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A Related work1

Group Fairness. Group fairness in machine learning was first studied in [HPS16] and [ZVGRG17],2

where they required the model to perform equally well over all groups. Later, [HSNL18] studied3

another type of group fairness called Rawlsian max-min fairness [Raw01], which does not require4

equal performance but rather requires high performance on the worst-off group. The subpopulation5

shift problem we study in this paper is most closely related to Rawlsian max-min fairness. A large6

body of recent work have studied how to improve this worst-group performance [DN18, OSHL19,7

LHC+21, ZDKR21]. Recent work however observe that these approaches, when used with modern8

overparameterized models, easily overfit [SKHL20, SRKL20]. Apart from group fairness, there are9

also other notions of fairness, such as individual fairness [DHP+12, ZWS+13] and counterfactual10

fairness [KLRS17], which we do not study in this work.11

Implicit Bias Under the Overparameterized Setting. For overparameterized models, there could12

be many model parameters which all minimize the training loss. In such cases, it is of interest to study13

the implicit bias of specific optimization algorithms such as gradient descent i.e. to what minimizer14

the model parameters will converge to [DLL+19, AZLS19]. Our results use the NTK formulation of15

wide neural networks [JGH18], and specifically we use linearized neural networks to approximate16

such wide neural networks following [LXS+19]. There is some criticism of this line of work, e.g.17

[COB19] argued that infinitely wide neural networks fall in the “lazy training” regime and results18

might not be transferable to general neural networks. Nonetheless such wide neural networks are19

being widely studied in recent years, since they provide considerable insights into the behavior of20

more general neural networks, which are typically intractable to analyze otherwise.21

B Extension to Multi-dimensional Regression / Multi-class Classification22

In our results, we assume that f : Rd → R for simplicity, but our results can be very easily extended23

to the case where f : Rd → Rk. For most of our results, the proof consists of two major components:24

(i) The linearized neural network will converge to some point (interpolator, max-margin classifier,25

etc.); (ii) The wide fully-connected neural network can be approximated by its linearized counterpart.26

For both components, the extension is very simple and straightforward. For (i), the proof only27

relies on the smoothness of the objective function and the upper quadratic bound it entails, and28

the function is still smooth when its output becomes multi-dimensional; For (ii), we can prove that29

supt ‖f(x) − flin(x)‖2 = O(d̃−1/4) in exactly the same way. Thus, all of our results hold for30

multi-dimensional regression and multi-class classification.31

Particularly, for the multi-class cross-entropy loss, using Theorem 8 we can show that under any32

GRW satisfying Assumption 1, the direction of the weight of a linear classifier will converge to the33
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Figure 1: Experimental results of ERM, importance weighting (IW) and Group DRO (GDRO) with
the logistic loss and the polynomially-tailed loss. First row: Logistic loss; Second row: Polynomially-
tailed loss. All norms are L2 norms. θ̃ is a unit vector which is the direction of θ.

following max-margin classifier:34

θ̂MM = arg min
θ

{
min

i=1,··· ,n

[
f(xi)yi − max

y′ 6=yi
f(xi)y′

]
: ‖θ‖2 = 1

}
(20)

which is still independent of qi.35

C More Experiments36

We run ERM, importance weighting and Group DRO on the training set with 6 MNIST images which37

we used in Section 4.1 with the logistic loss and the polynomially-tailed loss (Eqn. (19), with α = 1,38

β = 0 and `left being the logistic loss shifted to make the overall loss function continuous) on this39

dataset for 10 million epochs (note that we run for much more epochs because the convergence is40

very slow). The results are shown in Figure 1. From the plots we can see that:41

• For either loss function, the training loss of each method converges to 0.42

• In contrast to the theory that the norm of the ERM model will go to infinity and all models43

will converge to the max-margin classifier, the weight of the ERM model gets stuck at some44

point, and the norms of the gaps between the normalized model weights also get stuck.45

The reason is that the training loss has got so small that it becomes zero in the floating46

number representation, so the gradient also becomes zero and the training halts due to47

limited computational precision.48

• However, we can still observe a fundamental difference between the logistic loss and the49

polynomially-tailed loss. For the logistic loss, the norm of the gap between importance50

weighting (or Group DRO) and ERM will converge to around 0.06 when the training stops,51

while for the polynomially-tailed loss, the norm will be larger than 0.22 and will keep52

growing, which shows that for the polynomially-tailed loss the normalized model weights53

do not converge to the same point.54

• For either loss, the group weights of Group DRO still empirically satisfy Assumption 1.55

D Proofs56

In this paper, for any matrixA, we will use ‖A‖2 to denote its spectral norm and ‖A‖F to denote its57

Frobenius norm.58
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D.1 Background on Smoothness59

A first-order differentiable function f over D is called L-smooth for L > 0 if60

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
L

2
‖y − x‖22 ∀x,y ∈ D (21)

which is also called the upper quadratic bound. If f is second-order differentiable and D is a convex61

set, then f is L-smooth is equivalent to62

v>∇2f(x)v ≤ L ∀‖v‖2 = 1,∀x ∈ D (22)

A classical result in convex optimization is the following:63

Theorem 10. If f(x) is convex and L-smooth with a unique finite minimizer x∗, and is minimized64

by gradient descent xt+1 = xt − η∇f(xt) starting from x0 where the learning rate η ≤ 1
L , then we65

have66

f(xT ) ≤ f(x∗) +
1

ηT
‖x0 − x∗‖22 (23)

which also implies that xT converges to x∗ as T →∞.67

D.2 Proofs for Subsection 4.168

D.2.1 Proof of Theorem 169

Using the key intuition, the weight update rule (7) implies that θ(t+1)− θ(t) ∈ span{x1, · · · ,xn} for70

all t, which further implies that θ(t) − θ(0) ∈ span{x1, · · · ,xn} for all t. By Cramer’s rule, in this71

n-dimensional subspace there exists one and only one θ∗ such that θ∗ − θ(0) ∈ span{x1, · · · ,xn}72

and 〈θ∗,xi〉 for all i. Then we have73 ∥∥∥X>(θ(t) − θ∗)
∥∥∥

2
=
∥∥∥(X>θ(t) − Y )− (X>θ∗ − Y )

∥∥∥
2
≤
∥∥∥X>θ(t) − Y

∥∥∥
2
+
∥∥X>θ∗ − Y ∥∥

2
→ 0

(24)
because

∥∥X>θ − Y ∥∥2

2
= 2nR̂(f(x; θ)). On the other hand, let smin be the smallest singular value74

of X . Since X is full-rank, smin > 0, and
∥∥X>(θ(t) − θ∗)

∥∥
2
≥ smin

∥∥θ(t) − θ∗
∥∥

2
. This shows75

that
∥∥θ(t) − θ∗

∥∥
2
→ 0. Thus, θ(t) converges to this unique θ∗.76

D.2.2 Proof of Theorem 277

To help our readers understand the proof more easily, we will first prove the result for static GRW78

where q(t)
i = qi for all t, and then we will prove the result for dynamic GRW that satisfy q(t)

i → qi as79

t→∞.80

Static GRW. We first prove the result for all static GRW such that mini qi = q∗ > 0.81

We will use smoothness introduce in Appendix D.1. Denote A =
∑n
i=1 ‖xi‖

2
2. The empirical risk of82

the linear model f(x) = 〈θ,x〉 is83

F (θ) =

n∑
i=1

qi(x
>
i θ − yi)2 (25)

whose Hessian is84

∇2
θF (θ) = 2

n∑
i=1

qixix
>
i (26)

So for any unit vector v ∈ Rd, we have (since qi ∈ [0, 1])85

v>∇2
θF (θ)v = 2

n∑
i=1

qi(x
>
i v)2 ≤ 2

n∑
i=1

qi ‖xi‖22 ≤ 2A (27)

3



which implies that F (θ) is 2A-smooth. Thus, we have the following upper quadratic bound: for any86

θ1, θ2 ∈ Rd,87

F (θ2) ≤ F (θ1) + 〈∇θF (θ1), θ2 − θ1〉+A ‖θ2 − θ1‖22 (28)

Denote g(θ(t)) = (X>θ(t) − Y ) ∈ Rn. We can see that
∥∥√Qg(θ(t))

∥∥2

2
= F (θ(t)), where where88 √

Q = diag(
√
q1, · · · ,

√
qn). Thus, ∇F (θ(t)) = 2XQg(θ(t)). The update rule of a static GRW89

with gradient descent and the squared loss is:90

θ(t+1) = θ(t) − η
n∑
i=1

qixi(f
(t)(xi)− yi) = θ(t) − ηXQg(θ(t)) (29)

Substituting θ1 and θ2 in (28) with θ(t) and θ(t+1) yields91

F (θ(t+1)) ≤ F (θ(t))− 2ηg(θ(t))>Q>X>XQg(θ(t)) +A
∥∥∥ηXQg(θ(t))

∥∥∥2

2
(30)

Since x1, · · · ,xn are linearly independent,X>X is a positive definite matrix. Denote the smallest92

eigenvalue ofX>X by λmin > 0. And
∥∥Qg(θ(t))

∥∥
2
≥
√
q∗
∥∥g(θ(t))

∥∥
2

=
√
q∗F (θ(t)), so we have93

g(θ(t))>Q>X>XQg(θ(t)) ≥ q∗λminF (θ(t)). Thus,94

F (θ(t+1)) ≤ F (θ(t))− 2ηq∗λminF (θ(t)) +Aη2
∥∥∥X√Q∥∥∥2

2

∥∥∥√Qg(θ(t))
∥∥∥2

2

≤ F (θ(t))− 2ηq∗λminF (θ(t)) +Aη2
∥∥∥X√Q∥∥∥2

F
F (θ(t))

≤ F (θ(t))− 2ηq∗λminF (θ(t)) +Aη2 ‖X‖2F F (θ(t))

= (1− 2ηq∗λmin +A2η2)F (θ(t))

(31)

Let η0 = q∗λmin

A2 . For any η ≤ η0, we have F (θ(t+1)) ≤ (1 − ηq∗λmin)F (θ(t)) for all t, which95

implies that limt→∞ F (θ(t)) = 0. This implies that the empirical training risk must converge to 0.96

Dynamic GRW. Now we prove the result for all dynamic GRW satisfying Assumption 1. By97

Assumption 1, for any ε > 0, there exists tε such that for all t ≥ tε and all i,98

q
(t)
i ∈ (qi − ε, qi + ε) (32)

This is because for all i, there exists ti such that for all t ≥ ti, q(t)
i ∈ (qi − ε, qi + ε). Then, we can99

define tε = max{t1, · · · , tn}. Denote the largest and smallest eigenvalues of X>X by λmax and100

λmin, and becauseX is full-rank, we have λmin > 0. Define ε = min{ q
∗

3 ,
(q∗λmin)2

12λmax 2 }, and then tε is101

also fixed.102

We still denote Q = diag(q1, · · · , qn). When t ≥ tε, the update rule of a dynamic GRW with103

gradient descent and the squared loss is:104

θ(t+1) = θ(t) − ηXQ(t)
ε (X>θ(t) − Y ) (33)

whereQ(t)
ε = Q(t), and we use the subscript ε to indicate that

∥∥∥Q(t)
ε −Q

∥∥∥
2
< ε. Then, note that we105

can rewriteQ(t)
ε asQ(t)

ε =

√
Q

(t)
3ε ·
√
Q as long as ε ≤ q∗/3. This is because qi+ ε ≤

√
(qi + 3ε)qi106

and qi − ε ≥
√

(qi − 3ε)qi for all ε ≤ qi/3, and qi ≥ q∗. Thus, we have107

θ(t+1) = θ(t) − ηX
√
Q

(t)
3ε

√
Qg(θ(t)) whereQ(t)

ε =

√
Q

(t)
3ε ·

√
Q (34)

Again, substituting θ1 and θ2 in (28) with θ(t) and θ(t+1) yields108

F (θ(t+1)) ≤ F (θ(t))− 2ηg(θ(t))>Q>X>X

√
Q

(t)
3ε

√
Qg(θ(t)) +A

∥∥∥∥ηX√Q(t)
3ε

√
Qg(θ(t))

∥∥∥∥2

2
(35)
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Then, note that109 ∣∣∣∣g(θ(t))>Q>X>X

(√
Q

(t)
3ε −

√
Q

)√
Qg(θ(t))

