1.0, 0.5, 0.1
langevin learning rate final 1.00E-05 1e-4, 1e-5, 1e-6
langevin polynomial decay power 2 2.0, 1.0
langevin delta action clip 0.5 0.05, 0.1, 0.5
langevin noise scale 0.5 0.5, 1.0
langevin 2nd iteration learning rate 1.00E-05 1e-1, 1e-2, 1e-5

Shown also is an indication of training stability, across 5 different seeds, shown for the pen task.

(a) A plot of the total EBM loss on the pen-human-v0 D4RL environment for each of 5
seeds. Note that with Langevin sampling, as the sample quality improves, the EBM loss
can rise.

(b) A plot of the eval returns from the same run on pen-human-v0 for 5 seeds, average
of 100 evals.

D4RL Explicit MSE-BC

Hyperparameter Chosen Value Swept Values
train iterations 100,000
batch size 512
sequence length 2
learning rate 0.001 1e-3, 0.5e-3
learning rate decay 0.99
learning rate decay steps 200
dropout rate 0.1 0.0, 0.1
network size (width x depth) 2048x8 128x16, 128x32, 512x16, 512x32, 1024x4, 1024x8, 2048x4, 2048x8
activation ReLU

D.2 Simulated Pushing Experiments

For Simulated Pushing experiments, we run separate sweeps for each model for each of the States and
Pixels versions of the task. All chosen hyperparameter sweeps and chosen values are given in tables below,
and results are reported as the average of 100 episodes for 3 seeds.

9

Simulated Pushing, States, Implicit BC (EBM)

Hyperparameter Chosen Value Swept Values
EBM variant DFO
train iterations 100,000
batch size 512
sequence length 2 2, 4
learning rate 0.001
learning rate decay 0.99
learning rate decay steps 100
network size (width x depth) 128x8 2048x4, 128x8, 128x16, 128x32
activation ReLU
dense layer type regular
train counter examples 256
action boundary buffer 0.05
gradient penalty none
dfo samples 16384
dfo iterations 3

Simulated Pushing, States, Explicit MSE-BC

Hyperparameter Chosen Value Swept Values
train iterations 100,000
batch size 512
sequence length 2
learning rate 0.0005 4e-3, 2e-3, 1e-3, 0.5e-3, 0.2e-3
learning rate decay 0.99
learning rate decay steps 100 100, 150, 200, 400
dropout rate 0.1
network size (width x depth) 1024x8 1024x4, 1024x8, 2048x4, 2048x8
activation ReLU

Simulated Pushing, States, Explicit MDN-BC

Hyperparameter Chosen Value Swept Values
train iterations 100,000
batch size 512
sequence length 2
learning rate 0.001
learning rate decay 0.99
learning rate decay steps 100
dropout rate 0.1
network size (width x depth) 512x8 512x8, 512x16
training temperature 1.0 0.5, 1.0, 2.0
test temperature 1.0 0.5, 1.0, 2.0
test variance exponent 1.0 1.0, 4.0

Simulated Pushing, Pixels, Implicit BC (EBM)

Hyperparameter Chosen Value Swept Values
EBM variant DFO
train iterations 100,000
batch size 128 128, 256
sequence length 2
learning rate 0.001
learning rate decay 0.99
learning rate decay steps 100
image size 240x180 120x90, 240x180
MLP network size (width x depth) 1024x4 512x4, 1024x4, 256x14, 256x26, 1024x14, 1024x26
Conv. Net. 4-layer ConvMaxPool
activation ReLU
dense layer type regular
train counter examples 256
action boundary buffer 0.05
gradient penalty none
dfo samples 4096 1024, 4096, 16384
dfo iterations 3

10

Simulated Pushing Pixels MSE-BC

Hyperparameter Chosen Value Swept Values
train iterations 100,000
batch size 64
sequence length 2
learning rate 0.001
learning rate decay 0.99
learning rate decay steps 100
image size 240x180 120x90, 240x180
dropout rate (MLP only) 0.1
network size (width x depth) 512x4 128x2, 128x4, 512x2, 512x4
Conv. Net. 4-layer ConvMaxPool
activation ReLU
coord conv True True, False

