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ABSTRACT

Neural sequence-to-sequence models are at the basis of state-of-the-art solutions
for sequential prediction problems such as machine translation and speech recog-
nition. The models typically assume that the entire input is available when starting
target generation. In some applications, however, it is desirable to start the decod-
ing process before the entire input is available, e.g. to reduce the latency in au-
tomatic speech recognition. We consider state-of-the-art “wait-k” decoders, that
first read k tokens from the source and then alternate between reading tokens from
the input and writing to the output. We investigate the sensitivity of such models
to the value of k that is used during training and when deploying the model, and
the effect of updating the hidden states in transformer models as new source to-
kens are read. We experiment with German-English translation on the IWSLT14
dataset and the larger WMT 15 dataset. Our results significantly improve over ear-
lier state-of-the-art results for German-English translation on the WMT15 dataset
across different latency levels.

1 INTRODUCTION

Sequence-to-Sequence (S2S) models are state-of-the-art for tasks where source and target sequences
have different lengths, including automatic speech recognition, machine translation, speech transla-
tion, text-to-speech synthesis, efc. The most common models are composed of an encoder that reads
the entire input sequence, while a decoder (often equipped with an attention mechanism) iteratively
produces the next output token given the input and the partial output decoded so far. While these
models perform very well in the typical offline decoding use case, few studies consider how S2S
models are affected by low-latency constraints, and which architectures and strategies are the most
efficient. Low-latency decoding is desirable for applications such as online speech recognition, and
as-you-type machine translation. In such scenarios, the decoding process starts before the entire
input sequence is available, and the output sequence is produced in an on-the-fly manner. However,
if we consider for instance machine translation, online prediction generally comes at the cost of re-
duced translation quality and more research is needed to reach the grail of natural and high-quality
online speech-to-speech interpretation.

In this paper we consider deterministic “wait-k” decoders that are state of the art for low-latency
decoding (Ma et al., 2019; Zheng et al., 2019). These decoders first read k tokens from the source,
after which they proceed to alternatingly produce a target symbol and read another source sym-
bol. We compare two architectures to implement such models: one based on a 2D-convolutional
sequence-to-sequence model (Elbayad et al., [2018), and one based on the attention-based trans-
former architecture (Vaswani et al., 2017). For these models, we investigate the impact of the choice
of k& when training the models, and when using them to generate translations. For the transformer
model, we also consider the effect of updating the hidden states of previous target symbols based
on the full source context that is available at any moment. These updates are inspired from the 2D
convolutional model, where such “updates” are an inherent consequence of the architecture.

In summary, our contributions are the following:

1. We compare transformer and 2D convolutional architectures for online machine translation.
2. We propose improved training techniques for wait-k decoders by training across multiple
values of k, and updating the hidden-states in transformer decoders.
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3. We set a new state of the art for online translation on WMT15 German-English, improving
over the recent state-of-the-art results by Ma et al.|(2019) and Zheng et al.|(2019) across a
full range of latency levels.

The rest of this paper is organized as follows: Section [2] presents related work on low-latency ma-
chine translation; Section [3| details our low-latency models, which we evaluate in Section [4| for
German-English machine translation on the IWSLT14 dataset as well as the larger WMT 15 dataset.
Section [5]concludes the paper.

2 RELATED WORK

In order to study differences between translated and simultaneously interpreted text, He et al.|(2016a)
produced a parallel corpus between both and showed that human interpreters regularly apply several
tactics to reduce translation latency, including sentence segmentation and passivization. In ma-
chine translation, after pioneering work from |[Fiigen et al.|(2007), Yarmohammadi et al.[(2013)) and
He et al.| (2015) proposed methods to increase the alignment monotonicity for statistical machine
translation. To allow for a more flexible segmentation, (Grissom et al.| (2014) introduced a trainable
segmentation module that decides whether to write or read tokens based on the prediction of the
final verb and the next token in the source sequence. Similarly, |Oda et al.| (2015) use output of a
syntax-based statistical translation system to find the optimal segmentation strategy that maximizes
the quality of the translations via greedy search and dynamic programming.

One of the first works on online translation to use attention-based sequence-to-sequence models is
that of |Cho & Esipoval (2016)), which uses manually designed non-trainable waiting criteria that
dictate whether the model should commit to a read/write operation. The neural transducer of Jaitly
et al.| (2016) reads equally-sized chunks of the source sequence and generates output sub-sequences
of variable lengths, each ending with a special token marking the end of the writing. For training,
a single segmentation is chosen to optimize the likelihood of the full output sequence. [Raffel et al.
(2017) propose an alternative to attention using monotonic alignments. Whereas attention requires
access to the full source sequence to compute the weights, monotonic alignments enable linear time
computation of the weights and online decoding.

