
Figure 3: Comparison of stepsizes of affine-invariant damped Newton methods with quadratic local
convergence. We compare AICN (blue), and stepsizes from Nesterov [2018] in orange and green. We
set Lsemi = Lsc = 5.

Appendix
A Extra comparisons to other methods

A.1 Damped Newton method stepsize comparison

In Figure 3, we present comparison of stepizes of AICN with other damped Newton methods
[Nesterov, 2018]. Our algorithm uses stepsize bigger by orders of magnitude. For reader’s
convenience, we repeat stepsize choices. For AICN stepsize is ↵ = �1+

p
1+2G

G , where G
def
=

Lsemikrf(xk)k
⇤

xk
. For damped Newton methods from Nesterov [2018], ↵1

def
= 1

1+G1
,↵2

def
=

1+G1

1+G1+G2
1

, where G1
def
= Lsckrf(xk)k

⇤

xk
.

A.2 Convergence rate comparison under various assumptions

In this subsection we present Table 2 – comparison of AICN to regularized Newton methods under
different smoothness and convexity assumptions.

A.3 Logistic regression experiments

We solve the following minimization problem:

min
x2Rd

(
f(x)

def
=

1

m

mX

i=1

log
⇣
1� e

�bia
>
i x
⌘
+

µ

2
kxk

2
2

)
.

To make problem and data balanced, we normalise each data point and get kaik2 = 1 for every
i 2 [1, . . . ,m]. Parameters of all methods are fine-tuned to get the fastest convergence. Note, that it
is possible that for bigger L method converges faster in practice.

In Figure 4, we consider classification task on dataset w8a [Chang and Lin, 2011]. Number of features
for every data sample is d = 300, m = 49749. We take starting point x0

def
= 8[1, 1, . . . , 1]> and

µ = 10�3. Fine-tuned values are Lest = 0.6, L2 = 0.0001, ↵ = 0.5. We can see that all methods are
very close. Damped Newton has rather big step 0.5, so it is fast at the beginning but still struggle at
the end because of the fixed step-size.

In Figure 5, we consider binary classification task on dataset MNIST [Deng, 2012] (one class contains
images with 0, another one — all others). Number of features for every data sample is d = 282 = 784,
m = 60000. We take starting point x0

def
= 3 · [1, 1, . . . , 1]> (such that Newton method started from

this point diverges) and µ = 10�3. Fine-tuned values are Lest = 10, L2 = 0.0003 for Globally Reg.
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Table 2: Convergence guarantees under different versions of convexity and smoothness assumptions. For
simplicity, we disregard dependence on bounded level set assumptions. All compared assumptions are considered
for 8x, h 2 Rd. We highlight the best know rates in blue.

Algorithm
Strong

convexity
constant

Smoothness assumption
Global

convergence
rate

Local (1)

convergence
exponent

Reference

Damped Newton B 0(2) self-concordance (Definition 1) O

⇣
k� 1

2

⌘
2 Nesterov [2018, (5.1.28)]

Damped Newton C 0(2) self-concordance (Definition 1) 7 2 Nesterov [2018, (5.2.1)C ]

Cubic Newton µ Lipschitz-continuous Hessian (4) O
�
k�2� 2

Nesterov and Polyak [2006]
Doikov and Nesterov [2022a]

Cubic Newton µ-star-convex Lipschitz-continuous Hessian (4) O
�
k�2� 3

2 Nesterov and Polyak [2006]

Cubic Newton non-convex,
bounded below Lipschitz-continuous Hessian (4) O

⇣
k� 2

3

⌘
7 Nesterov and Polyak [2006]

Globally Reg. Newton µ Lipschitz-continuous Hessian (4) O
�
k�2� 3

2
Mishchenko [4/2021]

Doikov and Nesterov [12/2021]

Globally Reg. Newton 0 Lipschitz-continuous Hessian (4) O
�
k�2� 7

Mishchenko [4/2021]
Doikov and Nesterov [12/2021]

AIC Newton 0(2) semi-strong self-concordance (Definition 3) O
�
k�2� 2 Theorems 2, 3

AIC Newton µ f(x + h) � f(x)  hrf(x), hi + 1
2khk

2
x +

Lalt
6 khk3

x O
�
k�2� 2 Theorems 4, 3 (3)

AIC Newton 0 f(x + h) � f(x)  hrf(x), hi + 1
2khk

2
x +

Lalt
6 khk3

x O
�
k�2� (4) 7 Theorem 4

(1) For a Lyapunov function � and a constant c > 0, we report exponent � > 1 of �(xk+1)  c�(xk)
� . Mark 7 means that such �, c,� are not known.

