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ABSTRACT

Imitation learning, followed by reinforcement learning algorithms, is a promising
paradigm to solve complex control tasks sample-efficiently. However, learning
from demonstrations often suffers from the covariate shift problem, which results
in cascading errors of the learned policy. We introduce a notion of conservatively-
extrapolated value functions, which provably lead to policies with self-correction.
We design an algorithm Value Iteration with Negative Sampling (VINS) that
practically learns such value functions with conservative extrapolation. We show
that VINS can correct mistakes of the behavioral cloning policy on simulated
robotics benchmark tasks. We also propose the algorithm of using VINS to initialize
a reinforcement learning algorithm, which is shown to outperform prior works in
sample efficiency.

1 INTRODUCTION

Reinforcement learning (RL) algorithms, especially with sparse rewards, often require a large amount
of trial-and-errors. Imitation learning from a small number of demonstrations followed by RL fine-
tuning is a promising paradigm to improve the sample efficiency (Rajeswaran et al., 2017; Večerík
et al., 2017; Hester et al., 2018; Nair et al., 2018; Gao et al., 2018).

The key technical challenge of learning from demonstrations is the covariate shift: the distribution of
the states visited by the demonstrations often has a low-dimensional support; however, knowledge
learned from this distribution may not necessarily transfer to other distributions of interests. This
phenomenon applies to both learning the policy and the value function. The policy learned from
behavioral cloning has compounding errors after we execute the policy for multiple steps and
reach unseen states (Bagnell, 2015; Ross & Bagnell, 2010). The value function learned from the
demonstrations can also extrapolate falsely to unseen states. See Figure 1a for an illustration of the
false extrapolation in a toy environment.

We develop an algorithm that learns a value function that extrapolates to unseen states more con-
servatively, as an approach to attack the optimistic extrapolation problem (Fujimoto et al., 2018a).
Consider a state s in the demonstration and its nearby state s̃ that is not in the demonstration. The
key intuition is that s̃ should have a lower value than s, because otherwise s̃ likely should have been
visited by the demonstrations in the first place. If a value function has this property for most of the
pair (s, s̃) of this type, the corresponding policy will tend to correct its errors by driving back to the
demonstration states because the demonstration states have locally higher values. We formalize the
intuition in Section 4 by defining the so-called conservatively-extrapolated value function, which is
guaranteed to induce a policy that stays close to the demonstrations states (Theorem 4.4).

In Section 5, we design a practical algorithm for learning the conservatively-extrapolated value
function by a negative sampling technique inspired by work on learning embeddings Mikolov et al.
(2013); Gutmann & Hyvärinen (2012). We also learn a dynamical model by standard supervised
learning so that we compute actions by maximizing the values of the predicted next states. This
algorithm does not use any additional environment interactions, and we show that it empirically helps
correct errors of the behavioral cloning policy.
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(a) The value function learned from the stan-
dard Bellman equation (or supervised learning)
on the demonstration states. The value function
falsely extrapolates to the unseen states. For
example, the top left corner has erroneously
the largest value. As a result, once the policy
induced by the value function makes a mistake,
the error will compound.

(b) The conservatively-extrapolated value func-
tion (defined in equation (4.2)) learned with
negative sampling (VINS, Algorithm 2 in Sec-
tion 5). The values at unseen states tend to be
lower than their nearby states in the demonstra-
tions, and therefore the corresponding policy
tend to correct itself towards the demonstration
trajectories.

Figure 1: A toy environment where the agent aims to walk from a starting state (the yellow entry) to a goal state
(the green entry). The reward is sparse: R(s, a) = −1 unless s is at the goal (which is also the terminal state.)
The colors of the entries show the learned value functions. Entries in black edges are states in demonstrations.
The cyan arrows show the best actions according to the value functions.

When additional environment interactions are available, we use the learned value function and the
dynamical model to initialize an RL algorithm. This approach relieves the inefficiency in the prior
work (Hester et al., 2018; Nair et al., 2018; Rajeswaran et al., 2017) that the randomly-initialized Q
functions require a significant amount of time and samples to be warmed up, even though the initial
policy already has a non-trivial success rate. Empirically, the proposed algorithm outperforms the
prior work in the number of environment interactions needed to achieve near-optimal success rate.

In summary, our main contributions are: 1) we formalize the notion of values functions with
conservative extrapolation which are proved to induce policies that stay close to demonstration states
and achieve near-optimal performances, 2) we propose the algorithm Value Iteration with Negative
Sampling (VINS) that outperforms behavioral cloning on three simulated robotics benchmark tasks
with sparse rewards, and 3) we show that initializing an RL algorithm from VINS outperforms prior
work in sample efficiency on the same set of benchmark tasks.

2 RELATED WORK

Imitation learning. Imitation learning is commonly adopted as a standard approach in
robotics (Pomerleau, 1989; Schaal, 1997; Argall et al., 2009; Osa et al., 2017; Ye & Alterovitz,
2017; Aleotti & Caselli, 2006; Lawitzky et al., 2012; Torabi et al., 2018; Le et al., 2017; 2018) and
many other areas such as playing games (Mnih et al., 2013). Behavioral cloning (Bain & Sommut,
1999) is one of the underlying central approaches. See Osa et al. (2018) for a thorough survey and
more references therein. If we are allowed to access an expert policy (instead of trajectories) or an
approximate value function, in the training time or in the phase of collecting demonstrations, then,
stronger algorithms can be designed, such as DAgger (Ross et al., 2011), AggreVaTe (Ross & Bagnell,
2014), AggreVaTeD (Sun et al., 2017), DART (Laskey et al., 2017), THOR Sun et al. (2018a). Our
setting is that we have only clean demonstrations trajectories and a sparse reward (but we still hope
to learn the self-correctable policy.)