∣∣∣∣
≤
∥∥∥∥√Q>X>X (√

Q
(t)
3ε −

√
Q

)∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥2

2

≤
∥∥∥√Q∥∥∥

2

∥∥X>X∥∥
2

∥∥∥∥√Q(t)
3ε −

√
Q

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥2

2

≤λmax
√

3εF (θ(t))

(36)

where the last step comes from the following fact: for all ε < qi/3,110 √
qi + 3ε−√qi ≤

√
3ε and

√
qi −

√
qi − 3ε ≤

√
3ε (37)

And as proved before, we also have111

g(θ(t))>Q>X>XQg(θ(t)) ≥ q∗λminF (θ(t)) (38)

Since ε ≤ (q∗λmin)2

12λmax 2 , we have112

g(θ(t))>Q>X>X

√
Q

(t)
3ε

√
Qg(θ(t)) ≥

(
q∗λmin − λmax

√
3ε
)
F (θ(t)) ≥ 1

2
q∗λminF (θ(t)) (39)

Thus,113

F (θ(t+1)) ≤ F (θ(t))− ηq∗λminF (θ(t)) +Aη2

∥∥∥∥X√Q(t)
3ε

∥∥∥∥2

2

∥∥∥√Qg(θ(t))
∥∥∥2

2

≤ (1− ηq∗λmin +A2η2(1 + 3ε))F (θ(t))

≤ (1− ηq∗λmin + 2A2η2)F (θ(t))

(40)

for all ε ≤ 1/3. Let η0 = q∗λmin

4A2 . For any η ≤ η0, we have F (θ(t+1)) ≤ (1 − ηq∗λmin/2)F (θ(t))114

for all t ≥ tε, which implies that limt→∞ F (θ(t)) = 0. Thus, the empirical training risk converges to115

0.116

D.3 Proofs for Subsection 4.2117

D.3.1 Proof of Lemma 3118

Note that the first l layers (except the output layer) of the original NTK formulation and our new119

formulation are the same, so we still have the following proposition:120

Proposition 11 (Proposition 1 in [JGH18]). If σ is Lipschitz and dl → ∞ for l = 1, · · · , L121

sequentially, then for all l = 1, · · · , L, the distribution of a single element of hl converges in122

probability to a zero-mean Gaussian process of covariance Σl that is defined recursively by:123

Σ1(x,x′) =
1

d0
x>x′ + β2

Σl(x,x′) = Ef [σ(f(x))σ(f(x′))] + β2

(41)

where f is sampled from a zero-mean Gaussian process of covariance Σ(l−1).124

Now we show that for an infinitely wide neural network with L ≥ 1 hidden layers, Θ(0) converges in125

probability to the following non-degenerated deterministic limiting kernel126

Θ = Ef∼ΣL [σ(f(x))σ(f(x′))] + β2 (42)

Consider the output layer hL+1 = WL√
d̃
σ(hL) + βbL. We can see that for any parameter θi before127

the output layer,128

∇θihL+1 = diag(σ̇(hL))
WL>
√
dL
∇θihL = 0 (43)

5



And for WL and bL, we have129

∇WLhL+1 =
1√
dL
σ(hL) and ∇bLh

L+1 = β (44)

Then we can achieve (42) by the law of large numbers.130

D.3.2 Proof of Lemma 5131

We will use the following short-hand in the proof:132 
g(θ(t)) = f (t)(X)− Y
J(θ(t)) = ∇θf(X; θ(t)) ∈ Rp×n

Θ(t) = J(θ(t))>J(θ(t))

(45)

For any ε > 0, there exists tε such that for all t ≥ tε and all i, q(t)
i ∈ (qi − ε, qi + ε). Like what we133

have done in (34), we can rewriteQ(t) = Q
(t)
ε =

√
Q

(t)
3ε ·
√
Q, whereQ = diag(q1, · · · , qn).134

The update rule of a GRW with gradient descent and the squared loss for the wide neural network is:135

θ(t+1) = θ(t) − ηJ(θ(t))Q(t)g(θ(t)) (46)
and for t ≥ tε, it can be rewritten as136

θ(t+1) = θ(t) − ηJ(θ(t))

√
Q

(t)
3ε

[√
Qg(θ(t))

]
(47)

First, we will prove the following theorem:137

Theorem 12. There exist constants M > 0 and ε0 > 0 such that for all ε ∈ (0, ε0], η ≤ η∗ and any138

δ > 0, there exist R0 > 0, D̃ > 0 and B > 1 such that for any d̃ ≥ D̃, the following (i) and (ii)139

hold with probability at least (1− δ) over random initialization when applying gradient descent with140

learning rate η:141

(i) For all t ≤ tε, there is142 ∥∥∥g(θ(t))
∥∥∥

2
≤ BtR0 (48)

t∑
j=1

∥∥∥θ(j) − θ(j−1)
∥∥∥

2
≤ ηMR0

t∑
j=1

Bj−1 <
MBtεR0

B − 1
(49)

(ii) For all t ≥ tε, we have143 ∥∥∥√Qg(θ(t))
∥∥∥

2
≤
(

1− ηq∗λmin

3

)t−tε
BtεR0 (50)

t∑
j=tε+1

∥∥∥θ(j) − θ(j−1)
∥∥∥

2
≤ η
√

1 + 3εMBtεR0

t∑
j=tε+1

(
1− ηq∗λmin

3

)j−tε
<

3
√

1 + 3εMBtεR0

q∗λmin

(51)

Proof. The proof is based on the following lemma:144

Lemma 13 (Local Lipschitzness of the Jacobian). Under Assumption 2, there is a constant M > 0145

such that for any C0 > 0 and any δ > 0, there exists a D̃ such that: If d̃ ≥ D̃, then with probability146

at least (1− δ) over random initialization, for any x such that ‖x‖2 ≤ 1,147 

∥∥∥∇θf(x; θ)−∇θf(x; θ̃)
∥∥∥

2
≤ M

4
√
d̃

∥∥∥θ − θ̃∥∥∥
2

‖∇θf(x; θ)‖2 ≤M∥∥∥J(θ)− J(θ̃)
∥∥∥
F
≤ M

4
√
d̃

∥∥∥θ − θ̃∥∥∥
2

‖J(θ)‖F ≤M

, ∀θ, θ̃ ∈ B(θ(0), C0) (52)
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where B(θ(0), R) = {θ :
∥∥θ − θ(0)

∥∥
2
< R}.148

The proof of this lemma can be found in Appendix D.3.3. Note that for any x, f (0)(x) = βbL where149

bL is sampled from the standard Gaussian distribution. Thus, for any δ > 0, there exists a constant150

R0 such that with probability at least (1− δ/3) over random initialization,151 ∥∥∥g(θ(0))
∥∥∥

2
< R0 (53)

And by Proposition 3, there exists D2 ≥ 0 such that for any d̃ ≥ D2, with probability at least152

(1− δ/3),153 ∥∥∥Θ−Θ(0)
∥∥∥
F
≤ q∗λmin

3
(54)

Let M be the constant in Lemma 13. Let ε0 = (q∗λmin)2

108M4 . Let B = 1 + η∗M2, and C0 =154

MBtεR0

B−1 + 3
√

1+3εMBtεR0

q∗λmin . By Lemma 13, there exists D1 > 0 such that with probability at least155

(1− δ/3), for any d̃ ≥ D1, (52) is true for all θ, θ̃ ∈ B(θ(0), C0).156

By union bound, with probability at least (1− δ), (52), (53) and (54) are all true. Now we assume157

that all of them are true, and prove (48) and (49) by induction. (48) is true for t = 0 due to (53), and158

(49) is always true for t = 0. Suppose (48) and (49) are true for t, then for t+ 1 we have159 ∥∥∥θ(t+1) − θ(t)
∥∥∥

2
≤ η

∥∥∥J(θ(t))Q(t)
∥∥∥

2

∥∥∥g(θ(t))
∥∥∥

2
≤ η

∥∥∥J(θ(t))Q(t)
∥∥∥
F

∥∥∥g(θ(t))
∥∥∥

2

≤ η
∥∥∥J(θ(t))

∥∥∥
F

∥∥∥g(θ(t))
∥∥∥

2
≤MηBtR0

(55)

So (49) is also true for t+ 1. And we also have160 ∥∥∥g(θ(t+1))
∥∥∥

2
=
∥∥∥g(θ(t+1))− g(θ(t)) + g(θ(t))

∥∥∥
2

=
∥∥∥J(θ̃(t))>(θ(t+1) − θ(t)) + g(θ(t))

∥∥∥
2

=
∥∥∥−ηJ(θ̃(t))>J(θ(t))Q(t)g(θ(t)) + g(θ(t))

∥∥∥
2

≤
∥∥∥I − ηJ(θ̃(t))>J(θ(t))Q(t)

∥∥∥
2

∥∥∥g(θ(t))
∥∥∥

2

≤
(

1 +
∥∥∥ηJ(θ̃(t))>J(θ(t))Q(t)

∥∥∥
2

)∥∥∥g(θ(t))
∥∥∥

2

≤
(

1 + η
∥∥∥J(θ̃(t))

∥∥∥
F

∥∥∥J(θ(t))
∥∥∥
F

)∥∥∥g(θ(t))
∥∥∥

2

≤ (1 + η∗M2)
∥∥∥g(θ(t))

∥∥∥
2
≤ Bt+1R0

(56)

Therefore, (48) and (49) are true for all t ≤ tε, which implies that
∥∥√Qg(θ(tε))

∥∥
2
≤
∥∥g(θ(tε))

∥∥
2
≤161

BtεR0, so (50) is true for t = tε. And (51) is obviously true for t = tε. Now, let us prove (ii) by162

induction. Note that when t ≥ tε, we have the alternative update rule (47). If (50) and (51) are true163

for t, then for t+ 1, there is164

∥∥∥θ(t+1) − θ(t)
∥∥∥

2
≤ η

∥∥∥∥J(θ(t))

√
Q

(t)
3ε

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥

2
≤ η

∥∥∥∥J(θ(t))

√
Q

(t)
3ε

∥∥∥∥
F

∥∥∥√Qg(θ(t))
∥∥∥

2

≤ η
√

1 + 3ε
∥∥∥J(θ(t))

∥∥∥
F

∥∥∥√Qg(θ(t))
∥∥∥

2
≤Mη

√
1 + 3ε

(
1− ηq∗λmin

3

)t−tε
BtεR0

(57)
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So (51) is true for t+ 1. And we also have165 ∥∥∥√Qg(θ(t+1))
∥∥∥

2
=
∥∥∥√Qg(θ(t+1))−

√
Qg(θ(t)) +

√
Qg(θ(t))

∥∥∥
2

=
∥∥∥√QJ(θ̃(t))>(θ(t+1) − θ(t)) +

√
Qg(θ(t))

∥∥∥
2

=
∥∥∥−η√QJ(θ̃(t))>J(θ(t))Q(t)g(θ(t)) +

√
Qg(θ(t))

∥∥∥
2

≤
∥∥∥∥I − η√QJ(θ̃(t))>J(θ(t))

√
Q

(t)
3ε

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥

2

≤
∥∥∥∥I − η√QJ(θ̃(t))>J(θ(t))

√
Q

(t)
3ε

∥∥∥∥
2

(
1− ηq∗λmin

3

)t
R0

(58)

where θ̃(t) is some linear interpolation between θ(t) and θ(t+1). Now we prove that166 ∥∥∥∥I − η√QJ(θ̃(t))>J(θ(t))

√
Q

(t)
3ε

∥∥∥∥
2

≤ 1− ηq∗λmin

3
(59)

For any unit vector v ∈ Rn, we have167

v>(I − η
√
QΘ

√
Q)v = 1− ηv>

√
QΘ

√
Qv (60)∥∥√Qv∥∥

2
∈ [
√
q∗, 1], so for any η ≤ η∗, v>(I − η

√
QΘ
√
Q)v ∈ [0, 1− ηλminq∗], which implies168

that
∥∥I − η√QΘ

√
Q
∥∥

2
≤ 1− ηλminq∗. Thus,169

∥∥∥I − η√QJ(θ̃(t))>J(θ(t))
√
Q
∥∥∥

2

≤
∥∥∥I − η√QΘ

√
Q
∥∥∥

2
+ η

∥∥∥√Q(Θ−Θ(0))
√
Q
∥∥∥

2
+ η

∥∥∥√Q(J(θ(0))>J(θ(0))− J(θ̃(t))>J(θ(t)))
√
Q
∥∥∥

2

≤1− ηλminq∗ + η
∥∥∥√Q(Θ−Θ(0))