(2) Self-concordance implies strong convexity locally.
(3) Under strong convexity, we can prove local convergence analogically to Theorem 3.
(4) Convergence to a neighborhood of the solution

Figure 4: Comparison of regularized Newton methods and Damped Newton method for logistic
regression task on w8a dataset.

Newton and Cubic Newton, ↵ = 0.1. We see that AICN has the same iteration convergence as Cubic
Newton but faster by time.

Figure 6: Comparison of regularized Newton methods and Damped Newton method for logistic
regression task on MNIST dataset (10 models for i vs. other digits problems with argmax aggregation).

In Figure 6, we present the results for multi-class classification problem on dataset MNIST. We train
10 different models in parallel, each one for the problem of binary classification distinguishing i-th
class out of others. Loss on current iteration for the plots is defined as average loss of 10 models.
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Figure 5: Comparison of regularized Newton methods and Damped Newton method for logistic
regression task on MNIST dataset (0 vs. all other digits).

Prediction is determined by the maximum “probability” predicted by i-th model. The estimates for
the parameters of methods are the same as in previous experiment.We see that AICN is the same
speed as Cubic Newton and Globally Reg. Newton and much faster than Damped Newton in both
value of function and gradient norm.

For normalized problem, we can analytically compute an upper bound for theoretical constant L2

kr
3
f(x)k2  L2.

One can show that L2 =
p
3

18 ' 0.1. In our experiments, we show that Cubic Newton can work with
much lower constants: madelon - 0.015, w8a - 0.00003, a9a - 0.000215. It means that theoretical
approximation of the constants can be bad and we have to tune them for all methods.

B Proofs of Results Appearing in the Paper

In this section, we present proofs of the lemmas and theorems from the main paper’s body.

B.1 Proofs regarding affine invariance (Section 3.1)

Proof of Lemma 1 (Lemma 5.1.1, Nesterov [2018]). [Newton method is affine-invariant]
Let yk = A

�1
xk for some k � 0 and ↵k be affine-invariant. Firstly,

yk+1 = yk � ↵k

⇥
r

2
�(yk)

⇤�1
r�(yk) = yk � ↵k

⇥
A

>
r

2
f(Ayk)A

⇤�1
A

>
rf(Ayk)

= A
�1

xk � ↵kA
�1
⇥
r

2
f(xk)A

⇤�1
rf(xk) = A

�1
xk+1.

Secondly note that krf(x)k⇤x is affine invariant, as

krg(yk)k
⇤

yk
= rg(yk)

>
r

2
g(yk)

�1
rg(yk) = rf(xk)

>
r

2
f(xk)

�1
rf(xk) = krf(xk)k

⇤

xk
.

Consequently, stepsizes ↵k from AICN (11) and Nesterov [2018] are all affine-invariant. Hence these
damped Newton algorithms are affine-invariant.

Proof of Lemma 2. [Upper bound from from semi-strong self-concordance]
We rewrite function value approximation from the left hand side as

f(y)� f(x)�rf(x)[y � x] =

1Z

0

(rf(x+ ⌧(y � x))�rf(x)) [y � x]d⌧

=

1Z

0

⌧Z

0

�
r

2
f(x+ �(y � x))

�
[y � x]2d�d⌧.
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Taking its norm, we can finish the proof as����f(y)� f(x)�rf(x)[y � x]�
1

2
r

2
f(x)[y � x]2

����

=

������

1Z

0

⌧Z

0

�
r

2
f(x+ �(y � x))�r

2
f(x)

�
[y � x]2d�d⌧

������



1Z

0

⌧Z

0

���r2
f(x+ �(y � x))�r

2
f(x)

�
[y � x]2

�� d�d⌧

(14)


1Z

0

⌧Z

0

Lsemi�ky � xk
3
xd�d⌧ =

Lsemi

6
ky � xk

3
x.

