
Supplementary Material

This document contains supplementary material for the submission titled "A SIMILARITY-
AGNOSTIC REINFORCEMENT LEARNING APPROACH FOR LEAD OPTIMIZATION".

1. OFFLINE DATASET GENERATION

We generate an offline RL dataset using trajectories with high returns to overcome the sparse
reward problem in GCRL. However, given an arbitrary source-target pair, finding if it has high
return requires us to know whether there exists a path between the two molecules, which is
non-trivial. Instead, if some policy is used to rollout a trajectory, by the virtue of the creation of
the trajectory, there exists a path from its starting molecule to the final molecule. The trajectory
would therefore have a high return, making it a valid trajectory for the dataset. Following this
idea, we select a starting molecule and use a uniform random policy to perform rollouts for n
steps to create an n-step offline RL dataset. The steps to generate samples for the dataset are as
follows:

Start by selecting a source molecule and perform a rollout for n steps using a uniform random
policy. This generates a trajectory ⟨m0, rr0, m1, rr1, ..., mn−1, rrn−1, mn⟩, where mt represents the
molecule at step t and rrt is the reaction rule applied on mt to create mt+1. Since every mt has
a path to mn (t ̸= n), every sub-trajectory ⟨mt, rrt, mt+1, rrt+1, ..., mn−1, rrn−1, mn⟩, is also a valid
trajectory.

Therefore, for each t ∈ [0, n − 1], we save ⟨st, at, st+1, r⟩ as the state, action, next state and
reward; where the state is a tuple containing the molecule at that state and the target molecule i.e.
st = (mt, mn), action at = rrt and the reward r = R(st, at, st+1) is calculated as described in the
section 4.6 of the main manuscript. This constructs our offline RL dataset.

2. TRAINING SETUP

Here we discuss the training details such architecture and hyperparameters for the baseline and
LOGRL models.

Common settings
We use a Graph Isomorphism Network(GIN) [1] for molecular embeddings and an actor-critic
model for learning the policy. The GIN model is pretrained using TorchDrug [2] on Attribute
Masking using ZINC dataset [3] with the following parameters: hidden_dims=[128, 128, 128, 128,
128], batch_norm=True, readout="mean", mask_rate=0.15, lr=0.001, batch_size=256, epochs=50. It
is allowed to fine-tune during the actor-critic training.

Actor-critic model with the following architecture are used for training: actor with 3 hidden
layers each of 256 dimensions with batch_norm and ReLU activation after every layer except the
final layer. The critic contains 2 hidden layers each of 256 dimensions with batch_norm and ReLU
activation after every layer except the final layer. Adam was used as the optimizer with beta1
and beta2 as 0.9 and 0.999.

Experiment-specific settings
For LOGRL experiments, we use the following hyperparameters for training: learning rate(lr) for
actor = 0.0003, lr for critic = 0.001, epochs = 50, batch size = 128, and l = 10.

For the baselines, we trained using PPO [4] with using the following hyperparameters: lr
= 0.0003, total timesteps = 107, batch size = 128, update_epochs=2, clip_coeff=0.2, ent_coeff=0,
vf_coeff=0.5.

3. ALGORITHMS

The training algorithm (Algorithm 1) is broadly divided into following 3 steps:

1. Collect positive batch: In this step, a batch of transitions is sampled from the offline RL
dataset.

2. Collect negative batch: Here, the states from the positive batch are passed through the actor
to obtain predictions. These predictions are used to generate a negative batch using the
strategy described in section 4.5 of the main manuscript.



3. Model update: The positive and negative batches are passed through the actor and critic
models to calculate their respective losses and backpropagate to update their parameters.

The generation algorithm (Algorithm 2) is broadly divided into the following 3 steps:

1. Filter actions using actor: Get the closest actions according to Euclidean distance from the
actor’s prediction.

2. Filter actions using critic: Get the actions with highest Q values according to the critic.

3. Apply: Apply the filtered actions on the current source to get the next list of sources (or final
candidates if last iteration).

4. EXAMPLE MOLECULES

Figure S1 shows examples of molecules generated by the LOGRL model for two of the five trypsin
inhibitors: Camostat and NAPAMP. The three molecules with highest QED and similarity to
target greater than 0.6 are shown, along with additional properties for logP and SA score [? ]. The
QED values are higher than the target molecule as expected, but all the molecules also ended
up having a higher logP than the target molecule, even without us applying a filter for it in our
search. Though we do not explore comparison with multi-property optimization works in the
scope of this work, the results shown induce confidence in our model to be able to generate lead
candidates that satisfy multiple properties. However, we leave this direction of thought for future
work. Additionally, we also point out that all the suggested molecules have good SA scores. This
is likely due to our design where we ensure the generated molecules follow a system mimicking
the actual creation of drugs.

Fig. S1. Example of molecules generated by LOGRL for two of the trypsin inhibitors: Camo-
stat and NAPAMP. The three molecules with the highest QED are reported with constraint
sim(target) > 0.6 along with their logP and SA values.

5. MINING REACTION RULES

Here, we describe our mining procedure to extract reaction rules from the USPTO-MIT dataset
[5]. First, for each reaction, we created a one-to-one map between each reactant and the product

2



it transformed into, using the closest molecular weight. Next, we removed duplicates to get
unique pairs of reactant-product. Next, we extracted the reaction centres and signatures by
subtracting the maximum common substructure from both the reactant and product. Finally, we
only preserved those reaction rules where there was a single reaction center as the rules with
multiple centers were a very small fraction and often resulted in erroneous cases.

REFERENCES

1. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” arXiv
preprint arXiv:1810.00826 (2018).

2. Z. Zhu, C. Shi, Z. Zhang, et al., “Torchdrug: A powerful and flexible machine learning
platform for drug discovery,” arXiv preprint arXiv:2202.08320 (2022).

3. J. J. Irwin and B. K. Shoichet, “Zinc- a free database of commercially available compounds
for virtual screening,” J. chemical information modeling 45, 177–182 (2005).

4. J. Schulman, F. Wolski, P. Dhariwal, et al., “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347 (2017).

5. W. Jin, C. Coley, R. Barzilay, and T. Jaakkola, “Predicting organic reaction outcomes with
weisfeiler-lehman network,” Adv. neural information processing systems 30 (2017).

3


	Offline Dataset generation
	Training Setup
	Algorithms
	Example molecules
	Mining Reaction Rules