√
Q
∥∥∥
F

+ η
∥∥∥√Q(J(θ(0))>J(θ(0))− J(θ̃(t))>J(θ(t)))

√
Q
∥∥∥
F

≤1− ηλminq∗ + η
∥∥∥Θ−Θ(0)

∥∥∥
F

+ η
∥∥∥J(θ(0))>J(θ(0))− J(θ̃(t))>J(θ(t))

∥∥∥
F

≤1− ηλminq∗ +
ηq∗λmin

3
+
ηM2

4
√
d̃

(∥∥∥θ(t) − θ(0)
∥∥∥

2
+
∥∥∥θ̃(t) − θ(0)

∥∥∥
2

)
≤ 1− ηq∗λmin

2
(61)

for all d̃ ≥ max

{
D1, D2,

(
12M2C0

q∗λmin

)4
}

, which implies that170 ∥∥∥∥I − η√QJ(θ̃(t))>J(θ(t))

√
Q

(t)
3ε

∥∥∥∥
2

≤1− ηq∗λmin

2
+

∥∥∥∥η√QJ(θ̃(t))>J(θ(t))

(√
Q

(t)
3ε −

√
Q

)∥∥∥∥
2

≤1− ηq∗λmin

2
+ ηM2

√
3ε ≤ 1− ηq∗λmin

3
(due to (37))

(62)

for all ε ≤ ε0. Thus, (50) is also true for t+ 1. In conclusion, (50) and (51) are true with probability171

at least (1− δ) for all d̃ ≥ D̃ = max

{
D1, D2,

(
12M2C0

q∗λmin

)4
}

.172

Returning back to the proof of Lemma 5. Choose and fix an ε such that ε <173

min{ε0, 1
3

(
q∗λmin

3λmax+q∗λmin

)2

}, where ε0 is defined by Theorem 12. Then, tε is also fixed. There174

exists D̃ ≥ 0 such that for any d̃ ≥ D̃, with probability at least (1− δ), Theorem 12 and Lemma 13175

are true and176 ∥∥∥Θ−Θ(0)
∥∥∥
F
≤ q∗λmin

3
(63)
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which immediately implies that177 ∥∥∥Θ(0)
∥∥∥

2
≤ ‖Θ‖2 +

∥∥∥Θ−Θ(0)
∥∥∥
F
≤ λmax +

q∗λmin

3
(64)

We still denote B = 1 + η∗M2 and C0 = MBtεR0

B−1 + 3
√

1+3εMBtεR0

q∗λmin . Theorem 12 ensures that for178

all t, θ(t) ∈ B(θ(0), C0). Then we have179 ∥∥∥I − η√QΘ(0)
√
Q
∥∥∥

2
≤
∥∥∥I − η√QΘ

√
Q
∥∥∥

2
+ η

∥∥∥√Q(Θ−Θ(0))
√
Q
∥∥∥

2

≤ 1− ηλminq∗ +
ηq∗λmin

3
= 1− 2ηq∗λmin

3

(65)

so it follows that180 ∥∥∥∥I − η√QΘ(0)

√
Q

(t)
3ε

∥∥∥∥
2

≤
∥∥∥I − η√QΘ(0)

√
Q
∥∥∥

2
+

∥∥∥∥η√QΘ(0)

(√
Q

(t)
3ε −

√
Q

)∥∥∥∥
2

≤ 1− 2ηq∗λmin

3
+ η(λmax +

q∗λmin

3
)
√

3ε

(66)

Thus, for all ε < 1
3

(
q∗λmin

3λmax+q∗λmin

)2

, there is181 ∥∥∥∥I − η√QΘ(0)

√
Q

(t)
3ε

∥∥∥∥
2

≤ 1− ηq∗λmin

3
(67)

The update rule of the GRW for the linearized neural network is:182

θ
(t+1)
lin = θ

(t)
lin − ηJ(θ(0))Q(t)glin(θ(t)) (68)

where we use the subscript “lin” to denote the linearized neural network, and with a slight abuse of183

notion denote glin(θ(t)) = g(θ
(t)
lin ).184

First, let us consider the training dataX . Denote ∆t = glin(θ(t))− g(θ(t)). We have185 {
glin(θ(t+1))− glin(θ(t)) = −ηJ(θ(0))>J(θ(0))Q(t)glin(θ(t))

g(θ(t+1))− g(θ(t)) = −ηJ(θ̃(t))>J(θ(t))Q(t)g(θ(t))
(69)

where θ̃(t) is some linear interpolation between θ(t) and θ(t+1). Thus,186

∆t+1 −∆t =η
[
J(θ̃(t))>J(θ(t))− J(θ(0))>J(θ(0))

]
Q(t)g(θ(t))

− ηJ(θ(0))>J(θ(0))Q(t)∆t

(70)

By Lemma 13, we have187 ∥∥∥J(θ̃(t))>J(θ(t))− J(θ(0))>J(θ(0))
∥∥∥
F

≤
∥∥∥∥(J(θ̃(t))− J(θ(0))

)>
J(θ(t))

∥∥∥∥
F

+
∥∥∥J(θ(0))>

(
J(θ(t))− J(θ(0))

)∥∥∥
F

≤2M2C0d̃
−1/4

(71)

which implies that for all t < tε,188

‖∆t+1‖2 ≤
∥∥∥[I − ηJ(θ(0))>J(θ(0))Q(t)

]
∆t

∥∥∥
2

+
∥∥∥η [J(θ̃(t))>J(θ(t))− J(θ(0))>J(θ(0))

]
Q(t)g(θ(t))

∥∥∥
2

≤
∥∥∥I − ηJ(θ(0))>J(θ(0))Q(t)

∥∥∥
F
‖∆t‖2 + η

∥∥∥J(θ̃(t))>J(θ(t))− J(θ(0))>J(θ(0))
∥∥∥
F

∥∥∥g(θ(t))
∥∥∥

2

≤ (1 + ηM2) ‖∆t‖2 + 2ηM2C0B
tR0d̃

−1/4

≤ B ‖∆t‖2 + 2ηM2C0B
tR0d̃

−1/4

(72)
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Therefore, we have189

B−(t+1) ‖∆t+1‖2 ≤ B
−t ‖∆t‖2 + 2ηM2C0B

−1R0d̃
−1/4 (73)

Since ∆0 = 0, it follows that for all t ≤ tε,190

‖∆t‖2 ≤ 2tηM2C0B
t−1R0d̃

−1/4 (74)

and particularly we have191 ∥∥∥√Q∆tε

∥∥∥
2
≤ ‖∆tε‖2 ≤ 2tεηM

2C0B
tε−1R0d̃

−1/4 (75)

For t ≥ tε, we have the alternative update rule (47). Thus,192

√
Q∆t+1 −

√
Q∆t =η

√
Q
[
J(θ̃(t))>J(θ(t))− J(θ(0))>J(θ(0))

]√
Q

(t)
3ε

[√
Qg(θ(t))

]
− η
√
QJ(θ(0))>J(θ(0))

√
Q

(t)
3ε

[√
Q∆t

] (76)

LetA = I − η
√
QJ(θ(0))>J(θ(0))

√
Q

(t)
3ε = I − η

√
QΘ(0)

√
Q

(t)
3ε . Then, we have193

√
Q∆t+1 = A

√
Q∆t+η

√
Q
[
J(θ̃(t))>J(θ(t))− J(θ(0))>J(θ(0))

]√
Q

(t)
3ε

(√
Qg(θ(t))

)
(77)

Let γ = 1− ηq∗λmin

3 < 1. Combining with Theorem 12 and (67), the above leads to194

∥∥∥√Q∆t+1

∥∥∥
2
≤ ‖A‖2

∥∥∥√Q∆t

∥∥∥
2

+ η

∥∥∥∥√Q [J(θ̃(t))>J(θ(t))− J(θ(0))>J(θ(0))
]√

Q
(t)
3ε

∥∥∥∥
2

∥∥∥√Qg(θ(t))
∥∥∥

2

≤ γ
∥∥∥√Q∆t

∥∥∥
2

+ η
∥∥∥J(θ̃(t))>J(θ(t))− J(θ(0))>J(θ(0))

∥∥∥
F

√
1 + 3εγt−tεBtεR0

≤ γ
∥∥∥√Q∆t

∥∥∥
2

+ 2ηM2C0

√
1 + 3εγt−tεBtεR0d̃

−1/4

(78)
This implies that195

γ−(t+1)
∥∥∥√Q∆t+1

∥∥∥
2
≤ γ−t

∥∥∥√Q∆t

∥∥∥
2

+ 2ηM2C0

√
1 + 3εγ−1−tεBtεR0d̃

−1/4 (79)

Combining with (75), it implies that for all t ≥ tε,196 ∥∥∥√Q∆t

∥∥∥
2
≤ 2γt−tεηM2C0B

tεR0

[
tεB
−1 +

√
1 + 3εγ−1(t− tε)

]
d̃−1/4 (80)

Next, we consider an arbitrary test point x such that ‖x‖2 ≤ 1. Denote δt = f
(t)
lin (x) − f (t)(x).197

Then we have198 {
f

(t+1)
lin (x)− f (t)

lin (x) = −η∇θf(x; θ(0))>J(θ(0))Q(t)glin(θ(t))

f (t+1)(x)− f (t)(x) = −η∇θf(x; θ̃(t))>J(θ(t))Q(t)g(θ(t))
(81)

which yields199

δt+1 − δt =η
[
∇θf(x; θ̃(t))>J(θ(t))−∇θf(x; θ(0))>J(θ(0))

]
Q(t)g(θ(t))

− η∇θf(x; θ(0))>J(θ(0))Q(t)∆t

(82)
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For t ≤ tε, we have200

‖δt‖2 ≤η
t−1∑
s=0

∥∥∥[∇θf(x; θ̃(s))>J(θ(s))−∇θf(x; θ(0))>J(θ(0))
]
Q(s)

∥∥∥
2

∥∥∥g(θ(s))
∥∥∥

2

+ η

t−1∑
s=0

∥∥∥∇θf(x; θ(0))>J(θ(0))Q(s)
∥∥∥

2
‖∆s‖2

≤η
t−1∑
s=0

∥∥∥∇θf(x; θ̃(s))>J(θ(s))−∇θf(x; θ(0))>J(θ(0))
∥∥∥
F

∥∥∥g(θ(s))
∥∥∥

2

+ η

t−1∑
s=0

∥∥∥∇θf(x; θ(0))
∥∥∥

2

∥∥∥J(θ(0))
∥∥∥
F
‖∆s‖2

≤2ηM2C0d̃
−1/4

t−1∑
s=0

BsR0 + ηM2
t−1∑
s=0

(2sηM2C0B
s−1R0d̃

−1/4)

(83)

So we can see that there exists a constant C1 such that ‖δtε‖2 ≤ C1d̃
−1/4. Then, for t > tε, we have201

‖δt‖2 − ‖δtε‖2 ≤η
t−1∑
s=tε

∥∥∥∥[∇θf(x; θ̃(s))>J(θ(s))−∇θf(x; θ(0))>J(θ(0))
]√

Q
(s)
3ε

∥∥∥∥
2

∥∥∥√Qg(θ(s))
∥∥∥

2

+ η

t−1∑
s=tε

∥∥∥∥∇θf(x; θ(0))>J(θ(0))

√
Q

(s)
3ε

∥∥∥∥
2

∥∥∥√Q∆s

∥∥∥
2

≤2ηM2C0d̃
−1/4
√

1 + 3ε

t−1∑
s=tε

γs−tεBtεR0

+ ηM2
√

1 + 3ε

t−1∑
s=tε

(
2γs−tεηM2C0B

tεR0

[
tεB
−1 +

√
1 + 3εγ−1(s− tε)

]
d̃−1/4

)
(84)

Note that
∑∞
t=0 tγ

t is finite as long as γ ∈ (0, 1). Therefore, there is a constant C such that for any t,202

‖δt‖2 ≤ Cd̃−1/4 with probability at least (1− δ) for any d̃ ≥ D̃.203

D.3.3 Proof of Lemma 13204

We will use the following theorem regarding the eigenvalues of random Gaussian matrices:205

Theorem 14 (Corollary 5.35 in [Ver10]). If A ∈ Rp×q is a random matrix whose entries are206

independent standard normal random variables, then for every t ≥ 0, with probability at least207

