
Under review as a conference paper at ICLR 2020

PROJECTION BASED CONSTRAINED POLICY OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we consider the problem of learning control policies that optimize a
reward function while satisfying constraints due to considerations of safety, fair-
ness, or other costs. We propose a new algorithm – Projection Based Constrained
Policy Optimization (PCPO), an iterative method for optimizing policies in a two-
step process – the first step performs an unconstrained update while the second
step reconciles the constraint violation by projection the policy back onto the con-
straint set. We theoretically analyze PCPO and provide a lower bound on reward
improvement, as well as an upper bound on constraint violation for each policy
update. We further characterize the convergence of PCPO with projection based
on two different metrics – L2 norm and Kullback-Leibler divergence. Our em-
pirical results over several control tasks demonstrate that our algorithm achieves
superior performance, averaging more than 3.5 times less constraint violation and
around 15% higher reward compared to state-of-the-art methods.1

1 INTRODUCTION

Recent advances in deep reinforcement learning (deep RL) have demonstrated excellent perfor-
mance on several domains ranging from games like Go (Silver et al., 2017) and StarCraft (AlphaS-
tar, 2019) to tasks like robotic control (Levine et al., 2016). In these settings, agents are allowed to
explore the entire state space and experiment with all possible actions during training. However, in
many real-world applications such as self-driving cars and unmanned aerial vehicles, considerations
of safety, fairness and other costs prevent the agent from having complete freedom to explore the en-
vironment. For instance, an autonomous car, while optimizing for its driving policies, must not take
any actions that could cause harm to pedestrians or property (including itself). In effect, the agent is
constrained to take actions that do not violate a specified set of constraints on state-action pairs. In
this work, we address the problem of learning control policies that optimize a reward function while
satisfying predefined constraints.

The problem of policy learning with constraints is challenging since directly optimizing for the
reward, like in Q-Learning (Mnih et al., 2013) or policy gradient (Sutton et al., 2000) approaches,
would violate the constraints at some point. One approach to incorporate constraints into the learning
process is by formulating a constrained optimization problem (Achiam et al., 2017). This work
performs policy updates using a conditional gradient descent with line search to ensure constraint
satisfaction. However, their base optimization problem becomes infeasible when the current policy
violates the constraints. Another approach (Tessler et al., 2018) adds weighted constraints to make
the optimization easier, but requires extensive hyperparameter tuning of the weights.

To address the above issues, we propose projection based constrained policy optimization (PCPO)
– an iterative algorithm that performs policy updates in two stages. In the first stage, we maximize
reward using a trust region optimization method (e.g., TRPO (Schulman et al., 2015a)) without
any constraints – this might result in a new intermediate policy that does not satisfy the provided
constraints. In the second state, we reconcile the constraint violation (if any) by projecting the
policy back onto the constraint set, i.e., choosing the policy in the constraint set that is closest to
the intermediate policy chosen. This allows us to perform efficient updates while not violating the

1We provide the link to anonymized code: https://sites.google.com/view/
iclr2020-submission-pcpo

1

https://sites.google.com/view/iclr2020-submission-pcpo
https://sites.google.com/view/iclr2020-submission-pcpo

Under review as a conference paper at ICLR 2020

constraints, without requiring line search (Achiam et al., 2017) or constraint approximations (Tessler
et al., 2018). Further, due to the projection step, PCPO offers efficient recovery from infeasible (i.e.,
constraint-violating) starting states, which existing methods cannot handle well.

We analyze PCPO theoretically and derive performance bounds for our algorithm. Specifically,
based on information geometry and policy optimization theory, we construct (1) a lower bound on
reward improvement, and (2) an upper bound on constraint violations for each policy update. We
find that with a relatively small step size for each policy update, the worst-case constraint violation
and reward degradation are tolerable. We further analyze two distance measures for the projection
step onto the constraint set. We find that the convergence of PCPO is affected by the singular value
of the Fisher information matrix used during training, providing a prescription for choosing the type
of projection depending on the problem.