Simulated Pushing Pixels MDN-BC

Hyperparameter Chosen Value Swept Values
train iterations 100,000
batch size 256
sequence length 2
learning rate 0.001
learning rate decay 0.99
learning rate decay steps 100
dropout rate (MLP only) 0.1
image size 120x90 120x90, 240x180
network num components 26
network size (width x depth) 512x8 512x8, 512x16
Conv. Net. 4-layer ConvMaxPool
activation ReLU
training temperature 2.0 0.5, 1.0, 2.0
test temperature 2.0 0.5, 1.0, 2.0
test variance exponent 4.0 1.0, 4.0

D.3 SimulatedN-D Particle Environment Experiments

For a detailed description of this environment and its dynamics, see Section C.5. We used the following
hyper parameters for evaluation on this environment:

Particle Implicit BC (EBM)

Hyperparameter Chosen Value
EBM variant Langevin
train iterations 50,000
batch size 128
sequence length 2
learning rate 0.001
learning rate decay 0.99
learning rate decay steps 100
network size (width x depth) 128x16
activation ReLU
dense layer type spectral norm
train counter examples 64
gradient penalty final step only
gradient margin 1
langevin iterations 50
langevin learning rate init. 0.1
langevin learning rate final 1.00E-05
langevin polynomial decay power 2
langevin delta action clip 0.1
langevin noise scale 1.0
langevin 2nd iteration learning rate not used

11

Particle Explicit MSE-BC

Hyperparameter Chosen Value
train iterations 100,000
batch size 512
sequence length 2
learning rate 0.001
learning rate decay 0.99
learning rate decay steps 200
dropout rate 0.1
network size (width x depth) 128x16
activation ReLU

D.4 Simulated Sweeping Experiments

For Planar Sweeping, for both explicit and implicit models, results are shown for different types of
encoders, and different # of Dense ResNet layers (Sec. E) shown in the table, each is the average of 100
evaluations each across 3 different seeds. The best models, for each implicit and explicit, were taken from
Planar Sweeping and evaluated on Bi-Manual Sweeping.

We used the following hyper parameters for evaluation on the simulated planar sweeping, and bi-manual
sweeping environment:

Planar Sweeping Implicit BC (EBM)

Hyperparameter Chosen Value Swept Values
EBM variant Autoregressive
train iterations 1,000,000
batch size 64
sequence length 2
learning rate 1e-4 1e-3, 1e-4
Conv. Net. ConvResNet
encoder features 64
Conv ResNet encoder layers 26
spatial softmax heads 64 8, 16, 32, 64
dense ResNet layers 20 8, 14, 20
activation ReLU
train counter examples per action dim 1024 128, 256, 512, 1024
inference examples per action dim 1024 128, 256, 512, 1024

Planar Sweeping Explicit MSE-BC

Hyperparameter Chosen Value Swept Values
train iterations 1,000,000
batch size 64
sequence length 2
learning rate 1e-4 1e-3, 1e-4
Conv. Net. ConvResNet
encoder features 64
Conv ResNet encoder layers 26
spatial softmax heads 64 8, 16, 32, 64
dense ResNet layers 20 8, 14, 20
activation ReLU

Bi-manual Sweeping Implicit BC (EBM)

Hyperparameter Chosen Value
EBM variant Autoregressive
train iterations 1,000,000
batch size 32
sequence length 2
learning rate 1e-4
Conv. Net. ConvResNet
encoder features 64
Conv ResNet encoder layers 26
spatial softmax heads 64
dense ResNet layers 20
activation ReLU
train counter examples per action dim 1024
inference examples per action dim 1024

12

Bi-manual Sweeping Explicit MSE-BC

Hyperparameter Chosen Value
train iterations 1,000,000
batch size 32
sequence length 2
learning rate 1e-4
Conv. Net. ConvResNet
encoder features 64
Conv ResNet encoder layers 26
spatial softmax heads 64
dense ResNet layers 20
activation ReLU

D.5 Real-world Pushing Experiments

For Real World, explicit and implicit models were taken from Simulated Pushing, Pixels, and applied
to the real world. We used the following hyper parameters for evaluation on the real-world pushing
environments:

Real-world Tasks Pixels Implicit BC (EBM)