1− 2 exp(−t2/2),208
√
p−√q − t ≤ λmin(A) ≤ λmax(A) ≤ √p+

√
q + t (85)

By this theorem, and also note that WL is a vector, we can see that for any δ, there exist D̃ > 0 and209

M1 > 0 such that if d̃ ≥ D̃, then with probability at least (1− δ), for all θ ∈ B(θ(0), C0), we have210 ∥∥W l
∥∥

2
≤ 3
√
d̃ (∀0 ≤ l ≤ L− 1) and

∥∥WL
∥∥

2
≤ C0 ≤ 3

4
√
d̃ (86)

as well as211 ∥∥βbl∥∥
2
≤M1

√
d̃ (∀l = 0, · · · , L) (87)

Now we assume that (86) and (87) are true. Then, for any x such that ‖x‖2 ≤ 1,212 ∥∥h1
∥∥

2
=

∥∥∥∥ 1√
d0

W 0x+ βb0

∥∥∥∥
2

≤ 1√
d0

∥∥W 0
∥∥

2
‖x‖2 +

∥∥βb0
∥∥

2
≤ (

3√
d0

+M1)
√
d̃

∥∥hl+1
∥∥

2
=

∥∥∥∥∥ 1√
d̃
W lxl + βbl

∥∥∥∥∥
2

≤ 1√
d̃

∥∥W l
∥∥

2

∥∥xl∥∥
2

+
∥∥βbl∥∥

2
(∀l ≥ 1)

∥∥xl∥∥
2

=
∥∥σ(hl)− σ(0l) + σ(0l)

∥∥
2
≤ L0

∥∥hl∥∥
2

+ σ(0)
√
d̃ (∀l ≥ 1)

(88)
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where L0 is the Lipschitz constant of σ and σ(0l) = (σ(0), · · · , σ(0)) ∈ Rdl . By induction, there213

exists an M2 > 0 such that
∥∥xl∥∥

2
≤M2

√
d̃ and

∥∥hl∥∥
2
≤M2

√
d̃ for all l = 1, · · · , L.214

Denote αl = ∇hlf(x) = ∇hlh
L+1. For all l = 1, · · · , L, we have αl = diag(σ̇(hl))W

l>√
d̃
αl+1215

where σ̇(x) ≤ L0 for all x ∈ R since σ is L0-Lipschitz, αL+1 = 1 and
∥∥αL∥∥

2
=216 ∥∥∥∥diag(σ̇(hL))W

L>√
d̃

∥∥∥∥
2

≤ 3
4
√
d̃
L0. Then, we can easily prove by induction that there exists an217

M3 > 1 such that
∥∥αl∥∥

2
≤M3/

4
√
d̃ for all l = 1, · · · , L (note that this is not true for L+ 1 because218

αL+1 = 1).219

For l = 0, ∇W 0f(x) = 1√
d0
x0α1>, so ‖∇W lf(x)‖2 ≤

1√
d0

∥∥x0
∥∥

2

∥∥α1
∥∥

2
≤ 1√

d0
M3/

4
√
d̃. And220

for any l = 1, · · · , L, ∇W lf(x) = 1√
d̃
xlαl+1, so ‖∇W lf(x)‖2 ≤

1√
d̃

∥∥xl∥∥
2

∥∥αl+1
∥∥

2
≤ M2M3.221

(Note that if M3 > 1, then
∥∥αL+1

∥∥
2
≤ M3; and since d̃ ≥ 1, there is

∥∥αl∥∥
2
≤ M3 for l ≤ L.)222

Moreover, for l = 0, · · · , L, ∇blf(x) = βαl+1, so ‖∇blf(x)‖2 ≤ βM3. Thus, if (86) and (87) are223

true, then there exists an M4 > 0, such that ‖∇θf(x)‖2 ≤M4/
√
n. And since ‖xi‖2 ≤ 1 for all i,224

so ‖J(θ)‖F ≤M4.225

Next, we consider the difference in ∇θf(x) between θ and θ̃. Let f̃ , W̃ , b̃, x̃, h̃, α̃ be the function226

and the values corresponding to θ̃. There is227 ∥∥∥h1 − h̃1
∥∥∥

2
=

∥∥∥∥ 1√
d0

(W 0 − W̃ 0)x+ β(b0 − b̃0)

∥∥∥∥
2

≤ 1√
d0

∥∥∥W 0 − W̃ 0
∥∥∥

2
‖x‖2 + β

∥∥∥b0 − b̃0
∥∥∥

2
≤
(

1√
d0

+ β

)∥∥∥θ − θ̃∥∥∥
2∥∥∥hl+1 − h̃l+1

∥∥∥
2

=

∥∥∥∥∥ 1√
d̃
W l(xl − x̃l) +

1√
d̃

(W l − W̃ l)x̃l + β(bl − b̃l)

∥∥∥∥∥
2

≤ 1√
d̃

∥∥W l
∥∥

2

∥∥xl − x̃l∥∥
2

+
1√
d̃

∥∥∥W l − W̃ l
∥∥∥

2

∥∥x̃l∥∥
2

+ β
∥∥∥bl − b̃l∥∥∥

2

≤ 3
∥∥xl − x̃l∥∥

2
+ (M2 + β)

∥∥∥θ − θ̃∥∥∥
2

(∀l ≥ 1)∥∥xl − x̃l∥∥
2

=
∥∥∥σ(hl)− σ(h̃l)

∥∥∥
2
≤ L0

∥∥∥hl − h̃l∥∥∥
2

(∀l ≥ 1)

(89)

By induction, there exists an M5 > 0 such that
∥∥xl − x̃l∥∥

2
≤M5

∥∥∥θ − θ̃∥∥∥
2

for all l.228

For αl, we have αL+1 = α̃L+1 = 1, and for all l ≥ 1,229 ∥∥αl − α̃l∥∥
2

=

∥∥∥∥∥diag(σ̇(hl))
W l>√
d̃
αl+1 − diag(σ̇(h̃l))

W̃ l>√
d̃
α̃l+1

∥∥∥∥∥
2

≤

∥∥∥∥∥diag(σ̇(hl))
W l>√
d̃

(αl+1 − α̃l+1)

∥∥∥∥∥
2

+

∥∥∥∥∥diag(σ̇(hl))
(W l − W̃ l)>√

d̃
α̃l+1

∥∥∥∥∥
2

+

∥∥∥∥∥diag((σ̇(hl)− σ̇(h̃l)))
W̃ l>√
d̃
α̃l+1

∥∥∥∥∥
2

≤ 3L0

∥∥αl+1 − α̃l+1
∥∥

2
+
(
M3L0d̃

−1/2 + 3M3M5L1d̃
−1/4

)∥∥∥θ − θ̃∥∥∥
2

(90)

where L1 is the Lipschitz constant of σ̇. Particularly, for l = L, though α̃L+1 = 1, since
∥∥∥W̃L

∥∥∥
2
≤230

3d̃1/4, (90) is still true. By induction, there exists an M6 > 0 such that
∥∥αl − α̃l∥∥

2
≤ M6

4
√
d̃

∥∥∥θ − θ̃∥∥∥
2

231

for all l ≥ 1 (note that this is also true for l = L+ 1).232
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Thus, if (86) and (87) are true, then for all θ, θ̃ ∈ B(θ(0), C0), any x such that ‖x‖2 ≤ 1, we have233 ∥∥∥∇W 0f(x)−∇W̃ 0 f̃(x)
∥∥∥

2
=

1√
d0

∥∥xα1> − xα̃1>∥∥
2

≤ 1√
d0

∥∥α1 − α̃1
∥∥

2

≤ 1√
d0

M6

4
√
d̃

∥∥∥θ − θ̃∥∥∥
2

(91)

and for l = 1, · · · , L, we have234

∥∥∥∇W lf(x)−∇W̃ l f̃(x)
∥∥∥

2
=

1√
d̃

∥∥xlαl+1> − x̃lα̃l+1>∥∥
2

≤ 1√
d̃

(∥∥xl∥∥
2

∥∥αl+1 − α̃l+1
∥∥

2
+
∥∥xl − x̃l∥∥

2

∥∥α̃l+1
∥∥

2

)
≤

(
M2M6

4
√
d̃

+
M5M3√

d̃

)∥∥∥θ − θ̃∥∥∥
2

(92)

Moreover, for any l = 0, · · · , L, there is235 ∥∥∥∇blf(x)−∇b̃l f̃(x)
∥∥∥

2
= β

∥∥αl+1 − α̃l+1
∥∥

2
≤ βM6

4
√
d̃

∥∥∥θ − θ̃∥∥∥
2

(93)

Overall, we can see that there exists a constant M7 > 0 such that
∥∥∥∇θf(x)−∇θ̃f̃(x)

∥∥∥
2
≤236

M7
√
n· 4
√
d̃

∥∥∥θ − θ̃∥∥∥
2
, so that

∥∥∥J(θ)− J(θ̃)
∥∥∥
F
≤ M7

4
√
d̃

∥∥∥θ − θ̃∥∥∥
2
.237

D.3.4 Proof of Theorem 4238

First of all, for a linearized neural network (11), if we view {∇θf (0)(xi)}ni=1 as the inputs and239

{yi − f (0)(xi) + 〈θ(0),∇θf (0)(xi)〉}ni=1 as the targets, then the model becomes a linear model. So240

by Theorem 2 we have the following corollary:241

Corollary 15. If ∇θf (0)(x1), · · · ,∇θf (0)(xn) are linearly independent, then there exists η0 > 0242

such that for any GRW satisfying Assumption 1, and any η ≤ η0, θ(t) converges to the same243

interpolator θ∗ that does not depend on qi.244

Let η1 = min{η0, η
∗}, where η0 is defined in Corollary 15 and η∗ is defined in Lemma 5. Let f (t)

lin (x)245

and f (t)
linERM(x) be the linearized neural networks of f (t)(x) and f (t)

ERM(x), respectively. By Lemma 5,246

for any δ > 0, there exists D̃ > 0 and a constant C such that247 
sup
t≥0

∣∣∣f (t)
lin (x)− f (t)(x)

∣∣∣ ≤ Cd̃−1/4

sup
t≥0

∣∣∣f (t)
linERM(x)− f (t)

ERM(x)
∣∣∣ ≤ Cd̃−1/4

(94)

By Corollary 15, we have248

lim
t→∞

∣∣∣f (t)
lin (x)− f (t)

linERM(x)
∣∣∣ = 0 (95)

Summing the above yields249

lim sup
t→∞

∣∣∣f (t)(x)− f (t)
ERM(x)

∣∣∣ ≤ 2Cd̃−1/4 (96)

which is the result we want.250
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D.4 Proofs for Subsection 4.3251

D.4.1 A New Approximation Theorem252

Lemma 16 (Approximation Theorem for Regularized GRW). For a wide fully-connected neural253

network f , denote J(θ) = ∇θf(X; θ) ∈ Rp×n and g(θ) = ∇ŷ`(f(X; θ),Y ) ∈ Rn. Given that the254

loss function ` satisfies: ∇θg(θ) = J(θ)U(θ) for any θ, and U(θ) is a positive semi-definite diagonal255

matrix whose elements are uniformly bounded, we have: for any GRW that minimizes the regularized256

weighted empirical risk (13) with a sufficiently small learning rate η, there is: for a sufficiently large257

d̃, with high probability over random initialization, on any test point x such that ‖x‖2 ≤ 1,258

sup
t≥0

∣∣∣f (t)
linreg(x)− f (t)

reg (x)
∣∣∣ ≤ Cd̃−1/4 (97)

where both f (t)
linreg and f (t)

reg are trained by the same regularized GRW and start from the same initial259

point.260

First of all, with some simple linear algebra analysis, we can prove the following proposition:261

Proposition 17. For any positive definite symmetric matrix H ∈ Rn×n, denote its largest and262

smallest eigenvalues by λmax and λmin. Then, for any positive semi-definite diagonal matrix263

Q = diag(q1, · · · , qn),HQ has n eigenvalues that all lie in [mini qi · λmin,maxi qi · λmax].264

Proof. H is a positive definite symmetric matrix, so there existsA ∈ Rn×n such thatH = A>A,265

and A is full-rank. First, any eigenvalue of AQA> is also an eigenvalue of A>AQ, because for266

any eigenvalue λ ofAQA> we have some v 6= 0 such thatAQA>v = λv. Multiplying both sides267

by A> on the left yields A>AQ(A>v) = λ(A>v) which implies that λ is also an eigenvalue of268