Another line of research treats general alignments of source and target sequence as a latent variable.
Inspired from the HMM word alignment model used in statistical machine translation (Vogel et al.,
1996)), the segment-to-segment neural transducer model of [Yu et al|(2016) integrates a latent align-
ment variable into an LSTM-based sequence-to-sequence model where the transition probabilities
are conditioned on the encoder-decoder hidden states. During training the alignment is marginal-
ized out with a forward-backward algorithm (Rabiner, |1989). However, their approach is used as
an alternative to attention-based models, not for low-latency translation. |Luo et al.[(2017) introduce
a recurrent sequence-to-sequence model with binary stochastic decision variables to either emit the
next output token or advance in encoding the source sequence with a unidirectional LSTM that
jointly encodes the partially generated output sequence. The stochastic decisions are optimized us-
ing a standard policy gradient reinforcement learning approach. (Gu et al.|(2017) propose a trainable
agent emitting read/write decisions modeled as a recurrent neural network fed with the encoder and
decoder current hidden states. In their framework, a left-to-right recurrent sequence-to-sequence
model is first pre-trained on the full bi-texts and then fine-tuned with policy gradient to optimize a
reward balancing the quality and the latency of the translations.

Dalvi et al.| (2018)) used a static decoding algorithm that starts with k read operations then alternates
between blocks of [ write operations and [ read operations. Albeit simple, this approach outperforms
the information based criteria of [Cho & Esipoval (2016) and allows for complete control of the
translation delay. Their attempt to integrate incrementality in the training by pre-aligning the source-
target sequences and then attending over a constrained span of source positions failed to improve
the translation quality. The work of |Press & Smith| (2018), although not tackling the simultaneous
translation task, allows for emitting target tokens before reading the full input sequence. Similar to
the incremental training of Dalvi et al.|(2018), it requires pre-aligning the bitexts. More recently, Ma
et al.| (2019) trained a sequence-to-sequence model based on the transformer architecture (Vaswani
et al.,[2017) with an integrated “wait-k” agent that first reads k source tokens then alternate single
read-writes, similar to Dalvi et al.| (2018) but using [ = 1. Wait-k approaches, were found most
effective by Zheng et al.|(2019) when trained for the specific & that is used to generate translations.



Under review as a conference paper at ICLR 2020

tj 1 2 3 4 5 6 7 8 tjy 1 2 3 4 5 6 7 8 tj 1 2 3 4 5 6 7 8 tj 1 2 3 4 5 6 7 8

s> s ) <s> ) s
1 Lﬁ 1 L;I 1 L>| 1
2 L.,I 2 L.>| 2 L->| 2
3 L->| 3 L->| 3 s 3
4 L->| 4 L->| 4 4
5 L.,I 5 (A 5 5
6 L->| 6 6 6
7 v 7 7 7
k=1 k=3 k=5 k=0

Figure 1: Low-latency decoding as a sequence of reads (green) and writes (red) over a grid spanned
by the source (horizontal) and target sequence (vertical). Different panels show decoding paths
defined by the nr. of initial reads k, of the wait-k decoder. For training we optimize the emissions
probabilities for all writes on a single or multiple paths, or for all shaded positions above the path.

This, however, requires training separate models for each potential value of k used for translation.
As an alternative, |[Zheng et al.| (2019) learn an adaptive policy to produce read/write decisions in
a pre-trained offline translation model. They use supervised training based on an oracle read/write
sequence derived from the pre-trained offline translation model. Different latency levels are achieved
by thresholding the policy’s confidence, however, on most regimes their model performs worse than
using transformer models directly trained for wait-k online translation. In our work, we also use
wait-k decoders, and present training strategies to improve their performance.

3 LOW-LATENCY SEQUENCE-TO-SEQUENCE MODELING

Let (x,y) be a pair of source-target sequences of respective lengths |x| and |y|. Low-latency de-
coding consists of executing a sequence of interleaved reading and writing operations, consuming
tokens from the source x and producing tokens of the target y. Low-latency decoding paths can be
represented on a |y| x |x| grid, where we advance from the top left to the bottom right in a total of
|| read steps and |y| write steps. See Figure|[l|for an illustration.

We consider two recent sequence-to-sequence models for low-latency decoding: the transformer
architecture of [Vaswani et al.|(2017) and the 2D convolutional architecture of [Elbayad et al.| (2018)).
We describe in Section how each of these architectures is adapted for the task of simultaneous
translation. In Section [32] we describe how these architectures can be trained for online decoding,
based on one or more decoding paths.

3.1 LOW-LATENCY DECODING ARCHITECTURES

To formalize the low-latency decoding process we model it as a sequence of |y| write steps. At step
t € {1,...,|y|} we decode the ¢-th target token g, conditioning on the target prefix y_, and the
source sequence read up that point x<.,. The value of z; is dictated by the decoding path.

The decoder computes the distribution over the next target token given the source and target contexts,

Po(Yt|Y<ts T<zys Z2<t), (1)
where 6 denotes the parameters of the writer. It depends on the architecture of the decoder whether,
given z;, the prediction of y, further depends on the full decoding z - path that led up to this point.