Ho & Ermon (2016); Wang et al. (2017); Schroecker et al. (2018) successfully combine generative
models in the setting where a large amount of environment interaction without rewards are allowed.
By contrast, we would like to minimize the amount of environment interactions needed, but are
allowed to access a sparse reward. The work (Schroecker & Isbell, 2017) also aims to learn policies
that can stay close to the demonstration sets, but through a quite different approach of estimating the
true MAP estimate of the policy. The algorithm also requires environment interactions, whereas one
of our main goals is to improve upon behavioral cloning without any environment interactions.

Inverse reinforcement learning (e.g., see (Abbeel & Ng, 2004; Ng et al., 2000; Ziebart et al., 2008;
Finn et al., 2016a;b; Fu et al., 2017)) is another important and successful line of ideas for imitation
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learning. It relates to our approach in the sense that it aims to learn a reward function that the expert is
optimizing. In contrast, we construct a model to learn the value function (of the trivial sparse reward
R(s, a) = −1), rather than the reward function. Some of these works (e.g., (Finn et al., 2016a;b;
Fu et al., 2017)) use techniques that are reminiscent of negative sampling or contrastive learning,
although unlike our methods, they use “negative samples” that are sampled from the environments.

Leveraging demonstrations for sample-efficient reinforcement learning. Demonstrations have
been widely used to improve the efficiency of RL (Kim et al., 2013; Chemali & Lazaric, 2015; Piot
et al., 2014), and a common paradigm for continuous state and action space is to initialize with RL
algorithms with a good policy or Q function (Rajeswaran et al., 2017; Nair et al., 2018; Večerík
et al., 2017; Hester et al., 2018; Gao et al., 2018). We experimentally compare with the previous
state-of-the-art algorithm in Nair et al. (2018) on the same type of tasks. Gao et al. (2018) has
introduced soft version of actor-critic to tackle the false extrapolation of Q in the argument of a when
the action space is discrete. In contrast, we deal with the extrapolation of the states in a continuous
state and action space.

Model-based reinforcement learning. Even though we will learn a dynamical model in our algo-
rithms, we do not use it to generate fictitious samples for planning. Instead, the learned dynamics are
only used in combination with the value function to get a Q function. Therefore, we do not consider
our algorithm as model-based techniques. We refer to (Kurutach et al., 2018; Clavera et al., 2018; Sun
et al., 2018b; Chua et al., 2018; Sanchez-Gonzalez et al., 2018; Pascanu et al., 2017; Khansari-Zadeh
& Billard, 2011; Luo et al., 2018) and the reference therein for recent work on model-based RL.

Off-policy reinforcement learning There is a large body of prior works in the domain of off-policy
RL, including extensions of policy gradient (Gu et al., 2016; Degris et al., 2012; Wang et al., 2016)
or Q-learning (Watkins & Dayan, 1992; Haarnoja et al., 2018; Munos et al., 2016). Fujimoto
et al. (2018a) propose to solve off-policy reinforcement learning by constraining the action space,
and Fujimoto et al. (2018b) use double Q-learning (Van Hasselt et al., 2016) to alleviate the optimistic
extrapolation issue. In contrast, our method adjusts the erroneously extrapolated value function
by explicitly penalizing the unseen states (which is customized to the particular demonstration off-
policy data). For most of the off-policy methods, their convergence are based on the assumption of
visiting each state-action pair sufficiently many times. In the learning from demonstration setting, the
demonstrations states are highly biased or structured; thus off-policy method may not be able to learn
much from the demonstrations.

3 PROBLEM SETUP AND CHALLENGES

We consider a setting with a deterministic MDP with continuous state and action space, and sparse
rewards. Let S = Rd be the state space andA = Rk be the action space, and letM? : Rd×Rk → Rd
be the deterministic dynamics. At the test time, a random initial state s0 is generated from some
distribution Ds0 . We assume Ds0 has a low-dimensional bounded support because typically initial
states have special structures. We aim to find a policy π such that executing π from state s0 will lead
to a set of goal states G. All the goal states are terminal states, and we run the policy for at most T
steps if none of the goal states is reached.

Let τ = (s0, a1, s1, . . . , ) be the trajectory obtained by executing a deterministic policy π from s0,
where at = π(st), and st+1 = M?(st, at). The success rate of the policy π is defined as

succ(π) = E [1{∃t ≤ T, st ∈ G}] (3.1)

where the expectation is taken over the randomness of s0. Note that the problem comes with a natural
sparse reward: R(s, a) = −1 for every s and a. This will encourage reaching the goal with as small
number of steps as possible: the total payoff of a trajectory is equal to negative the number of steps if
the trajectory succeeds, or −T otherwise.

Let πe be an expert policy from which a set of n demonstrations are sampled. Concretely, n
independent initial states {s(i)

0 }ni=1 from Ds0 are generated, and the expert executes πe to collect a set
of n trajectories {τ (i)}ni=1. We only have the access to the trajectories but not the expert policy itself.

We will design algorithms for two different settings:
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Imitation learning without environment interactions: The goal is to learn a policy π from the
demonstration trajectories {τ (i)}ni=1 without having any additional interactions with the environment.

Leveraging demonstrations in reinforcement learning: Here, in addition to the demonstrations,
we can also interact with the environment (by sampling s0 ∼ Ds0 and executing a policy) and observe
if the trajectory reaches the goal. We aim is to minimize the amount of environment interactions by
efficiently leveraging the demonstrations.

Let U be the set of states that can be visited by the demonstration policy from a random state s0 with
positive probability. Throughout this paper, we consider the situation where the set U is only a small
subset or a low-dimensional manifold of the entire states space. This is typical for continuous state
space control problems in robotics, because the expert policy may only visit a very special kind of
states that are the most efficient for reaching the goal. For example, in the toy example in Figure 1,
the set U only contains those entries with black edges.1

To put our theoretical motivation in Section 4 into context, next we summarize a few challenges of
imitation learning that are particularly caused by that U is only a small subset of the state space.