A>AQ becauseA>v 6= 0 as λv 6= 0.269

Second, by condition we know that the eigenvalues ofA>A are all in [λmin, λmax] where λmin > 0,270

which implies for any unit vector v, v>A>Av ∈ [λmin, λmax], which is equivalent to ‖Av‖2 ∈271

[
√
λmin,

√
λmax]. Thus, we have v>A>QAv ∈ [λmin mini qi, λ

max maxi qi], which implies that272

the eigenvalues ofA>QA are all in [λmin mini qi, λ
max maxi qi].273

Thus, the eigenvalues ofHQ = A>AQ are all in [λmin mini qi, λ
max maxi qi].274

Proof of Lemma 16 By the condition ` satisfies, without loss of generality, assume that the elements275

of U(θ) are in [0, 1] for all θ. Then, let η ≤ (µ + λmin + λmax)−1. (If the elements of U(θ) are276

bounded by [0, C], then we can let η ≤ (µ+ Cλmin + Cλmax)−1 and prove the result in the same277

way.)278

With L2 penalty, the update rule of the GRW for the neural network is:279

θ(t+1) = θ(t) − ηJ(θ(t))Q(t)g(θ(t))− ηµ(θ(t) − θ(0)) (98)

And the update rule for the linearized neural network is:280

θ
(t+1)
lin = θ

(t)
lin − ηJ(θ(0))Q(t)g(θ

(t)
lin )− ηµ(θ

(t)
lin − θ

(0)) (99)

By Proposition 11, f(x; θ) converges in probability to a zero-mean Gaussian process. Thus, for any281

δ > 0, there exists a constant R0 > 0 such that with probability at least (1− δ/3),
∥∥g(θ(0))

∥∥
2
< R0.282

Let M be as defined in Lemma 13. Denote A = ηMR0, and let C0 = 4A
ηµ in Lemma 131. By Lemma283

13, there exists D1 such that for all d̃ ≥ D1, with probability at least (1− δ/3), (52) is true.284

Similar to the proof of Proposition 17, we can show that for arbitrary θ̃, all non-zero eigenval-285

ues of J(θ(0))Q(t)U(θ̃)J(θ(0))> are eigenvalues of J(θ(0))>J(θ(0))Q(t)U(θ̃). This is because for286

any λ 6= 0, if J(θ(0))Q(t)U(θ̃)J(θ(0))>v = λv, then J(θ(0))>J(θ(0))Q(t)U(θ̃)(J(θ(0))>v) =287

λ(J(θ(0))>v), and J(θ(0))>v 6= 0 since λv 6= 0, so λ is also an eigenvalue of288

1Note that Lemma 13 only depends on the network structure and does not depend on the update rule, so we
can use this lemma here.
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J(θ(0))>J(θ(0))Q(t)U(θ̃). On the other hand, by Proposition 3, J(θ(0))>J(θ(0))Q(t)U(θ̃) con-289

verges in probability to ΘQ(t)U(θ̃) whose eigenvalues are all in [0, λmax] by Proposition 17. So290

there exists D2 such that for all d̃ ≥ D2, with probability at least (1 − δ/3), the eigenvalues of291

J(θ(0))Q(t)U(θ̃)J(θ(0))> are all in [0, λmax + λmin] for all t.292

By union bound, with probability at least (1− δ), all three above are true, which we will assume in293

the rest of this proof.294

First, we need to prove that there exists D0 such that for all d̃ ≥ D0, supt≥0

∥∥θ(t) − θ(0)
∥∥

2
is295

bounded with high probability. Denote at = θ(t) − θ(0). By (98) we have296

at+1 =(1− ηµ)at − η[J(θ(t))− J(θ(0))]Q(t)g(θ(t))

− ηJ(θ(0))Q(t)[g(θ(t))− g(θ(0))]− ηJ(θ(0))Q(t)g(θ(0))
(100)

which implies297

‖at+1‖2 ≤
∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)U(θ̃(t))J(θ̃(t))>

∥∥∥
2
‖at‖2

+ η
∥∥∥J(θ(t))− J(θ(0))

∥∥∥
F

∥∥∥g(θ(t))
∥∥∥

2
+ η

∥∥∥J(θ(0))
∥∥∥
F

∥∥∥g(θ(0))
∥∥∥

2

(101)

where θ̃(t) is some linear interpolation between θ(t) and θ(0). Our choice of η ensures that ηµ < 1.298

Now we prove by induction that ‖at‖2 < C0. It is true for t = 0, so we need to prove that if299

‖at‖2 < C0, then ‖at+1‖2 < C0.300

For the first term on the right-hand side of (101), we have301 ∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)U(θ̃(t))J(θ̃(t))>
∥∥∥

2
≤(1− ηµ)

∥∥∥∥I − η

1− ηµ
J(θ(0))Q(t)U(θ̃(t))J(θ(0))>

∥∥∥∥
2

+ η
∥∥∥J(θ(0))

∥∥∥
F

∥∥∥J(θ̃(t))− J(θ(0))
∥∥∥
F

(102)

Since η/(1− ηµ) ≤ (λmin + λmax)−1 by our choice of η, we have302 ∥∥∥∥I − η

1− ηµ
J(θ(0))Q(t)U(θ̃(t))J(θ(0))>

∥∥∥∥
2

≤ 1 (103)

On the other hand, we can use (52) since ‖at‖2 < C0, so
∥∥J(θ(0))

∥∥
F

∥∥∥J(θ̃(t))− J(θ(0))
∥∥∥
F
≤303

M2

4
√
d̃
C0. Therefore, there exists D3 such that for all d̃ ≥ D3,304 ∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)U(θ̃(t))J(θ̃(t))>

∥∥∥
2
≤ 1− ηµ

2
(104)

For the second term, we have305 ∥∥∥g(θ(t))
∥∥∥

2
≤
∥∥∥g(θ(t))− g(θ(0))

∥∥∥
2

+
∥∥∥g(θ(0))

∥∥∥
2

≤
∥∥∥J(θ̃(t))

∥∥∥
2

∥∥∥U(θ̃(t))
∥∥∥

2

∥∥∥θ(t) − θ(0)
∥∥∥

2
+R0 ≤MC0 +R0

(105)

And for the third term, we have306

η
∥∥∥J(θ(0))

∥∥∥
F

∥∥∥g(θ(0))
∥∥∥

2
≤ ηMR0 = A (106)

Thus, we have307

‖at+1‖2 ≤
(

1− ηµ

2

)
‖at‖2 +

ηM(MC0 +R0)
4
√
d̃

+A (107)

So there exists D4 such that for all d̃ ≥ D4, ‖at+1‖2 ≤
(
1− ηµ

2

)
‖at‖2 + 2A. This shows that if308

‖at‖2 < C0 is true, then ‖at+1‖2 < C0 will also be true.309
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In conclusion, for all d̃ ≥ D0 = max{D1, D2, D3, D4},
∥∥θ(t) − θ(0)

∥∥
2
< C0 is true for all t. This310

also implies that for C1 = MC0 + R0, we have
∥∥g(θ(t))

∥∥
2
≤ C1 for all t by (105). Similarly, we311

can prove that ‖θ(t)
lin − θ(0)‖2 < C0 for all t.312

Second, let ∆t = θ
(t)
lin − θ(t). Then we have313

∆t+1 −∆t = η(J(θ(t))Q(t)g(θ(t))− J(θ(0))Q(t)g(θ
(t)
lin )− µ∆t) (108)

which implies314

∆t+1 =
[
(1− ηµ)I − ηJ(θ(0))Q(t)U(θ̃(t))J(θ̃(t))>

]
∆t + η(J(θ(t))− J(θ(0)))Q(t)g(θ(t))

(109)
where θ̃(t) is some linear interpolation between θ(t) and θ(t)

lin . By (104), with probability at least315

(1− δ) for all d̃ ≥ D0, we have316

‖∆t+1‖2 ≤
∥∥∥(1− ηµ)I − ηJ(θ(0))Q(t)U(θ̃(t))J(θ̃(t))>

∥∥∥
2
‖∆t‖2 + η

∥∥∥J(θ(t))− J(θ(0))
∥∥∥
F

∥∥∥g(θ(t))
∥∥∥

2

≤
(

1− ηµ

2

)
‖∆t‖2 + η

M
4
√
d̃
C0C1

(110)

Again, as ∆0 = 0, we can prove by induction that for all t,317

‖∆t‖2 <
2MC0C1

µ
d̃−1/4 (111)

For any test point x such that ‖x‖2 ≤ 1, we have318 ∣∣∣f (t)
reg (x)− f (t)

linreg(x)
∣∣∣ =

∣∣∣f(x; θ(t))− flin(x; θ
(t)
lin )
∣∣∣

≤
∣∣∣f(x; θ(t))− flin(x; θ(t))

∣∣∣+
∣∣∣flin(x; θ(t))− flin(x; θ

(t)
lin )
∣∣∣

≤
∣∣∣f(x; θ(t))− flin(x; θ(t))

∣∣∣+
∥∥∥∇θf(x; θ(0))

∥∥∥
2

∥∥∥θ(t) − θ(t)
lin

∥∥∥
2

≤
∣∣∣f(x; θ(t))− flin(x; θ(t))

∣∣∣+M ‖∆t‖2

(112)

For the first term, note that319 {
f(x; θ(t))− f(x; θ(0)) = ∇θf(x; θ̃(t))(θ(t) − θ(0))

flin(x; θ(t))− flin(x; θ(0)) = ∇θf(x; θ(0))(θ(t) − θ(0))
(113)

where θ̃(t) is some linear interpolation between θ(t) and θ(0). Since f(x; θ(0)) = flin(x; θ(0)),320 ∣∣∣f(x; θ(t))− flin(x; θ(t))
∣∣∣ ≤ ∥∥∥∇θf(x; θ̃(t))−∇θf(x; θ(0))

∥∥∥
2

∥∥∥θ(t) − θ(0)
∥∥∥

2
≤ M

4
√
d̃
C2

0 (114)

Thus, we have shown that for all d̃ ≥ D0, with probability at least (1− δ) for all t and all x,321 ∣∣∣f (t)
reg (x)− f (t)

linreg(x)
∣∣∣ ≤ (MC2

0 +
2M2C0C1

µ

)
d̃−1/4 = O(d̃−1/4) (115)

which is the result we need.322

D.4.2 Result for Linearized Neural Networks323

Lemma 18. Suppose there exists M0 > 0 such that
∥∥∇θf (0)(x)

∥∥
2
≤M0 for all test point x. If the324

gradients ∇θf (0)(x1), · · · ,∇θf (0)(xn) are linearly independent, and the empirical training risk of325

f
(t)
linreg satisfies326

lim sup
t→∞

R̂(f
(t)
linreg) < ε, (116)

for some ε > 0, then for x such that ‖x‖2 ≤ 1 we have327

lim sup
t→∞

∣∣∣f (t)
linreg(x)− f (t)

linERM(x)
∣∣∣ = O(

√
ε). (117)

16



First, we can see that under the new weight update rule, θ(t) − θ(0) ∈328

span{∇θf (0)(x1), · · · ,∇θf (0)(xn)} is still true for all t. Let θ∗ be the interpolator329

in span(∇θf (0)(x1), · · · ,∇θf (0)(xn)), then the empirical risk of θ is 1
2n

∑n
i=1〈θ −330

θ∗,∇θf (0)(xi)〉2 = 1
2n

∥∥∇θf (0)(X)>(θ − θ∗)
∥∥2

2
. Thus, there exists T > 0 such that for331

any t ≥ T ,332 ∥∥∥∇θf (0)(X)>(θ(t) − θ∗)
∥∥∥2

2
≤ 2nε (118)

Let the smallest singular value of 1√
n
∇θf (0)(X) be smin, and we have smin > 0. Note that the333

column space of ∇θf (0)(X) is exactly span(∇θf (0)(x1), · · · ,∇θf (0)(xn)). Define H ∈ Rp×n334

such that its columns form an orthonormal basis of this subspace, then there existsG ∈ Rn×n such335

that ∇θf (0)(X) = HG, and the smallest singular value of 1√
n
G is also smin. Since θ(t) − θ(0)336

is also in this subspace, there exists v ∈ Rn such that θ(t) − θ∗ = Hv. Then we have
√