3.1.1 CONVOLUTION-BASED LOW-LATENCY DECODER

In order for the decoder to be trained efficiently for different source/target context sizes, we build
upon the “pervasive attention” architecture of|Elbayad et al.|(2018). Their machine translation model
uses masked 2D convolutions across a source-target grid, as in Figure[I} The masked convolutions
ensure that only information from past target tokens is used to predict the next one. Here we adapt
the masking pattern so as to construct the field-of-view in a way that it only extends over previous
positions in both source and target dimensions. More concretely, we use a 11x 11 filter where
only the top-left 6x6 weights are non-zero. In this manner features computed by a sequence of
convolutional layers at a position (¢, j) in the grid can be used to define pg(y:|y,, T<;)-
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As input, at each site (¢, j), the network takes the concatenation of the (sub-)word embedding of
the ¢-th token in target and the j-th token in the source sequence. The input is then progressively
transformed along a number of convolutional network layers. Let H = (h;;) for 1 < ¢ < |y| and
1 < j < || be the final features of the masked convolutional neural network. Elbayad et al.| (2018)
apply max-pooling across the source dimension to map H to a fixed-sized vector for each target
position. To define pg(y:|y ., T<;) in our low-latency model, we use

ftj = Pool(Hgt <), ?

where Pool(-) pools H¢; <; in the source and/or target direction, or neither in which case f;; = hy;.
Preliminary experiments with the pervasive attention architecture showed that max-pooling across
the source dimension only is the best option. For the remainder of this paper we have:

fij = Max-pool(H; <;). ©

From there we generate the emission probabilities by linearly projecting the feature f;; to the di-
mension of the output vocabulary with the matrix IV, followed by a soft-max normalization:

Po(Yt|Y 4, T<j) = softmax(W fi;). 4

Due to the 2D convolutional structure of the network, the path leading up to position (¢, j) in the
network does not impact the prediction of y;. Therefore, we drop the dependence on z ., in Eq. (@).

3.1.2 ATTENTION-BASED LOW-LATENCY DECODER

The second online decoder we consider is based on the “transformer” model of | Vaswani et al.|(2017).
Both the encoder and decoder consist of a stack of blocks. Each block consists of a multi-head self-
attention followed by a position-wise fully connected feed-forward network, or equivalently a 1 x 1
convolution. The decoder uses an additional multi-head attention block that ranges over the source
token encodings.

Given a query vector ¢, an attention component aggregates a set of value vectors v; in a weighted
sum, based on scoring a corresponding set of key vectors k; against the query. Using the dot-product
as the score, we obtain the attention aggregate a; as

exp €t T
ar = Zatjvj, opj = mv etj = qy kj. ®)
j j p tjy

The self-attention block is designed such that only previous output tokens can be attended over,
since future tokens are not available when generating targets, ensuring the decoder is autoregressive
(AR).

In our work, we adapt the transformer model for online translation in two ways:

1. We also make the self-attention in the encoder autoregressive, so that it can encode all
source prefixes in parallel during training, and encode them progressively during genera-
tion.

2. We mask the source attention in the decoder, so that when producing the ¢-th output token
attention is limited to the z; source tokens read so far.

To this end, we use the modified scores e?jR and efj’: in the self-attention and source-attention respec-
tively:

AR _ {qt kj, Ifj <t oot — {qt kj, I j < 2 ©)

t —o0, otherwise ' L —o0, otherwise

In this transformer-based decoder, the prediction of y; depends on the full decoding path z ;. This
is because the decoder self-attention ranges over decoder hidden states of previous time steps t’' < t,
which themselves used zy to attend over the source encoding.

In addition to the transformer-decoder described above, we consider a second transformer-based
variant which removes the dependency of y; on z—;. To achieve this, each time a source token
is read, we update all hidden states in the decoder based on the source context x,, available at
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Figure 2: Caching (a) and updating (b) hidden states of the decoder for self-attention.

that point. Essentially, we will re-run the decoder across the entire output sequence, using the new
source context. This makes the decoder self-attention insensitive to z; given z;, increasing the
decoding cost from O(|z| x |y|) to O(|z|* x |y|). Note that the encoder still needs to be run only
once, since its self-attention has been constrained to be autoregressive. We refer to this decoder as
“transformer-update”, see Figure [2|for an illustration.

3.2 TRAINING LOW-LATENCY DECODERS

For our decoders we use pre-defined “wait-k” schedules (Dalvi et al., [2018; Ma et al., 2019). First
k source tokens are read, before alternating reading and writing a single token at a time, until either
the full source has been read, or the target generation has been terminated.