Cascading errors for behavioral cloning. As pointed out by Bagnell (2015); Ross & Bagnell
(2010), the errors of the policy can compound into a long sequence of mistakes and in the worst case
cascade quadratically in the number of time steps T . From a statistical point of view, the fundamental
issue is that the distribution of the states that a learned policy may encounter is different from the
demonstration state distribution. Concretely, the behavioral cloning πBC performs well on the states
in U but not on those states far away from U . However, small errors of the learned policy can drive
the state to leave U , and then the errors compound as we move further and further away from U . As
shown in Section 4, our key idea is to design policies that correct themselves to stay close to the set
U .

Degeneracy in learning value or Q functions from only demonstrations. When U is a small
subset or a low-dimensional manifold of the state space, off-policy evaluation of V πe and Qπe is
fundamentally problematic in the following sense. The expert policy πe is not uniquely defined
outside U because any arbitrary extension of πe outside U would not affect the performance of the
expert policy (because those states outside U will never be visited by πe from s0 ∼ Ds0 ). As a result,
the value function V πe and Qπe is not uniquely defined outside U . In Section 4, we will propose a
conservative extrapolation of the value function that encourages the policy to stay close to U . Fitting
Qπe is in fact even more problematic. We refer to Section A for detailed discussions and why our
approach can alleviate the problem.

Success and challenges of initializing RL with imitation learning. A successful paradigm for
sample-efficient RL is to initialize the RL policy by some coarse imitation learning algorithm such as
BC (Rajeswaran et al., 2017; Večerík et al., 2017; Hester et al., 2018; Nair et al., 2018; Gao et al.,
2018). However, the authors suspect that the method can still be improved, because the value function
or the Q function are only randomly initialized so that many samples are burned to warm up them.
As alluded before and shown in Section 4, we will propose a way to learn a value function from the
demonstrations so that the following RL algorithm can be initialized by a policy, value function, and
Q function (which is a composition of value and dynamical model) and thus converge faster.

4 THEORETICAL MOTIVATIONS

In this section, we formalize our key intuition that the ideal extrapolation of the value function V πe

should be that the values should decrease as we get further and further from the demonstrations.
Recall that we use U to denote the set of states reachable by the expert policy from any initial state s0

drawn with positive probability from Ds0 . 2 We use ‖ · ‖ to denote a norm in Euclidean space Rd.
Let ΠU (s) be the projection of s ∈ Rd to a set U ⊂ Rd (according to the norm ‖ · ‖).
We introduce the notion of value functions with conservative extrapolation which matches V πe on
the demonstration states U and has smaller values outside U . As formally defined in equation (4.1)

1One may imagine that U can be a more diverse set if the demonstrations are more diverse, but an expert will
not visit entries on the top or bottom few rows, because they are not on any optimal routes to the goal state.

2Recall that we assume that Ds0 has a low-dimensional support and thus typically U will also be a low-
dimensional subset of the ambient space.
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Goal

Figure 2: Illustration of the correction effect. A
conservatively-extrapolated value function V , as
shown in the figure, has lower values further away
from U , and therefore the gradients of V point to-
wards U . With such a value function, suppose we
are at state s which is ε-close to U . The locally-
correctable assumption of the dynamics assumes
the existence of acx that will drive us to state scx
that is closer to U than s. Since scx has a relatively
higher value compared to other possible future
states that are further away from U (e.g., s′ shown
in the figure), scx will be preferred by the optimiza-
tion (4.3). In other words, if an action a leads to
state s with large distance to U , the action won’t
be picked by (4.3) because it cannot beat acx.

and (4.2) in Alg. 1, we extrapolate V πe in a way that the value at s 6∈ U is decided by the value
of its nearest neighbor in U (that is V πe(ΠU (s)), and its distance to the nearest neighbor (that is,
‖s−ΠU (s)‖). We allow a δV > 0 error because exact fitting inside or outside U would be impossible.

Algorithm 1 Self-correctable policy induced from a value function with conservative extrapolation
Require: conservatively-extrapolated values V satisfying

V (s) = V πe(s)± δV , if s ∈ U (4.1)
V (s) = V πe(ΠU (s))− λ‖s−ΠU (s)‖ ± δV if s 6∈ U (4.2)

and a locally approximately correct dynamics M and BC policy πBC satisfying Assumption (4.1).

Self-correctable policy π:

π(s) , argmax
a:‖a−πBC(s)‖≤ζ

V (M(s, a)) (4.3)

Besides a conservatively-extrapolated value function V , our Alg. 1 relies on a learned dynamical
model M and a behavioral cloning policy πBC. With these, the policy returns the action with the
maximum value of the predicted next state in around the action of the BC policy. In other words, the
policy π attempts to re-adjust the BC policy locally by maximizing the value of the next state.

Towards analyzing Alg. 1, we will make a few assumptions. We first assume that the BC policy
is correct in the set U , and the dynamical model M is locally correct around the set U and the BC
actions. Note that these are significantly weaker than assuming that the BC policy is globally correct
(which is impossible to ensure) and that the model M is globally correct.
Assumption 4.1 (Local errors in learned dynamics and BC policy). We assume the BC policy πBC
makes at most δπ error in U : for all s ∈ U , we have ‖πBC(s)− πe(s)‖ ≤ δπ. We also assume that
the learned dynamics M has δM error locally around U and the BC actions in the sense that for all s
that is ε-close to U , and any action that is ζ-close to πBC(s), we have ‖M(s, a)−M?(s, a)‖ ≤ δM .