Proof of Theorem 1. [Minimizer of the model (18) has form of damped Newton method (11)]
Proof is straightforward. To show that AICN model update minimizes Sf,Lest(x), we compute the
gradient of Sf,Lest(x) at next iterate of AICN. Showing that it is 0 concludes xk+1 = Sf,Lest(xk).

For simplicity, denote h
def
= y � x. We can simplify the implicit update step Sf,Lest(x)

Sf,Lest(x) = argmin
y2E

⇢
f(x) + hrf(x), y � xi+

1

2

⌦
r

2
f(x)(y � x), y � x

↵
+

Lest

6
ky � xk

3
x

�

(29)

= x+ argmin
h2E

⇢
hrf(x), hi+

1

2
khk

2
x.+

Lest

6
khk

3
x

�
. (30)

Taking gradient of the subproblem with respect to h,

rh

✓
hrf(x), hi+

1

2
khk

2
x +

Lest

6
khk

3
x

◆
= rf(x) +r

2
f(x)h+

Lest

2
r

2
f(x)hkhkx. (31)

and setting h according to AICN, h = �↵r
2
f(x)�1

rf(x), leads to

rf(x)� ↵rf(x)�
Lest

2
↵
2
rf(x)

��r2
f(x)�1

rf(x)
��
x
= �rf(x)

✓
�1 + ↵+

Lest

2
↵
2
krf(x)k⇤x

◆
.

(32)

Finally, AICN stepsize ↵ (11) is chosen as a root of quadratic function
Lest

2
krf(x)k⇤x↵

2 + ↵� 1 = 0, (33)

hence the gradient of the (17) at next iterate of AICN is 0. This concludes the proof.

B.2 Proof of global convergence (Section 4.1)

Proof of Lemma 3. [One step decrease globally under semi-strong self-concordance]
This claim follows directly from Lemma 2.

f(Sf,Lest(x))
(16)
 f(x) + hrf(x), Sf,Lest(x)� xi+

1

2

⌦
r

2
f(x)(Sf,Lest(x)� x), Sf,Lest(x)� x

↵

+
Lest

6
kSf,Lest(x)� xk

3
x

(17)
= min

y2E

⇢
f(x) + hrf(x), y � xi+

1

2

⌦
r

2
f(x)(y � x), y � x

↵
+

Lest

6
ky � xk

3
x

�

(15)
 min

y2E

�
f(y) + Lest

3 ky � xk
3
x

 
.
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Proof of Theorem 2. [Global convergence under semi-strong self-concordance]
We start by taking Lemma 3 for any t � 0, we obtain

f(xt+1)
(22)
 min

y2E

�
f(y) + Lest

3 ky � xtk
3
xt

 

(23)
 min

⌘t2[0,1]

�
f(xt + ⌘t(x⇤ � xt)) +

Lest
3 ⌘

3
tD

3
 

 min
⌘t2[0,1]

�
(1� ⌘t)f(xt) + ⌘tf(x⇤) +

Lest
3 ⌘

3
tD

3
 
,

where for the second line we take y = xt + ⌘t(x⇤ � xt) and use convexity of f for the third line.
Therefore, subtracting f(x⇤) from both sides, we obtain, for any ⌘t 2 [0, 1]

f(xt+1)� f(x⇤)  (1� ⌘t)(f(xt)� f(x⇤)) +
Lest
3 ⌘

3
tD

3 (34)

Let us define the sequence {At}t�0 as follows:

At
def
=

8
><

>:

1, t = 0
tY

i=1

(1� ⌘i), t � 1.
(35)

Then At = (1� ⌘t)At�1. Also, we define ⌘0
def
= 1. Dividing both sides of (34) by At, we get

1

At
(f(xt+1)� f(x⇤)) 

1

At
(1� ⌘t)(f(xt)� f(x⇤)) +

⌘
3
t

At

LestD
3

3

=
1

At�1
(f(xt)� f(x⇤)) +

⌘
3
t

At

LestD
3

3
. (36)

Summing both sides of inequality (36) for t = 0, . . . , k , we obtain

1

Ak
(f(xk+1)� f(x⇤)) 

(1� ⌘0)

A0
(f(x0)� f(x⇤)) +

LestD
3

3

kX

t=0

⌘
3
t

At

⌘0=1
=

LestD
3

3

kX

t=0

⌘
3
t

At
.