2nε ≥337 ∥∥G>H>Hv∥∥
2

=
∥∥G>v∥∥

2
. Thus, ‖v‖2 ≤

√
2ε

smin , which implies338 ∥∥∥θ(t) − θ∗
∥∥∥

2
≤
√

2ε

smin
(119)

We have already proved in previous results that if we minimize the unregularized risk with ERM, then339

θ always converges to the interpolator θ∗. So for any t ≥ T and any test point x such that ‖x‖2 ≤ 1,340

we have341

|f (t)
linreg(x)− f (t)

linERM(x)| = |〈θ(t) − θ∗,∇θf (0)(x)〉| ≤ M0

√
2ε

smin
(120)

which implies (117).342

D.4.3 Proof of Theorem 6343

Given that R̂(f
(t)
linreg) < ε for sufficiently large t, Lemma 16 implies that344 ∣∣∣R̂(f

(t)
linreg)− R̂(f (t)

reg )
∣∣∣ = O(d̃−1/4

√
ε+ d̃−1/2) (121)

So for a fixed ε, there exists D > 0 such that for all d ≥ D, for sufficiently large t,345

R̂(f (t)
reg ) < ε⇒ R̂(f

(t)
linreg) < 2ε (122)

By Lemma 5 and Lemma 16, we have346 
sup
t≥0

∣∣∣f (t)
linERM(x)− f (t)

ERM(x)
∣∣∣ = O(d̃−1/4)

sup
t≥0

∣∣∣f (t)
linreg(x)− f (t)

reg (x)
∣∣∣ = O(d̃−1/4)

(123)

Combining Lemma 18 with (123) derives347

lim sup
t→∞

∣∣∣f (t)
reg (x)− f (t)

ERM(x)
∣∣∣ = O(d̃−1/4 +

√
ε) (124)

Letting d̃→∞ leads to the result we need.348

Remark. One might wonder whether ‖∇θf (0)(x)‖2 will diverge as d̃ → ∞. In fact, in Lemma349

13, we have proved that there exists a constant M such that with high probability, for any d̃ there is350

‖∇θf (0)(x)‖2 ≤M for any x such that ‖x‖2 ≤ 1. Therefore, it is fine to suppose that there exists351

such an M0.352
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D.5 Proofs for Subsection 5.1353

D.5.1 Proof of Theorem 7354

First we need to show that θ̂MM is unique. Suppose both θ1 and θ2 maximize mini=1,··· ,n yi ·355

〈θ,xi〉 and θ1 6= θ2, ‖θ1‖2 = ‖θ2‖2 = 1. Then consider θ0 = θ/‖θ‖2 where θ = (θ1 + θ2)/2.356

Obviously, ‖θ‖2 < 1, and for any i, yi · 〈θ,xi〉 = (yi · 〈θ1,xi〉+ yi · 〈θ2,xi〉)/2, so yi · 〈θ0,xi〉 >357

min{yi · 〈θ1,xi〉, yi · 〈θ2,xi〉}, which implies that mini=1,··· ,n yi · 〈θ0,xi〉 > min{mini=1,··· ,n yi ·358

〈θ1,xi〉,mini=1,··· ,n yi · 〈θ2,xi〉}, contradiction!359

Now we start proving the result. Without loss of generality, let (x1, y1), · · · , (xm, ym) be the samples360

with the smallest margin to u, i.e.361

arg min
1≤i≤n

yi · 〈u,xi〉 = {1, · · · ,m} (125)

And denote y1 · 〈u,x1〉 = · · · = ym · 〈u,xm〉 = γu. Since the training error converges to 0, γu > 0.362

Note that for the logistic loss, if yi · 〈θ,xi〉 < yj · 〈θ,xj〉, then for any M > 0, there exists an363

RM > 0 such that for all R ≥ RM ,364

∇θ`(〈Rθ,xi〉, yi)
∇θ`(〈Rθ,xj〉, yj)

> M (126)

which can be shown with some simple calculation. And because the training error converges to 0,365

we must have
∥∥θ(t)

∥∥→∞. Then, by Assumption 3 this means that when t gets sufficiently large,366

the impact of (xj , yj) to θ(t) where j > m is an infinitesimal compared to (xi, yi) where i ≤ m367

(because there exists a positive constant δ such that q(t)
i > δ for all sufficiently large t by Assumption368

3). Thus, we must have u ∈ span{x1, · · · ,xm}.369

Let u = α1y1x1 + · · · + αmymxm. Now we show that αi ≥ 0 for all i = 1, · · · ,m. This is370

because when t is sufficiently large such that the impact of (xj , yj) to θ(t) where j > m becomes371

infinitesimal, we have372

θ(t+1) − θ(t) ≈ η q
(t)
i exp(yi · 〈θ(t),xi〉)

1 + exp(yi · 〈θ(t),xi〉)
yixi (127)

and since ‖θ(t)‖ → ∞ as t→∞, we have373

αi ∝ lim
T→∞

T∑
t=T0

q
(t)
i exp(yi · 〈θ(t),xi〉)

1 + exp(yi · 〈θ(t),xi〉)
:= lim

T→∞
αi(T ) (128)

where T0 is sufficiently large. Here the notion αi ∝ limT→∞ αi(T ) means that limT→∞
αi(T )
αj(T ) = αi

αj
374

for any pair of i, j and αj 6= 0. Note that each term in the sum is non-negative. This implies that all375

α1, · · · , αm have the same sign (or equal to 0). On the other hand,376

m∑
i=1

αiγu =

m∑
i=1

αiyi · 〈u,xi〉 = 〈u,u〉 > 0 (129)

Thus, αi ≥ 0 for all i and at least one of them is positive. Now suppose u 6= θ̂MM, which means that377

γu is smaller than the margin of θ̂MM. Then, for all i = 1, · · · ,m, there is yi ·〈u,xi〉 < yi ·〈θ̂MM,xi〉.378

This implies that379

〈u,u〉 =

m∑
i=1

αiyi · 〈u,xi〉 <
m∑
i=1

αiyi · 〈θ̂MM,xi〉 = 〈θ̂MM,u〉 (130)

which is a contradiction. Thus, we must have u = θ̂MM.380

D.5.2 Proof of Theorem 8381

Denote the largest and smallest eigenvalues ofX>X by λmax and λmin, and by condition we have382

λmin > 0. Let ε = min{ q
∗

3 ,
(q∗λmin)2

192λmax 2 }. Then similar to the proof in Appendix D.2.2, there exists tε383
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such that for all t ≥ tε and all i, q(t)
i ∈ (qi − ε, qi + ε). Denote Q = diag(q1, · · · , qn), then for all384

t ≥ tε,Q(t) := Q
(t)
ε =

√
Q

√
Q

(t)
3ε , where we use the subscript ε to indicate that

∥∥∥Q(t)
ε −Q

∥∥∥
2
< ε.385

First, we prove that F (θ) is L-smooth as long as ‖xi‖2 ≤ 1 for all i. The gradient of F is386

∇F (θ) =

n∑
i=1

qi∇ŷ`(〈θ,xi〉, yi)xi (131)

Since `(ŷ, y) is L-smooth in ŷ, we have for any θ1, θ2 and any i,387

`(〈θ2,xi〉, yi)− `(〈θ1,xi〉, yi)

≤ ∇ŷ`(〈θ1,xi〉, yi) · (〈θ2,xi〉 − 〈θ1,xi〉) +
L

2
(〈θ2,xi〉 − 〈θ1,xi〉)2

= 〈∇ŷ`(〈θ1,xi〉, yi) · xi, θ2 − θ1〉+
L

2
(〈θ2 − θ1,xi〉)2

≤ 〈∇ŷ`(〈θ1,xi〉, yi) · xi, θ2 − θ1〉+
L

2
‖θ2 − θ1‖22

(132)

Thus, we have388

F (θ2)− F (θ1) =

n∑
i=1

qi [`(〈θ2,xi〉, yi)− `(〈θ1,xi〉, yi)]

≤
n∑
i=1

qi〈∇ŷ`(〈θ1,xi〉, yi) · xi, θ2 − θ1〉+
L

2

n∑
i=1

qi ‖θ2 − θ1‖22

=〈∇F (θ1), θ2 − θ1〉+
L

2
‖θ2 − θ1‖22

(133)

which implies that F (θ) is L-smooth.389

Denote g̃(θ) = ∇ŷ`(f(X; θ),Y ) ∈ Rn, then ∇F (θ(t)) = XQg̃(θ(t)), and the update rule is390

θ(t+1) = θ(t) − ηXQ(t)g̃(θ(t)) (134)

So by the upper quadratic bound, we have391

F (θ(t+1)) ≤ F (θ(t))− η〈XQg̃(θ(t)),XQ(t)g̃(θ(t))〉+
η2L

2

∥∥∥XQ(t)g̃(θ(t))
∥∥∥2

2
(135)

Let η1 = q∗λmin

2L(1+3ε)λmax . Similar to what we did in Appendix D.2.2 (Eqn. (40)), we can prove that for392

all η ≤ η1, (135) implies that for all t ≥ tε, there is393

F (θ(t+1)) ≤ F (θ(t))− ηq∗λmin

2

∥∥∥√Qg̃(θ(t))
∥∥∥2

2
+
η2L

2

∥∥∥∥X√Q(t)
3ε

∥∥∥∥2

2

∥∥∥√Qg̃(θ(t))
∥∥∥2

2

≤ F (θ(t))− ηq∗λmin

2

∥∥∥√Qg̃(θ(t))
∥∥∥2

2
+
η2L

2
‖X‖22 (1 + 3ε)

∥∥∥√Qg̃(θ(t))
∥∥∥2

2

≤ F (θ(t))− ηq∗λmin

4

∥∥∥√Qg̃(θ(t))
∥∥∥2

2

≤ F (θ(t))− ηq∗2λmin

4

∥∥∥g̃(θ(t))
∥∥∥2

2

(136)

This shows that F (θ(t)) is monotonically non-increasing. Since F (θ) ≥ 0, F (θ(t)) must converge as394

t → ∞, and we need to prove that it converges to 0. Suppose that F (θ(t)) does not converge to 0,395

then there exists a constant C > 0 such that F (θ(t)) ≥ 2C for all t. On the other hand, it is easy to396

see that there exists θ∗ such that `(〈θ∗,xi〉, yi) < C for all i. (136) also implies that
∥∥g̃(θ(t))

∥∥
2
→ 0397

as t→∞ because we must have F (θ(t))− F (θ(t+1))→ 0.398

Note that from (134) we have399 ∥∥∥θ(t+1) − θ∗
∥∥∥2

2
=
∥∥∥θ(t) − θ∗

∥∥∥2

2
+ 2η〈XQ(t)g̃(θ(t)), θ∗ − θ(t)〉+ η2

∥∥∥XQ(t)g̃(θ(t))
∥∥∥2

2
(137)
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Denote400

Ft(θ) =

n∑
i=1

q
(t)
i `(〈θ,xi〉, yi) (138)

Then Ft is convex because ` is convex and q(t)
i are non-negative, and ∇Ft(θ(t)) = XQ(t)g̃(θ(t)).401

By the lower linear bound Ft(y) ≥ Ft(x) + 〈∇Ft(x),y − x〉, we have for all t,402

〈XQ(t)g̃(θ(t)), θ∗ − θ(t)〉 ≤ Ft(θ∗)− Ft(θ(t)) ≤ Ft(θ∗)−
2

3
F (θ(t)) ≤ C − 4C

3
= −C

3
(139)

because q(t)
i ≥ qi− ε ≥ 2

3qi and
∑n
i=1 q

(t)
i = 1. Since

∥∥g̃(θ(t))
∥∥

2
→ 0, there exists T > 0 such that403

for all t ≥ T and all η ≤ η0,404 ∥∥∥θ(t+1) − θ∗
∥∥∥2

2
≤
∥∥∥θ(t) − θ∗

∥∥∥2

2
− ηC

3
(140)

which means that
∥∥θ(t) − θ∗

∥∥2

2
→ −∞ because ηC

3 is a positive constant. This is a contradiction!405

Thus, F (θ(t)) must converge to 0, which is result (i).406

(i) immediately implies (ii) because ` is strictly decreasing to 0 by condition.407

Now let’s prove (iii). First of all, the uniqueness of θR can be easily proved from the convexity408

of F (θ). The condition implies that yi〈θR,xi〉 > 0, i.e. θR must classify all training samples409

correctly. If there are two different minimizers θR and θ′R in whose norm is at most R, then consider410