We make another crucial assumption on the stability/correctability of the true dynamics. The following
assumption essentially says that if we are at a state that is near the demonstration set, then there
exists an action that can drive us closer to the demonstration set. This assumption rules out certain
dynamics that does not allow corrections even after the policy making a small error. For example, if
a robot, unfortunately, falls off a cliff, then fundamentally it cannot recover itself — our algorithm
cannot deal with such pathological situations.
Assumption 4.2 (Locally-correctable dynamics). For some γ ∈ (0, 1) and ε > 0, Lc > 0, we assume
that the dynamics M? is (γ, Lc, ε)-locally-correctable w.r.t to the set U in the sense that for all ε0 ∈
(0, ε] and any tuple (s̄, ā, s̄′) satisfying s̄, s̄′ ∈ U and s̄′ = M?(s̄, ā), and any ε0-perturbation s of s̄
(that is, s ∈ Nε0(s̄)), there exists an action acx that is Lcε0 close to ā, such that it makes a correction
in the sense that the resulting state s′ is γε0-close to the set U : s′ = M?(s, acx) ∈ Nγε0(U). Here
Nδ(K) denotes the set of points that are δ-close to K.
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Finally, we will assume the BC policy, the value function, and the dynamics are all Lipschitz in their
arguments.3 We also assume the projection operator to the set U is locally Lipschitz. These are
regularity conditions that provide loose local extrapolation of these functions, and they are satisfied
by parameterized neural networks that are used to model these functions.

Assumption 4.3 (Lipschitz-ness of policy, value function, and dynamics). We assume that the
policy πBC is Lπ-Lipschitz. That is, ‖πBC(s) − πBC(s̃)‖ ≤ Lπ‖s − s̃‖ for all s, s̃. We assume the
value function V πe and the learned value function V are LV -Lipschitz, the model M? is LM,a-
Lipschitz w.r.t to the action and LM,s-Lipschitz w.r.t to the state s. We also assume that the set U has
LΠ-Lipschitz projection locally: for all s, ŝ that is ε-close to U , ‖ΠU (s)−ΠU (ŝ)‖ ≤ LΠ‖s− ŝ‖.

Under these assumptions, now we are ready to state our main theorem. It claims that 1) the induced
policy π in Alg. 1 stays close to the demonstration set and performs similarly to the expert policy πe,
and 2) following the induced policy π, we will arrive at a state with a near-optimal value.

Theorem 4.4. Suppose Assumption 4.1, 4.2, 4.3 hold with sufficiently small ε > 0 and errors
δM , δπ,δπ > 0 so that they satisfy ζ ≥ Lcε + δπ + Lπ. Let λ be sufficiently large so that λ ≥
2LV LΠLMζ+2δV +2LV δM

(1−γ)ε . Then, the policy π from equation (4.3) satisfies the following:

1. Starting from s0 ∈ U and executing policy π for T0 ≤ T steps, the resulting states
s1, . . . , sT0

are all ε-close to the demonstrate states set U .

2. In addition, suppose the expert policy makes at least ρ improvement every step in the sense
that for every s ∈ U , either V πe(M?(s, πe(s))) ≥ V πe(s) + ρ or M?(s, πe(s)) reaches the
goal.4 Assume ε and δM , δV , δπ are small enough so that they satisfy ρ & ε+ δπ .

Then, the policy π will achieve a state sT with T ≤ 2|V πe(s0)|/ρ steps which is ε-close to
a state s̄T with value at least V πe(sT ) & −(ε+ δπ).5

The proof is deferred to Section B. The first bullet follows inductively invoking the following lemma
which states that if the current state is ε-close to U , then so is the next state. The proof of the Lemma
is the most mathematically involved part of the paper and is deferred to the Section B. We demonstrate
the key idea of the proof in Figure 2 and its caption.

Lemma 4.5. In the setting of Theorem 4.4, suppose s is ε-close to the demonstration states set U .
Suppose U , and let a = π(s) and s′ = M?(s, a). Then, s′ is also ε-close to the set U .

We effectively represent the Q function by V (M(s, a)) in Alg. 1. We argue in Section A.1 that
this helps address the degeneracy issue when there are random goal states (which is the case in our
experiments.)

Discussion: can we learn conservatively-extrapolated Q-function? We remark that we do
not expect a conservative-extrapolated Q-functions would be helpful. The fundamental idea here
is to penalize the value of unseen states so that the policy can self-correct. However, to learn a Q
function that induces self-correctable policies, we should encourage unseen actions that can correct
the trajectory, instead of penalize them just because they are not seen before. Therefore, it is crucial
that the penalization is done on the unseen states (or V ) but not the unseen actions (or Q).

5 MAIN APPROACH

Learning value functions with negative sampling from demonstration trajectories. As moti-
vated in Section 4 by Algorithm 1 and Theorem 4.4, we first develop a practical method that can learn
a value function with conservative extrapolation, without environment interaction. Let Vφ be a value
function parameterized by φ. Using the standard TD learning loss, we can ensure the value function
to be accurate on the demonstration states U (i.e., to satisfy equation (4.1)). Let φ̄ be the target value

3We note that technically when the reward function is R(s, a) = −1, the value function is not Lipschitz.
This can be alleviated by considering a similar rewardR(s, a) = −α−β‖a‖2 which does not require additional
information.

4ρ is 1 when the reward is always −1 before achieving the goal.
5Here & hides multiplicative constant factors depending on the Lipschitz parameters LM,a, LM,s, Lπ, LV .
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Algorithm 2 Value Iteration on Demonstrations with Negative Sampling (VINS)

1: R ← demonstration trajectories . No environment interaction will be used
2: Initialize value parameters φ̄ = φ and model parameters θ randomly
3: for i = 1, . . . , T do
4: sample mini-batch B of N transitions (s, a, r, s′) fromR
5: update φ to minimize Ltd(φ;B) + Lns(φ;B)
6: update θ to minimize loss Lmodel(θ;B)
7: update target network: φ̄← φ̄+ τ(φ− φ̄)

8:
9: function POLICY(s)

10: Option 1: a = πBC(s); Option 2: a = 0
11: sample k noises ξ1, . . . , ξk from Uniform[−1, 1]m . m is the dimension of action space
12: i∗ = argmaxi Vφ(Mθ(s, a+ αξi)) . α > 0 is a hyper-parameter
13: return a+ αξi∗

function,6 the TD learning loss is defined as Ltd(φ) = E(s,a,s′)∼ρπe

[(
r(s, a) + Vφ̄(s′)− Vφ(s)