As a result,

f(xk+1)� f(x⇤) 
LestD

3

3

kX

t=0

Ak⌘
3
t

At
p (37)

To finish the proof, we need to choose ⌘t so that
Pk

t=0
Ak⌘

3
t

At
= O(k�2). This holds for11

⌘t
def
=

3

t+ 3
, t � 0, (38)

as stated in the next lemma.

Lemma 6 (Properties of ⌘t and At, [from (2.23), Ghadimi et al. [2017]). ] For choice ⌘t as (38) and
At as (35) we have

At =
6

(t+ 1)(t+ 2)(t+ 3)
, (39)

kX

t=1

⌘
3
t

At
=

kX

t=1

9(t+ 1)(t+ 2)

2(t+ 3)2


9k

2
. (40)

11Note that formula of ⌘0 coincides with its definition above.
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Plugging Lemma 6 inequalities to (37) concludes the proof of the Theorem 2,

f(xk+1)� f(x⇤) 
6

(k + 1)(k + 2)(k + 3)

LestD
3

3

9k

2


9LestD
3

k2


9LestR
3

k2
.

For readers convenience, we include proof of Lemma 6 in Appendix B.4.

B.3 Proofs of local convergence (Section 4.2)

Proof of Lemma 4. [Strong convexity / Bound on inverse Hessian norm change]
Claim follows from Theorem 5.1.7 of Nesterov [2018], which states that for Lsc-self-concordant
function, hence also for Lsemi-semi-strongly self-concordant function f and xk, xk+1 such that
Lsemi
2 kxk+1 � xkkxk

< 1 holds
✓
1�

Lsemi

2
kxk+1 � xkkxk

◆2

r
2
f(xk+1) � r

2
f(xk) �

✓
1�

Lsemi

2
kxk+1 � xkkxk

◆�2

r
2
f(xk+1).

Let c be some constant, 0 < c < 1. Then for updates of AICN in the neighborhood
⇢
xk : c �

Lest

2
↵kkrf(xk)k

⇤

xk

�

holds
r

2
f(xk+1)

�1
� (1� c)�2

r
2
f(xk)

�1
. (41)

In order to prove Lemma 5, we first use semi-strong self-concordance to prove a key inequality – a
version of Hessian smoothness, bounding gradient approximation by difference of points.
Lemma 7. For semi-strongly self-concordant function f holds

��rf(y)�rf(x)�r
2
f(x)[y � x]

��⇤
x


Lsemi

2
ky � xk

2
x. (42)

Proof of Lemma 7. [Local smoothness assumption follows from semi-strong self-concordance]
We rewrite gradient approximation on the left hand side as

rf(y)�rf(x)�r
2
f(x)[y � x] =

1Z

0

�
r

2
f(x+ ⌧(y � x))�r

2
f(x)

�
[y � x]d⌧.

Now, we can bound it in dual norm as

��rf(y)�rf(x)�r
2
f(x)[y � x]

��⇤
x
=

������

1Z

0

�
r

2
f(x+ ⌧(y � x))�r

2
f(x)

�
[y � x]d⌧

������

⇤

x



1Z

0

���r2
f(x+ ⌧(y � x))�r

2
f(x)

�
[y � x]

��⇤
x
d⌧



1Z

0

��r2
f(x+ ⌧(y � x))�r

2
f(x)

��
op

ky � xkxd⌧

(14)


1Z

0

Lsemi⌧ky � xk
2
xd⌧ =

Lsemi

2
ky � xk

2
x,

where in second inequality we used property of operator norm (10).

21



Finally, we are ready to prove one step decrease and the convergence theorem.