To train our models, we consider several strategies. The first, similar to [Ma et al.| (2019) is to train
the model using the same wait-k decoding path that will be used for generation. That is, to train the
model, we optimize a sum of loss terms, each of which corresponds to the negative log-likelihood
of predicting a target token:

[yl

L(0,@,y,2) = — > Inpo(ye|y—y, Tz, 2<t)- (7)
t=1

Training with k=00 corresponds to an offline (wait-until-the-end) decoder, with the exception that
here we still use autoregressive dependencies in the encoder or along the source dimension in the
2D convolutional network.

In addition to training according to a single wait-k decoding path, we can use losses associated
with multiple paths. The additional loss terms may provide a richer training signal, and potentially
yield models that could perform well across a range of values for k£ during decoding. Due to the
dependence of y; on the full decoding path z -, in the transformer-based model, it is not possible to
improve over simply training in parallel across the different values of k. When training for multiple
values of k, we encode the source sentence once, and then forward it multiple times in the decoder,
once for each value of k.

The 2D CNN-based architecture, however, does not include this full dependency, and allows par-
allel computation of all pg(y:|y ., ©<;) in single evaluation of the CNN. For this architecture we
therefore use a loss of the form

[yl |=|

L(95w7y7Q) = - Z Z qtj lnpe(yt|y<tam§j)a (8)

t=1j=1

where ¢;; weigh the terms corresponding to different positions in the decoding grid of Figure[I] The
weights g;; can be set to zero/one to reflect all positions corresponding to wait-k decoding paths
for one or more values of k. In our experiments we also consider the option of activating all loss
terms above a certain wait-k decoding path. The latter corresponds to the sum of all loss terms on
all wait-k’ decoding paths with k < &’ < |z|[l]

The transformer-update architecture also avoids the full dependency on z;, but in order to train
from all loss terms above a certain decoding path, it requires a separate decoder run for each source
context size, i.e. for each column of the decoding grid in Figure[T}

'Summing the losses for all paths, though, would weight shared loss terms more importantly.
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4 EXPERIMENTAL EVALUATION
In this section we present our experimental setup, followed by quantitative results.
4.1 DATASETS AND EXPERIMENTAL SETUP

Datasets. We evaluate our approach on IWSLT14 En-De (Cettolo et al.,[2014) and on the WMT15
De-En datasetsE] Replicating the setup of [Elbayad et al.| (2018)) for IWSLT14 De-En, we train on
160K sentence pairs, develop on 7K held-out pairs and test on 6.7K pairs. The vocabulary consists
of 8.8K types on the source side and 6.6K types on the target side that were obtained from a joint
source and target byte pair encoding (BPE; Sennrich et al.|[2016). For WMT15 De-En we use a joint
vocabulary of 32k BPE types. We train on 4.5M pairs, develop on newstest2013 (3K pairs) and test
on newstest15 (2.2K pairs).

Evaluation metrics. We use beam-search decoding, with a beam of size 5, for offline models and
only greedy decoding online. We evaluate the translation quality by measuring case-sensitive tok-
enized BLEU (Papineni et al., 2002) withmulti-bleu. plE] Cho & Esipoval(2016) measure the
decoding latency using the proportion of the source sentence which has been read when producing
target tokens, and average this proportion across the tokens in the generated sentence:

1 lyl
AP = =z /lxl. ©
lyl <

More recently, average lagging (AL) and differentiable average lagging (DAL), were proposed to
measure translation latency (Ma et al., | 2019; |Cherry & Foster, 2019} |Arivazhagan et al.l 2019):

i lyl :
1 t—1 1 t—1 ft=1
AL=-Yz-""= DAL= Y- =007
T4 gl ly| 5 gl max(z¢, 2y + 5)
where v = |y|/|| and 7 = min{¢| g(¢) = |z|}. These metrics handle differing source and target
lengths more properly, and have an intuitive interpretation as the average by which the system lags
behind an ideal instantaneous translator. We refer the reader to (Cherry & Foster} 2019) for details.

We report the mean of these metric across translations. In this section we report the average lagging
(AL) metric, while the other metrics (AP, DAL, leading to a similar trend) are given in Appendix [B]
AL is chosen to make our results comparable with those of Ma et al.|(2019) and |Zheng et al.|(2019)
for German-English WMT 15 dataset.

Architectures. For the pervasive attention model, to reduce the memory footprint, we use residual
skip connections (He et al [2016b) rather than the dense connections (Huang et al. [2017) used
by [Elbayad et al. (2018). See Appendix [A] for more details about other minor changes made to
the original architecture. We consider an offline pervasive attention baseline (PA) that reads the
source sequence bi-directionally via asymmetric convolution filters that are only masking the future
targets. Note that this baseline is not directly applicable for low-latency decoding, due to the bi-
directional source encoding. We use a second baseline where convolutions are masked along the
source dimension, which we refer to as masked-PA baseline (MPA).