)2]
where r(s, a) is the (sparse) reward, φ̄ is the parameter of the target network, ρπe is the distribution
of the states-action-states tuples of the demonstrations. The crux of the ideas in this paper is to use
a negative sampling technique to enforce the value function to satisfy conservative extrapolation
requirement (4.2). It would be infeasible to enforce condition (4.2) for every s 6∈ U . Instead, we draw
random “negative samples” s̃ from the neighborhood of U , and enforce the condition (4.2). This is in-
spired by the negative sampling approach widely used in NLP for training word embeddings Mikolov
et al. (2013); Gutmann & Hyvärinen (2012). Concretely, we draw a sample s ∼ ρπe , create a random
perturbation of s to get a point s̃ 6∈ U . and construct the following loss function:7

Lns(φ) = Es∼ρπe ,s̃∼perturb(s)

(
Vφ̄(s)− λ‖s− s̃‖ − Vφ(s̃)

)2
,

The rationale of the loss function can be best seen in the situation when U is assumed to be a low-
dimensional manifold in a high-dimensional state space. In this case, s̃ will be outside the manifold
U with probability 1. Moreover, the random direction s̃− s is likely to be almost orthogonal to the
tangent space of the manifold U , and thus s is a reasonable approximation of the projection of s̃ back
to the U , and ‖s− s̃‖ is an approximation of ‖ΠU s̃− s̃‖. If U is not a manifold but a small subset of
the state space, these properties may still likely to hold for a good fraction of s.

We only attempt to enforce condition (4.2) for states near U . This likely suffices because the induced
policy is shown to always stay close to U . Empirically, we perturb s by adding a Gaussian noise.
The loss function to learn Vφ is defined as L(φ) = Ltd(φ) + µLns(φ) for some constant µ > 0.
For a mini-batch B of data, we define the corresponding empirical loss by L(φ;B) (similarly we
define Ltd(φ;B) and Lns(φ;B)). The concrete iterative learning algorithm is described in line 1-7 of
Algorithm 2 (except line 6 is for learning the dynamical model, described below.)

Learning the dynamical model. We use standard supervised learning to train the model. We use `2
norm as the loss for model parameters θ instead of the more commonly used MSE loss, following the
success of (Luo et al., 2018): Lmodel(θ) = E(s,a,s′)∼ρπe [‖Mθ(s, a)− s′‖2] .

Optimization for policy. We don’t maintain an explicit policy but use an induced policy from Vφ
and Mθ by optimizing equation (4.3). A natural choice would be using projected gradient ascent to
optimize equation (4.3). However, we found the random shooting suffices because the action space
is relatively low-dimensional in our experiments. Moreover, the randomness introduced appears to
reduce the overfitting of the model and value function slightly. As shown in line 10-13 of Alg. 2, we
sample k actions in the feasible set and choose the one with maximum Vφ(Mθ(s, a)).

Value iteration with environment interaction. As alluded before, when more environment interac-
tions are allowed, we initialize an RL algorithm by the value function, dynamics learned from VINS.
Given that we have V and M in hand, we alternate between fitted value iterations for updating the

6A target value function is widely used in RL to improve the stability of the training (Lillicrap et al., 2015;
Mnih et al., 2015).

7With slight abuse of notation, we use ρπe to denote both the distribution of (s, a, s′) tuple and the distribution
of s of the expert trajectories.
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value function and supervised learning for updating the models. (See Algorithm 3 in Section C.)
We do not use negative sampling here since the RL algorithms already collect bad trajectories
automatically. We also do not hallucinate any goals as in HER (Andrychowicz et al., 2017).

6 EXPERIMENTS

Environments. We evaluate our algorithms in three simulated robotics environments8 designed
by (Plappert et al., 2018) based on OpenAI Gym (Brockman et al., 2016) and MuJoCo (Todorov
et al., 2012): Reach, Pick-And-Place, and Push. A detailed description can be found in Section D.1.

Demonstrations. For each task, we use Hindsight Experience Replay (HER) (Andrychowicz et al.,
2017) to train a policy until convergence. The policy rolls out to collect 100/200 successful trajectories
as demonstrations except for Reach environment where 100 successful trajectories are sufficient for
most of the algorithms to achieve optimal policy. We filtered out unsuccessful trajectories during data
collection.

We consider two settings: imitation learning from only demonstrations data, and leveraging demon-
stration in RL with a limited amount of interactions. We compare our algorithm with Behavioral
Cloning and multiple variants of our algorithms in the first setting. We compare with the previous
state-of-the-art by Nair et al. (2018), and GAIL Ho & Ermon (2016) in the second setting. We do not
compare with (Gao et al., 2018) because it cannot be applied to the case with continuous actions.

Behavioral Cloning (Bain & Sommut, 1999). Behavioral Cloning (BC) learns a mapping from a
state to an action on demonstration data using supervised learning. We use MSE loss for predicting
the actions.

Nair et al.’18 (Nair et al., 2018). The previous state-of-the-art algorithm from Nair et al. (2018)
combines HER (Andrychowicz et al., 2017) with BC and a few techniques: 1) an additional replay
buffer filled with demonstrations, 2) an additional behavioral cloning loss for the policy, 3) a Q-filter
for non-optimal demonstrations, 4) resets to states in the demonstrations to deal with long horizon
tasks. We note that reseting to an arbitrary state may not be realistic for real-world applications in
robotics. In contrast, our algorithm does not require resetting to a demonstration state.

GAIL (Ho & Ermon, 2016) Generative Adversarial Imitation Learning (GAIL) imitates the expert
by matching the state-action distribution with a GAN-like framework.