Proof of Lemma 5. [One step decrease locally under semi-strong self-concordance]
We bound norm of rf(xk+1) using basic norm manipulation and triangle inequality as

krf(xk+1)k
⇤

xk

(11)
=
��rf(xk+1)�r

2
f(xk)(xk+1 � xk)� ↵krf(xk)

��⇤
xk

=
��rf(xk+1)�rf(xk)�r

2
f(xk)(xk+1 � xk) + (1� ↵k)rf(xk)

��⇤
xk


��rf(xk+1)�rf(xk)�r

2
f(xk)(xk+1 � xk)

��⇤
xk

+ (1� ↵k)krf(xk)k
⇤

xk

Using Lemma 7, we can continue

krf(xk+1)k
⇤

xk

��rf(xk+1)�rf(xk)�r

2
f(xk)(xk+1 � xk)

��⇤
xk

+ (1� ↵k)krf(xk)k
⇤

xk

(42)


Lsemi

2
kxk+1 � xkk

2
xk

+ (1� ↵k)krf(xk)k
⇤

xk

(11)


Lsemi↵
2
k

2
krf(xk)k

⇤2
xk

+ (1� ↵k)krf(xk)k
⇤

xk


Lest↵

2
k

2
krf(xk)k

⇤2
xk

+ (1� ↵k)krf(xk)k
⇤

xk

=

✓
Lest↵

2
k

2
krf(xk)k

⇤

xk
� ↵k + 1

◆
krf(xk)k

⇤

xk

(33)
= Lest↵

2
kkrf(xk)k

⇤2
xk

We use Lemma 4 to shift matrix norms.

krf(xk+1)k
⇤

xk+1

(41)


1

1� c
krf(xk+1)k

⇤

xk

(26)


Lest↵
2
k

1� c
krf(xk)k

⇤2
xk

(43)

<
Lest↵k

1� c
krf(xk)k

⇤2
xk
.

We obtain neighborhood of decrease by solving Lest↵k
1�c krf(xk)k

⇤

xk
 1 in krf(xk)k

⇤

xk
.

Proof of Theorem 3. [Local convergence under semi-strong self-concordance]

Let c = 1
3 , then for krf(x0)k

⇤

x0
<

8
9Lest

, we have Lest↵0
1�c krf(x0)k

⇤

x0
 1 and c �

Lest
2 ↵0krf(x0)k

⇤

x0
. Then from Lemma 5 we have guaranteed the decrease of gradients kgk+1k

⇤

xk+1


kgkk
⇤

xk
<

8
9Lest

. We finish proof by chaining (43) and simplifying with ↵i  1.

krf(xk)k
⇤

xk

�
3
2Lest

�k
 

kY

i=0

↵
2
i

!
�
krf(x0)k

⇤

x0

�2k
. (44)

B.4 Technical lemmas

Lemma 8 (Arithmetic mean – Geometric mean inequality). For c � 0 we have

1 + c =
1 + (1 + 2c)

2

AG
�

p
1 + 2c. (45)

Lemma 9 (Jensen for square root). Function f(x) =
p
x is concave, hence for c � 0 we have

1
p
2
(
p
c+ 1) 

p
c+ 1 

p
c+ 1. (46)
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Lemma 6 [(2.23) from [Ghadimi et al., 2017]] For

⌘t
def
=

3

t+ 3
, t � 0, and At

def
=

8
<

:

1, t = 0
tQ

i=1
(1� ⌘i), t � 1

we have

At =
6

(t+ 1)(t+ 2)(t+ 3)
and

kX

t=1

⌘
3
k

At
=

kX

t=1

9(t+ 1)(t+ 2)

2(t+ 3)2


3k

2
. (47)

Proof of Lemma 6. We have

Ak =
kY

t=1

(1� ⌘t) =
kY

t=1

t

t+ 3
=

k! 3!

(k + 3)!
= 3!

3Y

j=1

1

k + j
, (48)

which gives,
kX

t=0

Ak⌘
3
t

At
=

TX

t=0

33

(t+ 3)3

3Y

j=1

t+ j

k + j
= 33

3Y

j=1

1

k + j

kX

t=0

Q3
j=1(t+ j)

(t+ 3)3
. (49)

The sum is non-decreasing. Indeed, we have

1  1 +
1

t+ 3
 1 +

1

t+ j
, 8j 2 {1, 2, 3},

and, hence, for all j 2 {1, 2, 3},
⇣
1 + 1

t+3

⌘3


3Y

j=1

✓
1 +

1

t+ j

◆

,

⇣
t+4
t+3

⌘3


3Y

j=1

t+ j + 1

t+ j

,

Q3
j=1(t+j)

(t+3)3 

Q3
j=1(t+ 1 + j)

(t+ 1 + 3)3
.