θ′′R = 1
2 (θR+θ′R). By the convexity of F , we know that θ′′R must also be a minimizer, and ‖θ′′R‖2 < R.411

Thus, F ( R
‖θ′′R‖2

θ′′R) < F (θ′′R) and ‖ R
‖θ′′R‖2

θ′′R‖2 = R, which contradicts with the fact that θ′′R is a412

minimizer.413

To prove the rest of (iii), the key is to consider (135). On one hand, similar to (36) we can prove that414

for all t ≥ tε, there is415 ∣∣∣〈XQ(t)g̃(θ(t)),X(Q(t) −Q)g̃(θ(t))〉
∣∣∣ ≤ λmax

√
3ε
∥∥∥√Q(t)g̃(θ(t))

∥∥∥2

2
(141)

Since we choose ε = min{ q
∗

3 ,
(q∗λmin)2

192λmax 2 }, this inequality implies that416 ∥∥∥∇Ft(θ(t))
∥∥∥2

2
=
∥∥∥XQ(t)g̃(θ(t))

∥∥∥2

2
≥ λmin

∥∥∥Q(t)g̃(θ(t))
∥∥∥2

2
≥ λmin(q∗ − ε)

∥∥∥√Q(t)g̃(θ(t))
∥∥∥2

2

≥ λminq∗

2

∥∥∥√Q(t)g̃(θ(t))
∥∥∥2

2
≥ 4

∣∣∣〈XQ(t)g̃(θ(t)),X(Q(t) −Q)g̃(θ(t))〉
∣∣∣

(142)

On the other hand, if η ≤ η2 = 1
2L , we will have417

η2L

2

∥∥∥XQ(t)g̃(θ(t))
∥∥∥2

2
≤ η

4

∥∥∥∇Ft(θ(t))
∥∥∥2

2
(143)

Combining all the above with (135) yields418

F (θ(t+1))− F (θ(t)) ≤ −η
2

∥∥∥∇Ft(θ(t))
∥∥∥2

2
(144)

Denote u = limR→∞
θR
‖θR‖2 . Similar to Lemma 9 in [JDST20], we can prove that: for any α > 0,419

there exists a constant ρ(α) > 0 such that for any θ subject to ‖θ‖2 ≥ ρ(α), there is420

Ft((1 + α)‖θ‖2u) ≤ Ft(θ) (145)

for any t. Let tα ≥ tε satisfy that for all t ≥ tα, ‖θ(t)‖2 ≥ max{ρ(α), 1}. By the convexity of Ft,421

for all t ≥ tα,422

〈∇Ft(θ(t)), θ(t) − (1 + α)‖θ(t)‖2u〉 ≥ Ft(θ(t))− Ft((1 + α)‖θ(t)‖2u) ≥ 0 (146)
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Thus, we have423

〈θ(t+1) − θ(t),u〉 = 〈−η∇Ft(θ(t)),u〉

≥ 〈−η∇Ft(θ(t)), θ(t)〉 1

(1 + α)‖θ(t)‖2

= 〈θ(t+1) − θ(t), θ(t)〉 1

(1 + α)‖θ(t)‖2

=

(
1

2

∥∥∥θ(t+1)
∥∥∥2

2
− 1

2

∥∥∥θ(t)
∥∥∥2

2
− 1

2

∥∥∥θ(t+1) − θ(t)
∥∥∥2

2

)
1

(1 + α)‖θ(t)‖2

(147)

By 1
2 (‖θ(t+1)‖2−‖θ(t)‖2)2 ≥ 0, we have ( 1

2

∥∥θ(t+1)
∥∥2

2
− 1

2

∥∥θ(t)
∥∥2

2
)/‖θ(t)‖2 ≥

∥∥θ(t+1)
∥∥

2
−
∥∥θ(t)

∥∥
2
.424

Moreover, by (144) we have425 ∥∥θ(t+1) − θ(t)
∥∥2

2

2(1 + α)‖θ(t)‖2
≤
∥∥θ(t+1) − θ(t)

∥∥2

2

2
=
η2
∥∥∇Ft(θ(t))

∥∥2

2

2
≤ η

(
F (θ(t))− F (θ(t+1))

)
(148)

Summing up (147) from t = tα to t− 1, we have426

〈θ(t)−θ(tα),u〉 ≥
∥∥θ(t)

∥∥
2
−
∥∥θ(tα)

∥∥
2

1 + α
+η
(
F (θ(t))− F (θ(tα))

)
≥
∥∥θ(t)

∥∥
2
−
∥∥θ(tα)

∥∥
2

1 + α
−ηF (θ(tα))

(149)
which implies that427 〈

θ(t)∥∥θ(t)
∥∥

2

,u

〉
≥ 1

1 + α
+

1∥∥θ(t)
∥∥

2

(
〈θ(tα),u〉 − ‖θ

(tα)‖2
1 + α

− ηF (θ(tα))

)
(150)

Since limt→∞ ‖θ(t)‖2 =∞, we have428

lim inf
t→∞

〈
θ(t)∥∥θ(t)
∥∥

2

,u

〉
≥ 1

1 + α
(151)

Since α is arbitrary, we must have limt→∞
θ(t)

‖θ(t)‖
2

= u as long as η ≤ min{η1, η2}.429

D.5.3 Corollary of Theorem 8430

We can show that for the logistic loss, it satisfies all conditions of Theorem 8 and limR→∞
θR
R = θ̂MM.431

First of all, for the logistic loss we have∇2
ŷ`(ŷ, y) = y2

eyŷ+e−yŷ+2
≤ maxi

y2i
4 , so ` is smooth.432

Then, we prove that limR→∞
θR
R exists and is equal to θ̂MM. For the logistic loss, it is easy to show433

that for any θ̂′ 6= θ̂MM, there exists an R(θ̂′) > 0 and an δ(θ̂′) > 0 such that F (R · θ) > F (R · θ̂MM)434

for all R ≥ R(θ̂′) and θ ∈ B(θ̂′, δ(θ̂′)).435

Let S = {θ : ‖θ‖2 = 1}. For any ε > 0, S − B(θ̂MM, ε) is a compact set. And for any θ ∈436

S − B(θ̂MM, ε), there exist R(θ) and δ(θ) as defined above. Thus, there must exist θ1, · · · , θm ∈437

S−B(θ̂MM, ε) such that S−B(θ̂MM, ε) ⊆ ∪mi=1B(θi, δ(θi)). LetR(ε) = max{R(θ1), · · · , R(θm)},438

then for all R ≥ R(ε) and all θ ∈ S − B(θ̂MM, ε), F (R · θ) > F (R · θ̂MM), which means that439
θR
R ∈ B(θ̂MM, ε) for all R ≥ R(ε). Therefore, limR→∞

θR
R exists and is equal to θ̂MM.440

Therefore, by Theorem 8, any GRW satisfying Assumption 1 makes a linear model converge to the441

max-margin classifier under the logistic loss.442

D.6 Proof of Theorem 9443

We first consider the regularized linearized neural network f (t)
linreg. Since by Proposition 11 f (0)(x) is444

sampled from a zero-mean Gaussian process, there exists a constantM > 0 such that |f (0)(xi)| < M445
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for all i with high probability. Define446

F (θ) =

n∑
i=1

qi`(〈θ,∇θf (0)(xi)〉+ f (0)(xi), yi) (152)

Denote θ̃R = arg minθ{F (R · θ) : ‖θ‖2 ≤ 1}. when the linearized neural network is trained447

by a GRW satisfying Assumption 1 with regularization, since this is convex optimization and the448

objective function is smooth, we can prove that with a sufficiently small learning rate, as t → ∞,449

θ(t) → R · θ̃R + θ(0) where R = limt→∞ ‖θ(t) − θ(0)‖2 (which is the minimizer). And define450

γ = min
i=1,··· ,n

yi · 〈θ̂MM,∇θf (0)(xi)〉 (153)

First, we derive the lower bound of R. By Theorem 16, with a sufficiently large d̃, with high451

probability R̂(f
(t)
reg ) < ε implies R̂(f

(t)
linreg) < 2ε. By the convexity of `, we have452

2ε >
1

n

n∑
i=1

`(〈Rθ̃R,xi〉+ f (0)(xi), yi) ≥ log

(
1 + exp

(
− 1

n

n∑
i=1

(〈Rθ̃R,xi〉+ f (0)(xi))yi

))

≥ log

(
1 + exp

(
− 1

n

n∑
i=1

R〈θ̃R,xi〉yi −M

))
(154)

which implies that R = Ω(− log 2ε) for all ε ∈ (0, 1
4 ).453

Denote δ = ‖θ̂MM− θ̃R‖2. Let θ′ = θ̂MM+θ̃R
2 , then we can see that ‖θ′‖2 =

√
1− δ2

4 . Let θ̃′ = θ′

‖θ′‖2 .454

By the definition of θ̂MM, there exists j such that yj · 〈θ̃′,∇θf (0)(xj)〉 ≤ γ, which implies455

yj ·

〈
θ̂MM + θ̃R

2

1√
1− δ2

4

,∇θf (0)(xj)

〉
≤ γ (155)

Thus, we have456

yj · 〈θ̃R,∇θf (0)(xj)〉 ≤ 2

√
1− δ2

4
γ − yj · 〈θ̂MM,∇θf (0)(xj)〉

≤

(
2

√
1− δ2

4
− 1

)
γ

≤
(

2(1− δ2

8
)− 1

)
γ (since

√
1− x ≤ 1− x

2
)

= (1− δ2

4
)γ

(156)

On the other hand, we have457

qj log(1 + exp(−yj · 〈R · θ̃R,∇θf (0)(xj)〉 −M)) ≤ F (R · θ̃R)

≤F (R · θ̂MM) ≤ log(1 + exp(−Rγ +M))
(157)

which implies that458

q∗ log

(
1 + exp

(
−(1− δ2

4
)Rγ −M

))
≤ log(1 + exp(−Rγ +M)) (158)

and this leads to459

1+exp(−Rγ+M) ≥
(

1 + exp

(
−(1− δ2

4
)Rγ −M

))q∗
≥ 1+q∗ exp

(
−(1− δ2

4
)Rγ −M

)
(159)
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which is equivalent to460

−Rγ +M ≥ −(1− δ2

4
)Rγ −M + log(q∗) (160)

Thus, we have461

δ = O(R−1/2) = O((− log 2ε)−1/2) (161)

So for any test point x, since ‖∇θf (0)(x)‖2 ≤M0, we have462

|〈θ̂MM − θ̃R,∇θf (0)(x)〉| ≤ δM0 = O((− log 2ε)−1/2) (162)

Combined with Theorem 16, we have: with high probability,463

lim sup
t→∞

|R · fMM(x)− f (t)
reg (x)| = O(R · (− log 2ε)−1/2 + d̃−1/4) (163)

So there exists a constant C > 0 such that: As d̃→∞, with high probability, for all ε ∈ (0, 1
4 ), if464

|fMM(x)| > C · (− log 2ε)−1/2, then f (t)
reg (x) will have the same sign as fMM(x) for a sufficiently465

large t. Note that this C only depends on n, q∗, γ, M and M0, so it is a constant independent of466

ε.467

Remark. Note that Theorem 9 requires Assumption 1 while Theorem 6 does not due to the468

fundamental difference between the classification and regression. In regression the model converges469

to a finite point. However, in classification, the training loss converging to zero implies that either (i)470

The direction of the weight is close to the max-margin classifier or (ii) The norm of the weight is471

very large. Assumption 1 is used to eliminate the possibility of (ii). If the regularization parameter µ472

is sufficiently large, then a small empirical risk could imply a small weight norm. However, in our473

theorem we do not assume anything on µ, so Assumption 1 is necessary.474

E A Note on the Proofs in [LXS+19]475

We have mentioned that the proofs in [LXS+19], particularly the proofs of their Theorem 2.1 and476

Lemma 1 in their Appendix G, are flawed. In order to fix their proof, we change the network477

initialization to (9). In this section, we will demonstrate what goes wrong in the proofs in [LXS+19],478

and how we manage to fix the proof. For clarity, we are referring to the following version of the479

paper: https://arxiv.org/pdf/1902.06720v4.pdf.480

To avoid confusion, in this section we will still use the notations used in our paper.481

