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A DEMO WEBPAGE

In addition to the illustration in the main paper, a larger quantity of
detailed dataset samples and experimental results are demonstrated
on the web page: https://speechcraft2024.github.io/ speechcraft2024/
in the form of speech-language pairs. As an alternative, we pack the
page repository (check Page/index.html) for local browsers in the
supplementary materials. We highly recommend that the reviewers
take a listen. Please open the demo webpage in Chrome for an
enhanced experience.

B DETAILS IN SPEECH ANNOTATION
B.1 Example of Metadata

In Section 3.2 of the paper, we conduct data preprocessing to estab-
lish standard metadata before the whole annotation framework and
further utilize the raw metadata to extract prior information of the
audio clip such as the topic. An example of preprocessed metadata
is shown as follows.

{

'path': './giga_00000616/
<— POD0Q00@13293_S0000160.wav"',

'subdatasets': 'POD',

'sampling_rate': 16000,

'title': 'Law_Report_A_decade_since_911,_
— _54_new_anti-terror_laws',

'url': 'https://abcmedia.akamaized.net/rn/
— podcast/2011/09/1rt_20110906_0845.
— mp3',

'sid': 'PODQ000013293_S0000160",

'speaker': 'N/A',

'begin_time': 0,

'end_time': 10.220000000000027,

"text_raw': "And_that_can_actually_fuel_
< the_possibilities_of_extremism_and._
< recruitment_by._terrorists..._and._
— that's_why_.the_laws_need_to_be._
<~ balanced_out_with_other_programs._
< which_enhance_social_cohesion._,._ ",

'category': 'News_and_Politics'
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B.2 Label Categories

As described in Section 3.3, our proposed annotation system charac-
terized speech in terms of various style properties including pitch,
energy, speed, age, gender, emotion description, and word emphasis.
The subset labels of each attribute are listed below.
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Gender: Male, Female

Age: Child, Teenager, Youth adult, Middle-aged, Elderly

Pitch: low, normal, high

Speed: slow, normal, fast

Volume: low, normal, high

Emotion (English): Fearful, Happy, Disgusted, Sad, Surprised, An-
gry, Neutral

C SPEECHCRAFT DATA SOURCES

As illustrated in Section 4.1, we implemented the annotation sys-
tem across large-scale bilingual speech datasets to conduct speech
descriptions, resulting in the SpeechCraft dataset. The detailed in-
formation of the four open-source speech datasets is introduced as
follows.

AISHELL-3 [8] is a high-fidelity Mandarin speech corpus contain-
ing roughly 85 hours of recordings spoken by 218 speakers and a
total of 88, 035 utterances.

Zhvoice! corpus consists of eight open-source subdatasets, pro-
cessed through noise reduction and quality enhancement, with ap-
proximately 3200 speakers, and 900 hours of audio, totally 1,032,940
utterances.

LibriTTS-R [4] is a restored English TTS Corpus with 585 hours
of speech from 2, 456 speakers. It is derived by applying speech
restoration to the LibriTTS [9]corpus with sound quality improved.
GigaSpeech [1] is an evolving, multi-domain ASR Corpus col-
lected from three different sources of data, including audiobook,
podcast, and YouTube videos. It provides a wide range of choices on
the dataset scale. The GigaSpeech-m is an officially recommended
subset as a 1000-hour dataset for research experiments.

D DETAILS IN EMPHASIS STUDIES

D.1 Emphasis Regeneration

As introduced in Section 4.2, we employed FastSpeech 2 [7] as the
backbone to regenerate the AISHELL-3 and LibriTTS-R datasets
with keyword emphasized in each piece.

D.1.1  FastSpeech 2 Backbone Model. FastSpeech 2 achieved mod-
ulation of phoneme-level characteristics with the key component of
Variance Adaptor. It consists of three primary Predictors for energy,
pitch and duration respectively. Adjusting the output of Predictors
by scale, we can obtain loud volume, high pitch, and elongated
sounds on the designed phoneme. The different combination of
scaling factors determines various acoustic effects.

D.1.2  Keyword Extraction. We used the TextRank [5] algorithm
for Chinese content and Gensim [6] for English to conduct keyword
extraction. Words such as particles and proper nouns are overlooked
as they are seldom stressed in conversational speech.

!https://github.com/fighting41love/zhvoice
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D.2 Emphasis Detection

We introduced a word-level emphasis detection model in Section 3.3.
The detection model works by conducting forced alignment for each
waveform to get the separate audio slice for a minimum word unit.
As the emphasis is a relative concept that becomes significant only
when compared to the surrounding words, we concatenate features
of predecessor and successor to form the final representation for
each audio unit in the neural network training.

D.3 Emphasis Evaluation on Real-Life Dataset

In Section 4.3, we demonstrated the accuracy of emphasis detection
on the testset of the regenerated AISHELL-3-stressed and LibriTTS-
R-stressed data. To further evaluate the effectiveness of our detec-
tion approach in modeling real-life stress patterns, we utilized an
internal dataset with human annotation on word emphasis over 10,
000 audio utterances read by professional voice actors to test the
the model’s generalization ability on real-world data. The emphasis
detection models achieve 66.90% on word-level accuracy and 41.63%
on sentence-level accuracy on the human-annotated dataset, which
showcase the model’s promising ability to generalize on natural
word emphasis. However, the limited accuracy may stem from the
inherent complexity of real-world emphasizing effects, which are
more nuanced and varied than the mixed feature adjustments in
our data construction.

E MODEL CONFIGURATION IN TTS
EXPERIMENTS

We adopted the Salle [3] model to conduct Expressive Speech Syn-
thesis in Section 5.1, which facilitate speech synthesis task by codec
language modelling with RVQ [2]. RVQ is a method of high fidelity
neural audio compression which features multi-layer discrete quan-
tizers that can be reconstructed to high-quality waveforms by the
pre-trained neural audio codec model.

Salle employed a hybrid approach combining an autoregressive
style conditional codec model (AR) and a non-autoregressive TTS
codec model (NAR). The AR model is employed to generate the
first layer of RVQ, which encapsulates the fundamental speaking
information. Conversely, the NAR model is reserved for the subse-
quent layers of quantizers that capture fine acoustic details. Text
style prompt embedding is concatenated ahead of the phoneme text
embedding, serving as the condition. The strategic embedding inte-
gration significantly enhances the expressive capacity and accuracy
of the speech synthesis.
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