Thus, we have shown that the summands in the RHS of (49) are growing, whence we get the next
upper bound for the sum

kX

t=0

Ak⌘
3
t

At
= 33

3Y

j=1

1

k + j

kX

t=0

Q3
j=1(t+ j)

(t+ 3)3

 33
3Y

j=1

1

k + j
· (k + 1) ·

Q3
j=1(k + j)

(k + 3)3


(k + 1)33

(k + 3)3
 O

✓
1

k2

◆
.

(50)

C Global Convergence with weaker assumptions on Self-Concordance

We can prove global convergence to a neighborhood of the solution without using self-concordance
directly, just by utilizing the following assumptions:

Assumption 2 (Convexity). For function f and any x, h 2 E holds

f(x+ h) � f(x) + hrf(x), hi (51)

Assumption 3 (Hessian smoothness, in Hessian norms). Objective function f satisfy

f(x+ h)� f(x)  hrf(x), hi+ 1
2khk

2
x + Lalt

6 khk
3
x, 8x, h 2 E. (52)
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Lemma 10 (One step decrease globally). Let Assumption 3 hold and let Lest � Lalt. Iterates of
AICN eq. (11) yield function value decrease,

f(xk+1)� f(xk) 

8
>>><

>>>:

�
1

2
p
Lest

krf(xk)k
⇤
3
2

xk if krf(xk)k
⇤

xk
�

4
Lest

�
1
4krf(xk)k

⇤2
xk

if krf(xk)k
⇤

xk


4
Lest

�

p
c1

2
p
Lest

krf(xk)k
⇤
3
2

xk if krf(xk)k
⇤

xk
�

4c1
Lest

and 0 < c1  1

. (53)

Decrease of Lemma 10 is tight up to a constant factor. As far as krf(xk)k
⇤

xk


4c1
Lest

, we have
functional value decrease as the first line of (53), which leads to O

�
k
�2
�

convergence rate.

We can obtain fast convergence to only neighborhood of solution, because close to the solution,
gradient norm is sufficiently small krf(xk)k

⇤

xk


4c1
Lest

and we get functional value decrease from
second line of (53). However, this convergence is slower then O

�
k
�2
�

for krf(xk)k
⇤

xk
⇡ 0 and it

is insufficient for O(k�2) rate.

Note that third line generalizes first line; we use it to remove a constant factor gap from the
neighborhood of fast local convergence.

Theorem 4 (Global convergence). Let Assumptions 2, 3, 1 hold, and constants c1, Lest satisfy
0 < c1  1, Lest � Lalt. For k until krf(xk)k

⇤

xk
�

4c1
Lest

, AICN has global quadratic decrease,

f(xk)� f
⇤
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3

k2

⌘
.

Note that the global quadratic decrease of AICN is only to a neighborhood of the solution. However,
once AICN gets to this neighborhood, it converges using (faster) local convergence rate (Theorem 3).

Proofs of global convergence without self-concordance

Throughout the rest of proofs, we simplify expressions by denoting terms

gk
def
= rf(xk) and hk

def
= xk+1 � xk , (54)

for which holds
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and also Gk
def
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.

Proof of Lemma 10. We can use Assumption 3 to obtain
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We can simplify bracket in eq. (57) as
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Also, we can simplify the other term in eq. (57) as
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and plug these two result into eq. (57) to obtain first two lines of (53). Third line can be obtained
from the first line of (53). For c1 so that 0 < c1  1 and xk satisfying 4c1
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Proof of Theorem 4. As a consequence of convexity (Assumption 2) and bounded level sets
(Assumption 1), we have

f(xk)� f
⇤
 hgk, xk � x⇤i =

D
r

2
f(xk)

�1/2
gk,r

2
f(xk)

1/2(xk � x⇤)
E
 kgkk

⇤

xk
kxk � x⇤kxk

 Dkgkk
⇤

xk
. (58)

Plugging it into eq. (53) (which holds under Assumption 3) and noting that it yields
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Because �k+1 � 0, we have that �k  1.

Proposition 1 of Mishchenko [4/2021] shows that the sequence {�k}
1
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