For the Transformer model, we use a small architecture on IWSLT with an embedding dimension
dene = 512 for the encoder, dge. = 256 for the decoder, and N = 6,dg = 1024, h = 4, Pyrop = 0.3.
On WMT, we use a Transformer base (Vaswani et al., [2017) with tied embeddings. Similar to the
pervasive attention baseline, we consider the offline baseline (T) with bidirectional self-attention in
the source side and a masked baseline (MT) with left-to-right self-attention in the encoder.

4.2 OFFLINE DECODING BASELINE RESULTS

In Table [T] we report the offline performance of the Pervasive Attention (PA), Masked Pervasive
Attention (MPA), Transformer (T) and Masked Transformer (MT) baselines. Each with greedy
decoding (G) and with beam search (BS).

http://www.statmt.org/wmt15/
3https ://github.com/moses—smt/mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl
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Datatset task PAY PA MPA T MT
” " BS G BS G BS G BS G BS
IWSLT14 En-De | 27.21 | 27.23 27.96 | 26.66 27.52 | 27.46 28.27 | 26.58 27.70
IWSLT14 De-En | 33.86 | 33.06 34.02 | 32.21 33.39 | 33.84 34.94 | 32.81 33.79
WMTI15 De-En - - - 28.08 29.28 | 31.96 33.00 | 31.14 32.27

Table 1: Offline evaluation of the Pervasive Attention (PA), Masked Pervasive Attention (MPA),
Transformer (T) and masked Transformer (MT) baselines. PA* corresponds to results reported by
Elbayad et al.[(2018)). We evaluate using greedy decoding (G) and beam-search (BS).
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Figure 3: IWSLT De-En: wait-k online decoding with MPA (a) and MT (b). Each curve is obtained
with a model trained on a single decoding path. Each model is evaluated with keyy € {1,3,5,7,9}.

Interestingly, the masked and non-masked versions perform quite similar, across both datasets and
architectures. This validates the use of autoregressive source encoders in the low-latency models we
consider below. The transformer and convolutional architectures perform similarly on IWSLT 14,
while the former performs significantly better on WMT15.

4.3 ONLINE DECODING RESULTS

In our first experiment we evaluate the wait-k online decoding for different MT and MPA models,
trained for different wait-%k decoding paths. We denote with k=c0 the wait-until-end training where
the full source is read before decoding. In each figure the offline results are added for reference, the
offline model has a latency of AL = |x|. Here we show results for IWSLT De-En, similar trends
are observed for IWSLT En-De (see Appendix [B.3).

Impact of the architecture. Figure[3|presents the performance of models trained for wait-k decod-
ing across a range of latencies keva € {1,3,5,7,9}. Each trained model is represented by a curve,
by evaluating it across different wait-k decoding paths.

For the convolutional architecture we observe that a single model trained for a relatively large value
of k, e.g. 7 or 9, provides good performance when using it to generate using different k£ values for
generation. The performance of the transformer-based model is more sensitive to the value of k used
for training. This difference in sensitivity could be due to the use of input-independent convolution
filters vs. self-attention which relies on scoring context to weigh its features.

Given an appropriate value for k during training, the transformer-based models yield better transla-
tions for a given latency level.

Impact of multiple path training. For the convolutional model (MPA), we consider activating loss
terms in the area above the wait-k path. Training on this area covers a combinatorially large number
of paths with latency higher than k. The results in Figure 4al show that for the MPA architecture,
multiple path training can be beneficial compared to single path (k=keya vs. k = keva). More
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Figure 4: IWSLT De-En: wait-k online decoding with MT trained on a single path or multiple paths.
Each model is evaluated with keyy € {1,3,5,7,9}. The k = keyy curve combines different models,
evaluating for each value of %k the model trained for that value.

Training Update keval =1 keval =3 keval =5 keval =7 keval =9

k= w/o 22.8 26.3 29.0 30.6 31.6
k= with 24.7 27.8 29.9 314 32.1
k=17 w/o 22.9 27.1 29.6 30.6 31.0
k=17 with 24.7 27.9 30.0 31.1 31.0
ke [1.5] w/o 22.6 25.7 27.9 28.9 28.7
ke [1..5] with 25.0 28.0 29.1 29.1 28.6
ke [1..9] w/o 23.1 26.8 29.6 313 31.7
ke [1..9] with 24.5 28.0 30.1 314 31.7

Table 2: IWSLT De-En: Impact of hidden state updates in transformer-based low-latency decoders.

importantly, the model trained with all loss terms above the diagonal of the decoding grid (k > 1),
performs equal or better than models trained with only a subset of the terms, across all tested latency
levels.

For transformer model (MT), training for all decoding paths above a certain wait-k path is pro-
hibitively costly (since the cost is linear in the number of training paths). Therefore, we opted
instead for joint training for a selected set of wait-k paths. Results in Figure [4b| show that jointly
training on the wait-k paths from k=1 to k=5 improves over the training on individual paths in low-
latency regimes (keya < 3). For higher latency a relatively small drop in performance is observed
compared to training with & = 5.