Hyperparameter Pushing Pushing Multimodal Insertion Sorting
EBM variant DFO DFO DFO DFO
train iterations 100,000 100,000 100,000 100,000
batch size 128 256 256 256
sequence length 2 2 2 2
learning rate 0.001 0.001 0.001 0.001
learning rate decay 0.99 0.99 0.99 0.99
learning rate decay steps 100 100 100 100
image size 120x90 120x90 120x90 120x90
MLP network size (width x depth) 1024x4 1024x4 2048x4 1024x4
Conv. Net. 4-layer ConvMaxPool 4-layer ConvMaxPool 4-layer ConvMaxPool 4-layer ConvMaxPool
activation ReLU ReLU ReLU ReLU
dense layer type regular regular regular regular
train counter examples 256 256 256 256
action boundary buffer 0.05 0.05 0.05 0.05
gradient penalty none none none none
dfo samples 1024 1024 2048 2048
dfo iterations 3 3 3 3

Pushing Pixels MSE-BC

Hyperparameter Pushing Pushing Multimodal Insertion Sorting
train iterations 100,000 100,000 100,000 100,000
batch size 128 128 128 128
sequence length 2 2 2 2
learning rate 0.001 0.001 0.001 0.001
learning rate decay 0.99 0.99 0.99 0.99
learning rate decay steps 100 100 100 100
image size 120x90 120x90 120x90 120x90
dropout rate (MLP only) 0.1 0.1 0.1 0.1
MLP network size (width x depth) 512x4 1024x4 1024x4 1024x4
Conv. Net. 4-layer ConvMaxPool 4-layer ConvMaxPool 4-layer ConvMaxPool 4-layer ConvMaxPool
activation ReLU ReLU ReLU ReLU

13

E Model Architectures

H

W

TC +2
CoordConv

CNN
Encoder

MLP

Image
Encoding

Actions

MLP

Observations

Actions

(a) (b)

Images

Figure 4. Simple depictions of architectures used for state-observation models (a), and visuomotor models (b). T is sequence length,m is observation
dimensionality, n is action dimensionality,W ,H,C are image width, height and channels.

.

E.1 MLPs

For non-image-observation models, we use MLPs (Multi Layer Perceptrons) that when used as EBMs
(Fig. 4a), take in the actions and output an energy in R1, or when trained as MSE models instead output
the actions. All results shown used ReLU activations, although we experimented with Swish as well.
Configurable model elements consisted of: Dropout [18], using ResNet skip connections [19], and spectral
normalization dense layers instead of regular dense layers [8].

E.2 ConvMLPs

For visuomotor models (Fig. 4b), we use the common ConvMLP [20] style architecture, but when used as
an EBM, concatenate actions with image encodings from a CNN model. The MLP portion is identical to
the section above. For the CNNs, for all models for the sweeping experiments, we used 26-layer ResNets
[21] (“ConvResNets”) which maintain full-image spatial resolution before the encoder. For the simulated
and real-world pushing experiments, we used a progressively-spatially-reduced model (“ConvMaxPool”)
composed of interleaving convolutions with max-pooling, with feature dimensions [32, 64, 128, 256].
Both models used 3x3 convolution kernels. Configurable options include: using CoordConv [22], i.e. a
pixel coordinate map augmented as input, and either spatial soft (arg)max [20] or global average pooling
encoders.

F Proofs

In this section we prove Theorems 1 and 2 as stated in Section 5 of the paper.

v
dS(v)

S

vS
u

ε

uS

dS(u)

(a) Distance to a set, S. (b) Distance function isarithms for a step function.

F.1 Definitions

A function f is Lipschitz continuous with constant L if ||f(x)−f(y)||≤L||x−y|| for all x,y. We say
that f is L-Lipschitz, so a 1-Lipschitz function is a function that is continuous with Lipschitz constant 1.
The magnitude of the gradient of an L-Lipschitz function is always less than or equal to L.

14

The distance function from a point x∈Rn to a non-empty set, S⊂Rn is defined as:

dS(x)= inf
x′∈S
||x−x′||

A closed set is a set that contains all of its boundary points (points that can be approached from the interior
and exterior of the set). Equivalently, a set is closed if and only if it contains all of its limit points (points
that are the limit of some sequence of points in the set).