VINS. As described in Section 5, in the setting without environment interaction, we use Algorithm 2;
otherwise we use it to initialize an RL algorithm (see Algorithm 3). We use neural networks to param-
eterize the value function and the dynamics model. The granularity of the HER demonstration policy
is very coarse, and we argument the data with additional linear interpolation between consecutive
states. We also use only a subset of the states as inputs to the value function and the dynamics model,
which apparently helps improve the training and generalization of them. Implementation details can
be found in Section D.2.

8Available at https://github.com/openai/gym/tree/master/gym/envs/robotics.
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VINS (ours) BC
Reach 10 99.3± 0.1% 98.6± 0.1%
Pick 100 75.7± 1.0% 66.8± 1.1%
Pick 200 84.0± 0.5% 82.0± 0.8%
Push 100 44.0± 1.5% 37.3± 1.1%
Push 200 55.2± 0.7% 51.3± 0.6%

Table 1: The success rates of achieving the
goals for VINS and BC in the setting with-
out any environment interactions. A random
policy has about 5% success rate at Pick and
Push.

Figure 3: The learning curves of VINS+RL vs the
prior state-of-the-art Nair et al.’18 on Pick-And-Place
and Push. Shaded areas indicates one standard devia-
tion estimated from 10 random seeds.9

Our main results are reported in Table 1 10 for the setting with no environment interaction and Figure 3
for the setting with environment interactions. Table 1 shows that the Reach environment is too simple
so that we do not need to run the RL algorithm. On the harder environments Pick-And-Place and Push,
our algorithm VINS outperforms BC. We believe this is because our conservatively-extrapolated
value function helps correct the mistakes in the policy. Here we use 2k trials to estimate the success
rate (so that the errors in the estimation is negligible), and we run the algorithms with 10 different
seeds. The error bars are for 1 standard deviation.

Figure 3 shows that VINS initialized RL algorithm outperforms prior state-of-the-art in sample
efficiency. We believe the main reason is that due to the initialization of value and model, we pay
less samples for warming up the value function. We note that our initial success rate in RL is slightly
lower than the final result of VINS in Table 1. This is because in RL we implemented a slightly worse
variant of the policy induced by VINS: in the policy of Algorithm 2, we use option 2 by search the
action uniformly. This suffices because the additional interactions quickly allows us to learn a good
model and the BC constraint is no longer needed.

Ablation studies. Towards understanding the effect of each component of VINS, we perform three
ablative experiments to show the importance of negative sampling, searching in the neighborhood of
Behavioral Cloned actions (option 1 in line 10 or Algorithm 2), and a good dynamics model. The
results are shown in Table 2. We study three settings: (1) VINS without negative sampling (VINS
w/o NS), where the loss Lns is removed; (2) VINS without BC (VINS w/o BC), where option 2
in line 10 or Algorithm 2 is used; (3) VINS with oracle model without BC (VINS w/ oracle w/o
BC), where we use the true dynamics model to replace line 12 of Algorithm 2. Note that the last
setting is only synthetic for ablation study because in the real-world we don’t have access to the true
dynamics model. Please see the caption of Table 2 for more interpretations. We use the same set
of hyperparameters for the same environment, which may not be optimal: for example, with more
expert trajectories, the negative sampling loss Lns, which can be seen as a regularziation, should be
assigned a smaller coefficient µ.

7 CONCLUSION

We devise a new algorithm, VINS, that can learn self-correctable by learning value function and
dynamical model from demonstrations. The key idea is a theoretical formulation of conservatively-
extrapolated value functions that provably leads to self-correction. The empirical results show a
promising performance of VINS and an algorithm that initializes RL with VINS. It’s a fascinating
direction to study other algorithms that may learn conservatively-extrapolated value functions in
other real-world applications beyond the proof-of-concepts experiments in this paper. For example,
the negative sampling by Gaussian perturbation technique in this paper may not make sense for
high-dimensional pixel observation. The negative sampling can perhaps be done in the representation

9The curve for Nair et al.’s only starts after a few thousands steps because the code we use https:
//github.com/jangirrishabh/Overcoming-exploration-from-demos only evaluates after
the first epoch.

10The standard deviation here means the standard deviation of average success rate over 10 (100 for Reach
10) different random seeds by the same algorithm.
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Pick 100 Pick 200 Push 100 Push 200
BC 66.8± 1.1% 82.0± 0.8% 37.3± 1.1% 51.3± 0.6%

VINS 75.7± 1.0% 84.0± 0.5% 44.0± 0.8% 55.2± 0.7%
VINS w/o BC 28.5± 1.1% 43.6± 1.2% 14.3± 0.5% 24.9± 1.3%

VINS w/ oracle
w/o BC 51.4± 1.4% 62.3± 1.1% 40.7± 1.4% 42.9± 1.3%

VINS w/ oracle 76.3± 1.4% 87.0± 0.7% 48.7± 1.2% 63.8± 1.3%
VINS w/o NS 48.5± 2.1% 71.6± 0.9% 29.3± 1.2% 38.7± 1.5%

Table 2: Ablation study of components of VINS in the setting without environment interactions.
We reported the average performance of 10 runs (with different random seeds) and the empirical
standard deviation of the estimator of the average performance. The success rate of VINS w/o NS is
consistently worse than VINS, which suggests that NS is crucial for tackling the false extrapolation.
From comparisons between VINS w/o BC and VINS w/ oracle w/o BC, and between VINS and
VINS w/ oracle, we observe that if the learning of the dynamics can be improved (potentially by e.g.,
by collecting data with random actions), then VINS or VINS w/o BC can be improved significantly.
We also suspect that the reason why we need to search over the neighborhood of BC actions is that
the dynamics is not accurate at state-action pairs far away from the demonstration set (because the
dynamics is only learned on the demonstration set.)

space (which might be learned by unsupervised learning algorithms) so that we can capture the
geometry of the state space better.
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A DEGENERACY OF LEARNING Q FUNCTIONS FROM DEMONSTRATIONS AND
OUR SOLUTIONS

Fitting Qπe from only demonstration is problematic: there exists a function Q(s, a) that does
not depend on a at all, which can still match Qπe on all possible demonstration data. Consider
Q(s, a) , Qπe(s, πe(s)). We can verify that for any (s, a) pair in the demonstrations satisfying
a = πe(s), it holds that Q(s, a) = Qπe(s, a). However, Q(s, a) cannot be accurate for other choices
of a’s because by its definition, it does not use any information from the action a.