Where the convolutional model could be trained near optimal by training across all values of k, in
Figure [4c| we see that training the paths form k=1 to k=9 preforms similarly to just training with
k=9. The latter model is (near) optimal for AL> 3, but for very low-latency the model trained on
ke [l..5].

Impact of hidden state updates. The standard decoding approach with a Transformer is to use
previously evaluated hidden states to encode the target prefix written so far. This is not the case
for MPA where new source context is integrated in the convolution for all previous time-steps. To
bridge the gap between the two decoding paradigms, we update previous hidden states to account
for new source contexts.

In Table [2] we compare transformer models with and without hidden state updates, trained along
one or multiple decoding paths. Among the 20 comparisons (4 models, and 5 wait-k decoders) we
observe only a single case where state updates drop the BLEU score by 0.1. In all other cases, the
state updates lead to improvements, by up to 2.4 BLEU points in very low latency settingsﬂ

“Table[2) does not report the AL values, which are comparable across different models given a fixed wait-k
decoder, i.e. per column. See Appendix |E| for results with AL values.
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Figure 5: Experimental results on WMT15 De-En.

Experiments on the WMT15 De-En corpus. In Figure[5a we present our results on the WMT15
De-En task using transformer model, which gave the best results in the IWSLT experiments. The
results confirm observations made on IWSLT: (i) Hidden state updates consistently improve the
performance of the tested models. (ii)) When using hidden state updates, a single low-latency model
(k =) performs better or comparable to using separate models trained specifically for the value of
k used for decoding (keya))-

The main differences w.r.t. the IWSLT experimental results are observed for the model trained for
offline decoding (k = 00). Whereas on IWSLT it was competitive with the best models trained for
online decoding, for this larger corpus with longer sentences, this is no longer the case and the offline
model performs significantly worse than the ones specifically trained for online decoding.

Comparison to state-of-the-art. Figure [5b|compares our results with state-of-the-art performance
reported by Ma et al.| (2019) and Zheng et al.| (2019) for German-English translation on the WMT15
dataset. Our model (k =7, with update) establishes a new state of the art for this task, significantly
improving over previous work across the full range of latency levels.

It is important to note that to obtain our results we use a single trained model regardless of the latency
level considered at decoding time, like [Zheng et al.| (2019) but unlike Ma et al.| (2019). Moreover,
we use simple wait-k decoders to attain different latency levels. [Zheng et al.| (2019), on the other
hand, trained a data adaptive controller to decide on the read/write actions, but used an underlying
decoder trained for offline translation. Given our results, we expect that further gains are possible
by training controllers on top of our model, which is trained specifically for online decoding.

5 CONCLUSION

We compared transformer and 2D convolutional architectures for online machine translation with
“wait-k” decoders, and proposed improved training techniques for these models. We find the trans-
former architecture to perform best, and improved its performance using hidden state updates in-
spired from the 2D convolutional architecture. We find that training a single model for relatively
high values of k, e.g. 7 or 9, yields a performance that is comparable to using separate models
trained for each specific value of k. Training a single model for multiple values of k& improves
performance for very low-latency regimes.

Our results establish a new state of the art for online machine translation on WMT15 De-En dataset.
We improve over recent results obtained with “wait-k” decoders (Ma et al.,[2019) and trained data-
adaptive controllers (Zheng et al., [2019) to schedule read/write actions. Our results, together with
those of Zheng et al|(2019), suggest that further performance improvements are possible by inte-
grating our models trained for online decoding with data-adaptive controllers.
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A DETAILS ON THE CONVOLUTIONAL ARCHITECTURE

In this section we provide more details on the modifications we made to the convolutional “pervasive
attention” architecture of [Elbayad et al| (2018). In Figure [f] we provide a schematic overview of the
original convolutional architecture of Elbayad et al.| (2018).

Linear Conv2D(k)
—{BN1 —>d_)d—>BN2—> dod —
(a) Building block
X—
Linear Pervasive Pervasive Pervasive
concati=og g block 1 block 2 ’| block N
y— 1

(b) Overall dense architecture

Figure 6: Original convolutional architecture of [Elbayad et al.[(2018).

In our work, we made the following modifications to reduce the memory footprint of the model and
to improve its performance.

1. We added feed-forward 1t¢mesl convolutional layers after the masked convolutions for
their important role in existing encoder architectures as they boost the representational
power of the model.

2. We substituted the dense layer connections with residual ones to reduce the size of the
features that keep increasing and costing more memory.

3. We opted for layer-normalization (Ba et al., [2016) instead of batch-normalization as it is
more stable and more appropriate for causal sequences.

4. We use depth-wise separable convolutions for Conv2D(k) instead of ordinary convolutions.

In Figure|/| we provide a schematic overview of the adapted convolutional architecture.