The power set of Rn, P(Rn) is the set of all subsets of Rn including the empty set and all of Rn.

The graph, GF , of a function F :Rm→Rn is the set of points:

GF = {(x,F(x)) ∀ x∈Rm}⊂Rm+n

The graph, GF , of a multi-valued function F :Rm→P(Rn) is the set of points:

GF = {(x,y)∈Rm+n | x∈Rm, y∈F(x)}

F.2 Proofs

Lemma 1. The distance function from any point v to a non-empty set, S ⊂ Rn, is well-defined and
1-Lipschitz.

Proof. The distance function from a point v to a non-empty set, S is defined as:

dS(v)= inf
vS∈S
||v−vS||

The set of distance values is a set of positive real numbers, so the infimum exists due to the completeness
of R. Therefore the distance function is well defined.

For any v, let vS be a point in the closure of S with ||v−vS||=dS(v). Then, to establish continuity using
the triangle inequality, we can state that for a given u at a distance ε from v (as pictured in Fig. 5a),

||u−v|| = ε

dS(u) = ||u−uS||
≤ ||u−vS|| dS is an infimum
≤ ||u−v||+||v−vS|| by the triangle inequality

dS(u) ≤ ε+dS(v)

dS(v) ≤ ε+dS(u) v and u can be exchanged.
|dS(u)−dS(v)| ≤ ε

|dS(u)−dS(v)| ≤ 1·||u−v||

Since u and v can be reversed we have, |dS(u)−dS(v)|<ε and thus dS is continuous over Rn with a
Lipschitz constant of 1.

Lemma 2. If dS :Rn→R is the distance function to a closed set S⊂Rn, then for every x∈Rn there
exists an element x′∈S such that dS(x)= ||x−x′||.

Proof. LetB be a closed ball of radius dS(x)+1 around x. The distance from x toB∩S is equal to the
distance from x to S. Since dS is defined as an infimum, there must exist an infinite sequence of points
{xi}⊂B∩S with distances di= ||x−xi|| whose limit is dS(x). The set B∩S is closed and bounded
and, therefore, compact. The infinite sequence {xi}must therefore have at least one sub-sequence that
converges to a point x′∈B∩S. Since the distances of the full series converge to dS(x), we know that
||x−x′||=dS(x). The point x′∈S achieves the distance function value.

Lemma 3. For any continuous function F(x) : x ∈ Rm→ Rn, the distance to the graph of F is a
continuous function g(x,y): Rm+n→R, such that Fg(x)=argminy g(x,y)=F(x) for all x.

15

Proof. Let g(x,y) be the distance in Rm+n from the point (x,y) to the graph of F .

The graph, GF , of a function F :Rm→Rn is the set of points:

GF = {(x,F(x)) ∀ x∈Rm}⊂Rm+n

Since the graph GF is a non-empty set the distance function g(x,y) is well defined and continuous, as
shown in Lemma 1.

We must still show that Fg(x) = argminy g(x,y) = F(x) for all x. We know that g(x,y)≥ 0 ∀x,y,
because g is a distance function.

For any x∈Rn, clearly g(x,F(x))=0, since the point (x,F(x))∈GF and thus the distance from (x,F(x))
to a point in GF is zero.

Consider a point (x,y) where y 6=F(x) and therefore (x,y) /∈GF . Since F is continuous, GF is closed and
there will exist a point, (x′,F(x′))∈GF that achieves the infimum, dG((x,y))= ||(x,y)−(x′,F(x′))||.

||(x,y)−(x′,F(x′))||= ||(x−x′,y−F(x′))|| ≥ max(||x−x′||, ||y−F(x′)||)

At least one of x 6=x′ or y 6=F(x′), so g(x,F(x))> 0, meaning that the distance from (x,y) to GF is
strictly positive and only points in GF will have g(x,y)=0.

Therefore, for any x ∈ Rm, g(x,y) achieves its unique minimum g(x,y) = 0 at y = F(x) and thus
Fg(x)=argminy g(x,y)=F(x).

(x,y)
d

(x’,F(x’))

(a) Distance to the graph of a continuous function.

(x,y)
d

(x’,F(x’))

(b) Distance to the graph of a (single-valued) discontinuous function.