A.1 COPING WITH THE DEGENERACY WITH LEARNED DYNAMICAL MODEL

Cautious reader may realize that the degeneracy problem about learning Q function from demon-
strations with deterministic policies may also occur with learning the model M . However, we will
show that when the problem has the particular structure of reaching a random but given goal state g,
learning Q still suffers the degeneracy but learning the dynamics does not.

The typical way to deal with a random goal state g is to consider goal-conditioned value function
V (s, g), policy π(s, g), and Q function Q(s, a, g).11 However, the dynamical model does not
have to condition on the goal. Learning Q function still suffers from the degeneracy problem
because Q(s, a, g) , Qπe(s, πe(s, g), g) matches Qπe on the demonstrations but does not use the
information from a at all. However, learning M does not suffer from such degeneracy because given
a single state s in the demonstration, there is still a variety of action a that can be applied to state
s because there are multiple possible goals g. (In other words, we cannot construct a pathological
M(s, a) = M?(s, πe(s)) because the policy also takes in g as an input). As a result, parameterizing
Q by Q(s, a, g) = V (M(s, a), g) do not suffer from the degeneracy either.

11This is equivalent to viewing the random goal g as part of an extended state s̆ = (s, g). Here the second part
of the extended state is randomly chosen during sampling the initial state, but never changed by the dynamics.
Thus all of our previous work does apply to this situation via this reduction.
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B MISSING PROOFS IN SECTION 4

Proof of Lemma 4.5. Let s̄ = ΠUs and ā = πe(s̄). Because s is ε-close to the set U , we have
‖s− s̄‖ ≤ ε. By the (γ, Lc, ε)-locally-correctable assumption of the dynamics, we have that there
exists an action acx such that a) ‖acx − ā‖ ≤ Lcε and b) s′cx , M?(s, acx) is γε-close to the set U .
Next we show that acx belongs to the constraint set {a : ‖a− πBC(s)‖ ≤ ζ} in equation (4.3). Note
that ‖acx−πBC(s)‖ ≤ ‖acx− ā‖+‖ā−πBC(s̄)‖+‖πBC(s̄)−πBC(s)‖ ≤ Lcε+δπ+Lπε because of
triangle inequality, the closeness of acx and ā, the assumption that πBC has δ error in the demonstration
state set U , and the Lipschitzness of πBC. Since ζ is chosen to be bigger than Lcε+ δπ + Lπε, we
conclude that acx belongs to the constraint set of the optimization in equation (4.3).

This suggests that the maximum value of the optimization (4.3) is bigger than the corresponding
value of acx:

V (M(s, a)) ≥ V (M(s, acx)) (B.1)

Note that a belongs to the constraint set by definition and therefore ‖a−acx‖ ≤ 2ζ . By Lipschitzness
of the dynamical model, and the value function V πe , we have that ‖M?(s, a) −M?(s, acx)‖ ≤
LM‖a − acx‖ ≤ 2LMζ. Let s′ = M?(s, a) and s′cx = M?(s, acx). We have ‖s′ − s′cx‖ ≤ 2LMζ.
By the Lipschitz projection assumption, we have that ‖ΠUs′−ΠUs

′
cx‖ ≤ LΠ‖s′− s′cx‖ ≤ 2LΠLMζ ,

which in turns implies that |V πe(ΠUs
′)− V πe(ΠUs

′
cx)| ≤ 2LV LΠLMζ by Lipschitzness of V πe . It

follows that

V (s′) ≤ V πe(ΠUs
′)− λ‖s′ −ΠUs

′‖+ δV (by assumption (4.1))

≤ V πe(ΠUs
′
cx) + |V πe(ΠUs

′
cx)− V πe(ΠUs

′)| − λ‖s′ −ΠUs
′‖+ δV

(by triangle inequality)

≤ V πe(ΠUs
′
cx) + 2LV LΠLMζ − λ‖s′ −ΠUs

′‖+ δV (by equations in paragraph above)

≤ V (s′cx) + λ‖s′cx −Πs′cx‖+ 2LV LΠLMζ − λ‖s′ −ΠUs
′‖+ 2δV (by assumption (4.2))

Note that by the Lipschitzness of the value function and the assumption on the error of the dynamical
model,

|V (s′)− V (M(s, a))| = |V (M?(s, a))− V (M(s, a))|
≤ Lv‖M?(s, a)−M(s, a)‖ ≤ LV δM (B.2)

Simlarly

|V (s′cx)− V (M(s, acx))| = |V (M?(s, acx))− V (M(s, acx))|
≤ Lv‖MT ?(s, acx)−M(s, acx)‖ ≤ LV δM (B.3)

Combining the three equations above, we obtain that

λ‖s′cx −Πs′cx‖+ 2LV LΠLMζ − λ‖s′ −ΠUs
′‖+ 2δV

≥ V (s′)− V (s′cx)

≥ V (M(s, a))− V (M(s, acx))− 2LV δM (by equation (B.2) and (B.3))
≥ −2LV δM (by equation (B.1))

Let κ = 2LV LΠLMζ + 2δV + 2LV δM and use the assumption that s′cx is γε-close to the set U
(which implies that ‖s′cx −Πs′cx‖ ≤ γε), we obtain that

λ‖s′ −ΠUs
′‖ ≤ λ‖s′cx −Πs′cx‖+ κ ≤ λγε+ κ (B.4)

Note that λ ≥ κ
(1−γ)ε , we have that ‖s′ −ΠUs

′‖ ≤ ε.