E.1 Their Problems482

[LXS+19] claimed in their Theorem 2.1 that under the conditions of our Lemma 5, for any δ > 0,483

there exist D̃ > 0 and a constant C such that for any d̃ ≥ D̃, with probability at least (1− δ), the484

gap between the output of a sufficiently wide fully-connected neural network and the output of its485

linearized neural network at any test point x can be uniformly bounded by486

sup
t≥0

∣∣∣f (t)(x)− f (t)
lin (x)

∣∣∣ ≤ Cd̃−1/2 (claimed) (164)

where they used the original NTK formulation and initialization in [JGH18]:487 h
l+1 =

W l

√
dl
xl + βbl

xl+1 = σ(hl+1)

and

{
W

l(0)
i,j ∼ N (0, 1)

b
l(0)
i ∼ N (0, 1)

(∀l = 0, · · · , L) (165)

where x0 = x and f(x) = hL+1. However, in their proof in their Appendix G, they did not directly488

prove their result for the NTK formulation, but instead they proved another result for the following489

formulation which they called the standard formulation:490 {
hl+1 = W lxl + βbl

xl+1 = σ(hl+1)
and

W
l(0)
i,j ∼ N (0,

1

dl
)

b
l(0)
i ∼ N (0, 1)

(∀l = 0, · · · , L) (166)
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See their Appendix F for the definition of their standard formulation. In the original formulation,491

they also included two constants σw and σb for standard deviations, and for simplicity we omit492

these constants here. Note that the outputs of the NTK formulation and the standard formulation at493

initialization are actually the same. The only difference is that the norm of the weight W l and the494

gradient of the model output with respect to W l are different for all l.495

In their Appendix G, they claimed that if a network with the standard formulation is trained by496

minimizing the squared loss with gradient descent and learning rate η′ = η/d̃, where η is our learning497

rate in Lemma 5 and also their learning rate in their Theorem 2.1, then (164) is true for this network,498

so it is also true for a network with the NTK formulation because the two formulations have the same499

network output. And then they claimed in their equation (S37) that applying learning rate η′ to the500

standard formulation is equivalent to applying the following learning rates501

ηlW =
dl
dmax

η and ηlb =
1

dmax
η (167)

to W l and bl of the NTK formulation, where dmax = max{d0, · · · , dL}.502

To avoid confusion, in the following discussions we will still use the NTK formulation and initializa-503

tion if not stated otherwise.504

Problem 1. Claim (167) is true, but it leads to two problems. The first problem is that ηlb = O(d−1
max)505

since η = O(1), while their Theorem 2.1 needs the learning rate to be O(1). Nevertheless, this506

problem can be simply fixed by modifying their standard formulation as hl+1 = W lxl + β
√
dlb

l507

where bl(0)
i ∼ N (0, d−1

l ). The real problem that is non-trivial to fix is that by (167), there is508

η0
W = d0

dmax
η. However, note that d0 is a constant since it is the dimension of the input space, while509

dmax goes to infinity. Consequently, in (167) they were essentially using a very small learning rate510

for the first layer W 0 but a normal learning rate for the rest of the layers, which definitely does not511

match with their claim in their Theorem 2.1.512

Problem 2. Another big problem is that the proof of their Lemma 1 in their Appendix G is513

erroneous, and consequently their Theorem 2.1 is unsound as it heavily depends on their Lemma 1. In514

their Lemma 1, they claimed that for some constant M > 0, for any two models with the parameters515

θ and θ̃ such that θ, θ̃ ∈ B(θ(0), C0) for some constant C0, there is516 ∥∥∥J(θ)− J(θ̃)
∥∥∥
F
≤ M√

d̃

∥∥∥θ − θ̃∥∥∥
2

(claimed) (168)

Note that the original claim in their paper was
∥∥∥J(θ)− J(θ̃)

∥∥∥
F
≤M

√
d̃
∥∥∥θ − θ̃∥∥∥

2
. This is because517

they were proving this result for their standard formulation. Compared to the standard formulation, in518

the NTK formulation θ is
√
d̃ times larger, while the Jacobian J(θ) is

√
d̃ times smaller. This is also519

why here we have θ, θ̃ ∈ B(θ(0), C0) instead of θ, θ̃ ∈ B(θ(0), C0d̃
−1/2) for the NTK formulation.520

Therefore, equivalently they were claiming (168) for the NTK formulation.521

However, their proof of (168) in incorrect. Specifically, the right-hand side of their inequality (S86)522

is incorrect. Using the notations in our Appendix D.3.3, their (S86) essentially claimed that523 ∥∥αl − α̃l∥∥
2
≤ M√

d̃

∥∥∥θ − θ̃∥∥∥
2

(claimed) (169)

for any θ, θ̃ ∈ B(θ(0), C0), where αl = ∇hlh
L+1 and α̃l is the same gradient for the second model.524

Note that their (S86) does not have the
√
d̃ in the denominator which appears in (169). This is525

because for their standard formulation, θ is
√
d̃ times smaller than the original NTK formulation,526

while
∥∥αl∥∥

2
has the same order in the two formulations because all hl are the same.527

However, it is actually impossible to prove (169). Consider the following counterexample: Since θ528

and θ̃ are arbitrarily chosen, we can choose them such that they only differ in bl1 for some 1 ≤ l < L.529

Then,
∥∥∥θ − θ̃∥∥∥

2
=
∣∣∣bl1 − b̃l1∣∣∣. We can see that hl+1 and h̃l+1 only differ in the first element, and530
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∣∣∣hl+1
1 − h̃l+1

1

∣∣∣ =
∣∣∣β(bl1 − b̃l1)

∣∣∣. Moreover, we have W l+1 = W̃ l+1, so there is531

αl+1 − α̃l+1 =diag(σ̇(hl+1))
W l+1>√

d̃
αl+2 − diag(σ̇(h̃l+1))

W̃ l+1>√
d̃
α̃l+2

=
[
diag(σ̇(hl+1))− diag(σ̇(h̃l+1))

] W l+1>√
d̃
αl+2

+ diag(σ̇(h̃l+1))
W l+1>√

d̃
(αl+2 − α̃l+2)

(170)

Then we can lower bound
∥∥αl+1 − α̃l+1

∥∥
2

by532 ∥∥αl+1 − α̃l+1
∥∥

2
≥

∥∥∥∥∥[diag(σ̇(hl+1))− diag(σ̇(h̃l+1))
] W l+1>√

d̃
αl+2

∥∥∥∥∥
2

−

∥∥∥∥∥diag(σ̇(h̃l+1))
W l+1>√

d̃
(αl+2 − α̃l+2)

∥∥∥∥∥
2

(171)

The first term on the right-hand side is equal to
∣∣∣[σ̇(hl+1

1 )− σ̇(h̃l+1
1 )

]
〈W l+1

1 /
√
d̃,αl+2〉

∣∣∣ where533

W l+1
1 is the first row of W l+1. We know that

∥∥W l+1
1

∥∥
2

= Θ
(√

d̃
)

with high probability as its534

elements are sampled from N (0, 1), and in their (S85) they claimed that
∥∥αl+2

∥∥
2

= O(1), which is535

true. In addition, they assumed that σ̇ is Lipschitz. Hence, we can see that536 ∥∥∥∥∥[diag(σ̇(hl+1))− diag(σ̇(h̃l+1))
] W l+1>√

d̃
αl+2

∥∥∥∥∥
2

= O
(∣∣∣hl+1

1 − h̃l+1
1

∣∣∣) = O
(∥∥∥θ − θ̃∥∥∥

2

)
(172)

On the other hand, suppose that claim (169) is true, then
∥∥αl+2 − α̃l+2

∥∥
2

= O
(
d̃−1/2

∥∥∥θ − θ̃∥∥∥
2

)
.537

Then we can see that the second term on the right-hand side is O
(
d̃−1/2

∥∥∥θ − θ̃∥∥∥
2

)
because538 ∥∥W l+1

∥∥
2

= O(
√
d̃) and σ̇(x) is bounded by a constant as σ is Lipschitz. Thus, for a very large d̃,539

the second-term is an infinitesimal compared to the first term, so we can only prove that540 ∥∥αl+1 − α̃l+1
∥∥

2
= O

(∥∥∥θ − θ̃∥∥∥
2

)
(173)

which is different from (169) because it lacks a critical d̃−1/2 and thus leads to a contradiction. Hence,541

we cannot prove (169) with the d̃−1/2 factor, and consequently we cannot prove (168) with the
√
d̃542

in the denominator on the right-hand side. As a result, their Lemma 1 and Theorem 2.1 cannot be543

proved without this critical d̃−1/2. Similarly, we can also construct a counterexample where θ and θ̃544

only differ in the first row of some W l.545

E.2 Our Fixes546

Regarding Problem 1, we can still use an O(1) learning rate for the first layer in the NTK formulation547

given that ‖x‖2 ≤ 1. This is because for the first layer, we have548

∇W 0f(x) =
1√
d0

x0α1> =
1√
d0

xα1> (174)

For all l ≥ 1, we have
∥∥xl∥∥

2
= O(d̃1/2). However, for l = 0, we instead have

∥∥x0
∥∥

2
= O(1). Thus,549

we can prove that the norm of∇W 0f(x) has the same order as the gradient with respect to any other550

layer, so there is no need to use a smaller learning rate for the first layer.551

Regarding Problem 2, in our formulation (8) and initialization (9), the initialization of the last layer552

of the NTK formulation is changed from the Gaussian initialization WL(0)
i,j ∼ N (0, 1) to the zero553

initialization WL(0)
i,j = 0. Now we show how this modification solves Problem 2.554
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The main consequence of changing the initialization of the last layer is that (86) becomes different:555

instead of
∥∥WL

∥∥
2
≤ 3
√
d̃, we now have

∥∥WL
∥∥

2
≤ C0 ≤ 3

4
√
d̃. In fact, for any r ∈ (0, 1/2), we556

can prove that
∥∥WL

∥∥
2
≤ 3d̃r for sufficiently large d̃. In our proof we choose r = 1/4.557

Consequently, instead of
∥∥αl∥∥

2
≤ M3, we can now prove that

∥∥αl∥∥
2
≤ M3d̃

r−1/2 for all l ≤ L558

by induction. So now we can prove
∥∥αl − α̃l∥∥

2
= O

(
d̃r−1/2

∥∥∥θ − θ̃∥∥∥
2

)
instead of O

(∥∥∥θ − θ̃∥∥∥
2

)
,559

because560

• For l < L, we now have
∥∥αl+1

∥∥
2

= O(d̃r−1/2) instead of O(1), so we can have the561

additional d̃r−1/2 factor in the bound.562

• For l = L, although
∥∥αL+1

∥∥
2

= 1, note that
∥∥WL

∥∥
2

now becomes O(d̃r) instead of563

O(d̃1/2), so again we can decrease the bound by a factor of d̃r−1/2.564

Then, with this critical d̃r−1/2, we can prove the approximation theorem with the form565

sup
t≥0

∣∣∣f (t)(x)− f (t)
lin (x)

∣∣∣ ≤ Cd̃r−1/2 (175)

for any r ∈ (0, 1/2), though we cannot really prove the O(d̃−1/2) bound as originally claimed in566

(164). So this is how we solve Problem 2.567

One caveat of changing the initialization to zero initialization is whether we can still safely assume568

that λmin > 0 where λmin is the smallest eigenvalue of Θ, the kernel matrix of our new formulation.569

The answer is yes. In fact, in our Proposition 3 we proved that Θ is non-degenerated (which means570

that Θ(x,x′) still depends on x and x′), and under the overparameterized setting where dL � n,571

chances are high that Θ is full-rank. Hence, we can still assume that λmin > 0.572

As a final remark, one key reason why we need to initialize WL as zero is that the dimension of the573

output space (i.e. the dimension of hL+1) is finite, and in our case it is 1. Suppose we allow the574

dimension of hL+1 to be d̃ which goes to infinity, then using the same proof techniques, for the NTK575

formulation we can prove that supt

∥∥∥hL+1(t) − hL+1(t)
lin

∥∥∥
2
≤ C, i.e. the gap between two vectors of576

infinite dimension is always bounded by a finite constant. This is the approximation theorem we need577

for the infinite-dimensional output space. However, when the dimension of the output space is finite,578

supt

∥∥∥hL+1(t) − hL+1(t)
lin

∥∥∥
2
≤ C no longer suffices, so we need to decrease the order of the norm of579

WL in order to obtain a smaller upper bound.580
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