We have shown that for F : Rm → Rn we can construct a continuous g(x,y) that satisfies Fg(x) =
argminy g(x,y)=F(x) for all x∈Rm if F is single-valued and continuous. However, the functions we
are modeling are often discontinuous or multi-valued. If the single-valued function is discontinuous, there
will be open boundaries on the graph where the point that minimizes the distance function is not in the
graph of F (Fig. 6b). In that example, there will be two values of y that minimize g for the same value of
x, in which case Fg(x) will not be well defined as a single-valued function. We can disambiguate the two
cases to get a well-defined Fg, but we cannot reliably recover the original F at the discontinuity.

In order to handle discontinuities and multi-valued functions, we will extend the definition to allow functions
that map to multiple values, F :Rm→P(Rn)\{∅}. The multi-valued function F maps from Rm to the
power set P(Rn)\{∅}, which is the set of all subsets of Rn, except the empty set. We no longer require
continuity, but instead directly require the one important property of a continuous function that was used in
the proof of Lemma 3, namely that the graph of F is closed. In the simple case of a jump discontinuity (as
in fig. 6b), the function must include both sides of the discontinuity.

Theorem 1. For any multi-valued (set-valued) function F(x): x∈Rm→P(Rn)\{∅} where the graph of
F is closed, there exists a 1-Lipschitz function g(x,y): Rm+n→R, such that argminy g(x,y)=F(x) for
all x.

Proof. The graph, GF , of a multi-valued function F :Rm→P(Rn) is the set of points:

GF = {(x,y)∈Rm+n | x∈Rm, y∈F(x)}

16

We can again define g as the distance to GF . Because GF is a non-empty set, we know that g is well-defined
and uniformly continuous (Lemma 1).

g(x,y) = dGF ((x,y))

We will now show that g(x,y)=0 for all points in GF and g(x,y)>0 for all points not in GF .

For any point (x,y)∈GF , that is x∈Rm and y∈F(x), the distance from (x,y) to GF is zero.

g(x,y) = dGF ((x,y)) = 0

For any point (x,y) /∈GF , that is x∈Rm and y /∈F(x), we must show that the distance to GF is strictly
positive. Since the graph GF is closed (because we require it to be so), by Lemma 2, we know that there
exists a point (x′,y′)∈GF that achieves the minimum distance exactly.

g(x,y) = dGF ((x,y))

= ||(x,y)−(x′,y′)||
= ||(x−x′,y−y′)||
≥ max(||x−x′||, ||y−y′||)

At least one of x 6=x′ or y 6=y′, so g(x,y)>0.

Because the empty set is excluded from the range of F , there will be at least one y∈F(x) for any x.
Therefore, at x, the minimum value of g(x,y) will be zero and argminyg(x,y)=F(x) exactly.

We have shown that the implicit function g(x,y) is well-defined and continuous and has a Lipschitz value
of 1, even if F is very badly behaved.

Corollary 1.1 The function g(x,y) in Thm. 1 can be chosen to have an arbitrary positive Lipschitz
constant.

Proof. The distance function dS(x) :Rn→R from any point x to a non-empty set S, has a Lipschitz
constant of 1 (Lemma 1). Let g1 = dGF , the distance to the graph of F . If our desired Lipschitz constant
is L>0, we can compose g1 with another function fL :R→R that has a Lipschitz constant of L to get
gL=fL◦g1. For example, if fL(x)=Lx, we get gL(x,y)=fL(g1(x,y))=L dGF (x,y).

|gL(x,y)−gL(x′,y′)| = |fL(g1(x,y))−fL(g1(x
′,y′))|

≤ L |g1(x,y)−g1(x′,y′)|
≤ L · 1 ||(x,y)−(x′,y′)||

Therefore, gL has a Lipschitz constant of L.

Theorem 2. For any set-valued function F(x) :Rm→P(Rn)\{∅}, there exists a continuous implicit
function g :Rm+n→R that has a continuous function approximator, gθ with arbitrarily small bounded
error ε, that provides the guarantee that any point in the graph of Fθ(x)=argminygθ(x,y) is within ε of
the graph of F .

Proof. Let g(x,y)=2dGF (x,y), twice the distance to the graph of F . By Thm. 1, this g is continuous and
satisfies argminyg(x,y)=F(x).