Linear Conv2D(K)| . 1 Linear Linear M
lTa-da | d—d P LN1Td—»dﬁn_’dﬁn—»d N2
(a) Building block
X—
Linear Pervasive Pervasive Pervasive
concat—| —> — e
2d —» d block 1 block 2 block N
y— 1

(b) Overall residual architecture
Figure 7: Overview of the adapted convolutional architecture.
Finally, we found that removing the layer normalizations all-together and summing the block outputs

before projecting on the target vocabulary to give best results. The final high-level architecture with
block output addition is given in Figure[§]

X—
Linear Pervasive Pervasive Pervasive
concatf— ey
2d - d block 1 block 2 block N
y—1
N
—

Figure 8: Overview of the architecture with block output addition used in this paper.
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B ADDITIONAL EVALUATION RESULTS

In this appendix we provide additional evaluation results.

1. In addition to results in the main paper measuring latency with AL, in Appendix [B.1] we
provide results measuring latency using the AP and DAL metrics.

2. In Appendix [B.2] we provide the numerical underlying the plots for IWSLT De-En in the
main paper and appendix.

3. Finally, we provide results for the reverse En-De translation direction for both IWSLT in
Appendix [B.3|and WMT in Appendix

13
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B.1 IWSLT DE-EN: AP AND DAL LATENCY
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Figure 9: IWSLT De-En: Online decoding with single and multiple paths training. Measuring
latency with AP and DAL, corresponding to figures E| andE| in the main paper where AL is used.
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B.2 IWSLT DE-E: NUMERICAL RESULTS

k BLEU AP AL DAL k BLEU AP AL DAL k BLEU AP AL DAL k BLEU AP AL DAL
1 189 0.53 0.1 1.8 1 228 0.60 1.8 2.4 1 229 0.60 1.8 2.5 1 189 0.53 0.1 1.8
3 21.2 062 1.7 34 3 26.3 0.67 3.2 3.7 3 271 0.66 3.0 3.7 3 26.0 0.64 23 35
5 20.8 0.70 3.6 5.1 5 29.0 0.74 48 54 5 29.6 0.73 4.6 54 5 29.1 0.73 45 53
7 19.0 0.75 51 6.9 7 30.6 0.79 6.6 7.2 7 30.6 0.79 6.3 7.1 7 30.6 079 6.3 7.1
9 17.2 0.80 6.6 8.7 9 316 0.84 83 89 9 31.0 0.83 8.0 88 9 315 0.84 82 89
(@MT, k=1 (b)MT, k = o (OMT, k=7 (d)MT, k = keval
k BLEU AP AL DAL k BLEU AP AL DAL k BLEU AP AL DAL k BLEU AP AL DAL
1 214 054 0.6 1.7 1 247 059 19 2.1 1 247 0.58 2.0 2.2 1 214 054 06 1.7
3 215 0.62 2.2 33 3 278 0.67 34 3.6 3 279 0.66 3.3 3.6 3 271 0.65 2.9 3.5
5 20.0 0.70 3.7 5.1 5 299 0.74 50 5.4 5 30.0 0.73 49 54 5 28.8 0.73 5.0 55
7 18.1 0.75 52 6.9 7 314 0.80 6.7 7.2 7 31.1 079 66 7.1 7 31.1 079 6.6 7.1
9 16.3 0.80 6.6 8.7 9 321 0.84 84 89 9 31.0 0.84 82 88 9 31.7 0.84 83 89

() MT, k =1-Update (f)MT, k= oo -Update (g) MT, k =T7-Update (h) MT, k = keva - Update

k BLEU AP AL DAL k BLEU AP AL DAL k BLEU AP AL DAL
1 18.8 050 -09 1.7 1 175 049 -1.0 1.6 1 172 049 -11 1.5
3 258 0.63 1.8 34 3 252 0.62 1.7 34 3 245 0.62 14 3.3
5 289 0.72 42 5.3 5 28.6 0.72 41 53 5 283 0.71 3.9 52
7 30.6 0.79 6.3 7.1 7 305 0.79 6.2 7.1 7 303 0.78 6.0 7.1
9 312 0.84 81 89 9 313 0.84 8.1 8.8 9 313 0.83 8.0 8.8

(HMPA, k=1 GYMPA, k=5 KMPA, k=7

k BLEU AP AL DAL k BLEU AP AL DAL k BLEU AP AL DAL
1 226 0.55 03 2.0 1 231 0.60 1.8 25 1 231 0.61 2.0 2.6
3 25.7 0.63 19 34 3 272 0.66 3.0 3.7 3 26.8 0.67 3.2 3.8
5 279 0.717 39 52 5 29.7 0.73 45 54 5 29.6 0.73 47 54
7 289 0.78 59 7.0 7 30.7 079 63 7.1 7 313 079 65 7.1
9 28.7 0.82 75 8.7 9 31.1 0.83 81 838 9 31.7 0.84 81 8.8
() MT, k € [1..5] (m) MT, k € [3..7] (n) MT, k € [1..9] - Update