Proof of Theorem 4.4. To prove bullet 1, we apply Lemma 4.5 inductively for T steps. To prove
bullet 2, we will prove that as long as si is ε-close to U , then we can improve the value function
by at least ρ−? in one step. Consider s̄i = ΠU (si). We triangle inequality, we have that ‖π(si)−
πe(s̄i)‖ ≤ ‖π(si) − πBC(si)‖ + ‖πBC(si) − πBC(s̄i)‖ + ‖πBC(s̄i) − πe(s̄i)‖. These three terms
can be bounded respectively by ζ, Lπ‖si − s̄i‖ ≤ Lπε, and δπ, using the definition of π, the
Lipschitzness of πBC, and the error assumption of πBC on the demonstration state set U , respectively.
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It follows that ‖M?(si, π(si)) −M?(s̄i, πe(s̄i))‖ ≤ LM,s‖si − s̄i‖ + LM,a‖π(si) − πe(s̄i)‖ ≤
LM,sε+ LM,a(ζ + Lπε+ δπ). It follows by the Lipschitzness of the projection that

‖s̄i+1 −ΠUM
?(s̄i, πe(s̄i))‖ = ‖ΠUM?(si, π(si))−ΠUM

?(s̄i, πe(s̄i))‖ (B.5)
= |ΠUM?(si, π(si))−M?(s̄i, πe(s̄i)) (B.6)
≤ LΠ(LM,sε+ LM,a(ζ + Lπε+ δπ)) (B.7)

This implies that

|V πe(s̄i+1)− V πe(ΠUM
?(s̄i, πe(s̄i))| ≤ LV LΠ(LM,sε+ LM,a(ζ + Lπε+ δπ)) (B.8)

Note that we assumed that V (M?(s̄i, πe(s̄i)) ≥ V (s̄i) + ρ or M?(s̄i, πe(s̄i)) reaches the goal. If
the former, it follows that V πe(s̄i+1) ≥ V πe(s̄i) + ρ − LV LΠ(LM,sε + LM,a(ζ + Lπε + δπ)) ≥
V πe(s̄i) + ρ/2. Otherwise, or si+1 is ε-close to s̄i+1 whose value is at most −LV LΠ(LM,sε +
LM,a(ζ + Lπε+ δπ)) = −O(ε+ δπ)

C ALGORITHMS VINS+RL

A pseudo-code our algorithm VINS+RL can be found in Algorithm 3

Algorithm 3 Value Iteration with Environment Interactions Initialized by VINS (VINS+RL)

Require: Initialize parameters φ, θ from the result of VINS (Algorithm 2)
1: R ← demonstration trajectories;
2: for stage t = 1, . . . do
3: collect n1 samples using the induced policy π in Algorithm 2 (with Option 2 in Line 10) and

add them toR
4: for i = 1, . . . , ninner do
5: sample mini-batch B of N transitions (s, a, r, s′) fromR
6: update φ to minimize Ltd(φ;B)
7: update target value network: φ̄← φ̄+ τ(φ− φ̄)
8: update θ to minimize loss Lmodel(θ;B)

D IMPLEMENTATION DETAILS

D.1 SETUP

In the three environments, a 7-DoF robotics arm is manipulated for different goals. In Reach, the task
is to reach a randomly sampled target location; In Pick-And-Place, the goal is to grasp a box in a
table and reach a target location, and in Push, the goal is to push a box to a target location.

The reward function is 0 if the goal is reached; otherwise -1. Intuitively, an optimal agent should
complete the task in a shortest possible path. The environment will stop once the agent achieves the
goal or max step number have been reached. Reaching max step will be regarded as failure.

For more details, we refer the readers to (Plappert et al., 2018).

D.2 HYPERPARAMETERS

Behavioral Cloning We use a feed-forward neural network with 3 hidden layers, each containinig
256 hidden units, and ReLU activation functions. We train the network until the test success rate
plateaus.

Nair et al.’18 (Nair et al., 2018) We use the implementation from https://github.com/
jangirrishabh/Overcoming-exploration-from-demos. We don’t change the default
hyperparameters, except that we’re using 17 CPUs.
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GAIL (Ho & Ermon, 2016) We use the implementation from OpenAI Baselines (Dhariwal et al.,
2017). We don’t change the default hyperparameters.

VINS

• Architecture: We use feed-forward neural networks as function approximators for values and
dynamical models. For the Vφ, the network has one hidden layer which has 256 hidden units
and a layer normalization layer (Lei Ba et al., 2016). The dynamics model is a feed-forward
neural network with two hidden layers and ReLU activation function. Each hidden layer has
500 units. The model uses the reduced states and actions to predict the next reduced states.
• Value augmentation: We augment the dataset by a linear interpolation between two con-

secutive states, i.e., for a transition (s, a, r, s′) in the demonstration, it’s augmented to
(s+ λ(s′ − s), a, λr, s′) for a random real λ ∼ Uniform[0, 1]. To minimize the losses, we
use the Adam optimizer Kingma & Ba (2014) with learning rate 3 × 10−4. We remove
some less relevant coordinates from the states space to make the dimension smaller. (But
we maintain the full state space for BC. BC will perform worse with reduce state space.)
Specifically, the states of our algorithm for different environment are a) Reach: the position
of the arm, b) Pick: the position of the block, the gripper, and the arm, and c) Push: the
position of the block and the arm.
• States representation and perturbation: Both our model M and value function V are trained

on the space of reduced states. The perturb function is also designed separately for each
task. For Reach and Push, we perturb the arm only; For Pick-And-Place, we perturb the arm
or the gripper. In the implementation, we perturb the state s by adding Gaussian noise from
a distribution N (0, ρΣ), where Σ is a diagonal matrix that contains the variances of each
coordinate of the states from the demonstration trajectories. Here ρ > 0 is a hyper-parameter
to tune.
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