For an arbitrary ε>0, let gθ :Rm+n→R be a function approximator for g with bounded error ε, |gθ−g|<ε.
Since g is a continuous function, the existence of a bounded-error function approximator is guaranteed by
well-known results in universal approximation of continuous functions, for example [23].

The question now is whether bounded errors in gθ approximating g, when composed with argmin, can
provide any guarantee on a property of argminygθ(x,y).

Note that Fθ as an approximator for F is unbounded, since F may be badly behaved. This can be
demonstrated at any point where F has a discontinuity. Suppose ||x−x′||<ε and F(x) and F(x′) have

17

values that are arbitrarily far apart. Because of the ε error in gθ, the argminygθ(x,y) may find values in
F(x′) that introduce arbitrary error in Fθ(x).

Let Fθ(x)=argminygθ(x,y). For any point (x,y) in the graph of Fθ, we can show that gθ(x,y)<ε. Let
y′ be any point in F(x). Since (x,y′) is in the graph of F , we know that g(x,y′)=0. With the bounded
error, |gθ−g|<ε, we know that gθ(x,y′)<ε. Thus, although the argmin may be achieved elsewhere,
gθ(x,y) may not have a value greater than ε.

gθ(x,y) ≤ gθ(x,y
′)

< g(x,y′)+ε

gθ(x,y) < ε

Also because gθ is an approximator for g, we know that for (x,y) in the graph of Fθ, g(x,y)<gθ(x,y)+ε
and thus g(x,y)< 2ε. Since g(x,y) is twice the distance to the graph of F , the distance from (x,y) to the
graph of F is less than ε.

g(x,y) ≤ gθ(x,y)+ε ≤ 2ε

g(x,y) = 2dGF (x,y) ≤ 2ε

dGF (x,y) ≤ ε

Therefore, any point (x,y) in the graph of Fθ must lie within ε of GF , the graph of F .

Note that this is not symmetric. There are no guarantees on gθ other than that it is continuous and within ε
of g. A point in GF may be arbitrarily far from GFθ as tiny variations in gθ can eliminate some values from
the set F(x).

G Theory Implications and Discussion

The practical implications of Theorems 1 and 2 are that they provide a number of favorable properties for
real-world modeling tasks, such as robot policy learning, that exhibit discontinuities and multi-modalities.
For one, implicit functions can model steep or discontinuous oracle policies without large gradients in the
function approximator. We hypothesize this leads to policies with better stability characteristics and fewer
generalization issues for out-of-domain samples. Thm. 1 also shows that implicit models can represent
multi-valued (set-valued) functions, including ones with discontinuities. With Thm. 2 there is a notion
provided of still having guarantees on the output of implicit inference, despite expected errors in the function
approximator. One way to consider the guarantee is via the level sets of the function, as shown in Figure 10
of the main paper. To discuss an illustrative example, for a simple step function discontinuity (as in Figure
10) this guarantee provides that, although the precise “decision boundary” of the discontinuity may not be
represented perfectly, that decision boundary can be approximated to arbitrary precision. Further, even
when the decision boundary is estimated imperfectly, the inferred values will correspond to either side of
the discontinuity, and nowhere else (it will not, for example estimate a value somewhere halfway between
the two sides of the discontinuity).

Note also that Theorems 1 and 2 do not show that a learning algorithm will actually be able to recover a
model with such properties, but only that such a model exists. This is in line with other results in function
approximation with neural networks, for example [23]. Additionally, in the implicit model case another
consideration is not only whether the parameters θ of such a parameterized model, gθ can be found, but
then also whether at inference time the optimization problem argminygθ(x,y) can even be solved. In
general, g(·) will be non-convex, and may be a hard global optimization problem. We have shown in
practice, however, we are able to perform satisfactory inference on many policy learning tasks of interest.