k BLEU AP AL DAL k BLEU AP AL DAL k BLEU AP AL DAL
1 25.0 0.56 1.3 1.9 1 231 0.60 1.8 25 1 245 0.59 2.1 23
3 280 0.65 2.8 3.5 3 272 0.66 3.0 3.7 3 280 0.67 34 3.7
5 29.1 0.72 4.6 5.3 5 29.7 0.73 45 54 5 30.1 0.74 5.0 54
7 291 0.78 6.2 7.0 7 30.7 079 63 7.1 7 314 0.7 6.7 7.2
9 28.6 0.83 7.8 8.8 9 311 0.83 81 838 9 31.7 0.84 83 89
(0) MT, k € [1..5] - Update (p) MT, k € [3..7] - Update (@) MT, k € [1..9] - Update

Table 3: Numerical results of IWSLT De-En

B.3 IWSLT EN-DE

k BLEU AP AL DAL k BLEU AP AL DAL k BLEU AP AL DAL
1 18.5 0.61 2.5 2.8 1 18.7 0.62 26 3.0 1 164 059 19 25
3 228 0.69 3.8 4.1 3 232 0.69 39 4.2 3 221 0.68 3.7 4.0
5 25.0 0.75 55 5.7 5 254 0.75 54 5.8 5 254 0.75 53 5.7
7 259 081 7.2 75 7 264 081 7.1 74 7 264 081 7.1 74
9 26.2 0.86 89 9.2 9 264 0.85 87 9.1 9 26.7 0.85 88 9.1
(@) MT, k = o b)MT, k=7 (©) MT, k = ke
k BLEU AP AL DAL k BLEU AP AL DAL k BLEU AP AL DAL
1 21.2 0.60 2.3 2.6 1 214 0.60 2.3 25 1 16.6 0.57 1.6 2.1
3 243 0.68 3.8 4.0 3 24.7 0.68 3.7 3.9 3 229 0.67 3.5 3.7
5 25.8 0.75 54 5.7 5 26.2 0.75 53 5.6 5 25.6 0.75 52 5.5
7 26.2 081 7.2 75 7 26.3 081 7.0 7.3 7 26.3 081 7.0 7.3
9 26.4 0.86 89 9.2 9 26.0 0.85 86 9.0 9 26.2 0.85 8.6 9.0

(d) MT, k = oo - Update (e) MT, k = 7 - Update (f) MT, k = keva - Update

Table 4: Numerical results of IWSLT En-De
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Figure 10: IWSLT En-De: Online decoding with single and multiple paths training. Measuring
latency with AP, AL and DAL
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B.4 WMT EN-DE

k BLEU AP AL DAL k BLEU AP AL DAL k BLEU AP AL DAL
1 183 053 03 21 1 183 0.56 09 24 1 213 0.62 33 41
3 24.0 0.61 23 3.6 3 246 0.62 24 3.6 3 231 0.68 4.7 54
5 27.0 0.68 4.3 54 5 271 069 43 54 5 244 0.73 6.3 7.0
7 284 075 6.2 7.2 7 284 075 6.2 7.2 7 25.6 0.78 78 85
9 29.3 0.79 80 9.0 9 29.0 0.79 81 9.0 9 26.8 0.82 94 10.0
(@) MT, k = keva bYMT, k=7 () MT, k = 0
k BLEU AP AL DAL k BLEU AP AL DAL &k BLEU AP AL DAL
1 189 053 04 20 1 228 0.55 1.0 1.9 1 213 0.62 33 4.1
3 248 0.62 26 3.6 3 263 062 2.7 3.5 3 231 0.68 4.7 54
5 27.8 0.69 44 54 5 28.1 069 4.5 5.4 5 244 0.73 6.3 7.0
7 288 0.75 63 7.2 7 288 0.75 63 7.2 7 25.6 078 78 85
9 294 0.79 80 9.0 9 293 079 81 9.0 9 26.8 0.82 94 10.0

() MT, k = keya - Update

() MT, k = 7 - Update

() MT, k = oo - Update

Table 5: Numerical results of WMT De-En underlying figures [3|and 4] in the main paper.

Offline® Offlincll
30 g 30 30 g 30
=z s .k P
28 B 28 28 s 28
3, AN |
26 <4 26 26 2 26
a W 3 [
Z 24 o 24 Z 24 o 24
o A8 MT k=7 0ol e Em T k=7
22 " /s |-EF MT k=7 - update 22 22 -EF MT k=7 - update 22
MT k:keval MT k:keva\
20 MT k=keval - tpdate | | 20 20 MT k=keval - tipdate | | 20
- MT k=0 - MT k=0
18 -EF MT k=0 - Update 18 18 L -EF MT k=00 - Update 18
05 06 07 08 091 0 2 4 6 8 10 12 27

Average proportion

(a) AP

Differentiable average lagging

(b) DAL

Figure 11: WMT De-En results with latency measures AP and DAL.
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