H Limitations

Although we have examined performance increases on several tasks using implicit BC policies over explicit
BC policies, evaluated as a method for behavioral cloning, there are a few limitations. For one, compared to
a simple Mean Square Error (MSE) BC policy, there is both increased training and inference computational

18

cost. As shown in Sec. C.2, however, the increase in inference time for the models used in the real world is
modest, and we have validated the models in the real world to be fast enough for real-time vision-based
control. Further, the training times of our presented models are modest compared to reported numbers for
offline RL methods (Sec. C.2) A second limitation is the increased implementation complexity of implicit
models compared to explicit models. However, we have provided a guide (Sec. B) for how to train the
models, which we hope encourages readers to try implicit models.

References
[1] Y. Song and D. P. Kingma. How to train your energy-based models. arXiv preprint arXiv:2101.03288, 2021.

[2] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the cross-entropy method. Annals of
operations research, 134(1):19–67, 2005.

[3] C. Nash and C. Durkan. Autoregressive energy machines. In International Conference on Machine Learning,
pages 1735–1744. PMLR, 2019.

[4] Y. Du and I. Mordatch. Implicit generation and modeling with energy based models. Advances in Neural
Information Processing Systems, 32:3608–3618, 2019.

[5] I. Mordatch. Concept learning with energy-based models. arXiv preprint arXiv:1811.02486, 2018.

[6] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of the
28th international conference on machine learning (ICML-11), pages 681–688. Citeseer, 2011.

[7] W. Grathwohl, K.-C. Wang, J.-H. Jacobsen, D. Duvenaud, M. Norouzi, and K. Swersky. Your classifier is secretly
an energy based model and you should treat it like one. arXiv preprint arXiv:1912.03263, 2019.

[8] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial networks.
In International Conference on Learning Representations, 2018.

[9] A. Jolicoeur-Martineau and I. Mitliagkas. Gradient penalty from a maximum margin perspective. arXiv preprint
arXiv:1910.06922, 2021.

[10] Y. Du, S. Li, B. J. Tenenbaum, and I. Mordatch. Improved contrastive divergence training of energy based models.
In Proceedings of the 38th International Conference on Machine Learning (ICML-21), 2021.

[11] I. Kostrikov, J. Tompson, R. Fergus, and O. Nachum. Offline reinforcement learning with fisher divergence critic
regularization. arXiv preprint arXiv:2103.08050, 2021.

[12] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics and machine
learning. GitHub Repository, 2016.

[13] E. Bingham and H. Mannila. Random projection in dimensionality reduction: applications to image and text data.
In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 245–250, 2001.

[14] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[15] S. Sinha and A. Garg. S4rl: Surprisingly simple self-supervision for offline reinforcement learning. arXiv
preprint arXiv:2103.06326, 2021.

[16] J. Peters and S. Schaal. Reinforcement learning by reward-weighted regression for operational space control. In
Proceedings of the 24th international conference on Machine learning, pages 745–750, 2007.

[17] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European conference on
computer vision, pages 630–645. Springer, 2016.

[20] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. The Journal of
Machine Learning Research (JMLR), 2016.

19

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[22] R. Liu, J. Lehman, P. Molino, F. Petroski Such, E. Frank, A. Sergeev, and J. Yosinski. An intriguing failing of
convolutional neural networks and the coordconv solution. Advances in Neural Information Processing Systems,
31, 2018.

[23] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

20

	Contributions Statement
	Energy-Based Model Training and Implicit Inference Details
	Method with Derivative-Free Optimization.
	Method with Autoregressive Derivative-Free Optimization.
	Method with Gradient-based, Langevin MCMC
	Gradient Penalty

	Comparison of EBM Variants

	Additional Experimental Details and Analysis
	Per-Task Summary of # Demonstrations and Environment Dimensionalities
	Training and Inference Times, Implicit vs. Explicit Comparison
	Additional Real-World Experimental Details
	Robot Hardware Configuration, Workspace, and Objects
	Robot Policy and Controller

	Nearest-Neighbor Baseline
	N-D Particle Environment Description
	Analysis: Training Data Sparsity in the N-D Particle Tasks
	Additional D4RL tasks

	Policy Learning Results Overview and Protocol
	D4RL Experiments
	Simulated Pushing Experiments
	Simulated N-D Particle Environment Experiments
	Simulated Sweeping Experiments
	Real-world Pushing Experiments

	Model Architectures
	MLPs
	ConvMLPs

	Proofs
	Definitions
	Proofs

	Theory Implications and Discussion
	Limitations