Empirically, we compare PCPO with state-of-the-art algorithms on four different control tasks, in-
cluding two Mujoco environments with safety constraints introduced by Achiam et al. (2017) and
two traffic management tasks with fairness constraints introduced by Vinitsky et al. (2018). In all
cases, our algorithm achieves comparable or superior performance to prior approaches, averaging
more reward with less cumulative constraint violations. For instance, across these environments,
PCPO performs 3.5 times less constraint violations and around 15% more reward. This demon-
strates the ability of PCPO robustly learn constraint-satisfying policies, and represents a step towards
reliable deployment of RL in the real world.

2 PRELIMINARIES

We frame our policy learning as a constrained Markov Decision Process (CMDP) (Altman, 1999),
where policies will direct the agent to obtain the reward while avoiding the cost. We define CMDP
as the tuple < S,A, T,R,C >, where S is the set of states, A is the set of actions that the agent
can take, T : S × A × S → [0, 1] is the transition probability of the CMDP, R : S × A → R is
the reward function, and C : S × A → R is the cost function. Given the agent’s current state s, the
policy π(a|s) : S → A selects an action a for the agent to take. Based on s and a, the agent transits
to the next state (denoted by s′) according to the state transition model T (s′|s, a), and receives a
reward and pays a cost, denoted by R(s, a) and C(s, a), respectively.

We aim to learn a policy π that maximizes a cumulative discounted reward, denoted by

JR(π)
.
= Eτ∼π

[∞∑
t=0

γtR(st, at)
]
,

while satisfying constraints, i.e., making a cumulative discounted cost constraint below a desired
threshold h, denoted by

JC(π)
.
= Eτ∼π

[∞∑
t=0

γtC(st, at)
]
≤ h,

where γ is the discount factor, τ is the trajectory (τ = (s0, a0, s1, · · ·)), and τ ∼ π is shorthand
for showing that the distribution over the trajectory depends on π : s0 ∼ µ, at ∼ π(at|st), st+1 ∼
T (st+1|st, at), where µ is the initial state distribution.

Kakade & Langford (2002) derived an identity to express the performance of one policy π′ in terms
of the advantage function over π :

JR(π′)− JR(π) = 1

1− γ
E
s∼dπ

′

a∼π′
[AπR(s, a)], (1)

where dπ is the discounted future state distribution, denoted by dπ(s) .
= (1 − γ)

∑∞
t=0 γ

tP (st =
t|π), and AπR(s, a) is the reward advantage function, denoted by AπR(s, a)

.
= QπR(s, a) − V πR (s).

Here QπR(s, a) is the discounted cumulative reward obtained by the policy π given the initial state
s and action a, and V πR (s) is the discounted cumulative reward obtained by the policy π given the
initial state s. Lastly, we also have AπC , QπC(s, a) and V πC (s) for the cost function.

2

Under review as a conference paper at ICLR 2020

3 PROJECTION BASED CONSTRAINED POLICY OPTIMIZATION

Learning constraint-satisfying policies is challenging because the policy optimization landscape is
no longer smooth. Further, in many cases, the constraints often conflict with the best direction of
policy updates to maximize reward. Therefore, we require an algorithm that can make progress in
terms of policy improvement without being shackled by the constraints and potentially getting stuck
in local minima. A further challenge is that if we do end up with an infeasible (i.e., constraint-
violating) policy, we need some efficient means of recovering back to a constraint-satisfying policy.

Figure 1: The update procedures for PCPO. In the first
step, PCPO follows the reward improvement direction
in the trust region. In the second step, PCPO projects
the policy onto the constraint set.

To this end, we develop PCPO – a trust re-
gion method that performs policy updates cor-
responding to reward improvement, followed
by projections onto the constraint set. Formally,
PCPO, inspired by projected gradient descent,
is composed of two steps for each policy update
– a reward improvement step and a projection
step (See Fig. 1 for illustrating the procedure of
PCPO).

Reward Improvement Step. First, we opti-
mize a reward function by maximizing the re-
ward advantage function AπR(s, a) subject to a
Kullback-Leibler (KL) divergence constraint that constraints the intermediate policy πk+

1
2 within

δ-neighbourhood of πk:

πk+
1
2 = argmax

π
E
s∼dπ

k

a∼π
[Aπ

k

R (s, a)]

s.t. E
s∼dπk

[
DKL(π||πk)[s]

]
≤ δ. (2)

This update rule with the trust region, denoted by {π : E
s∼dπk

[
DKL(π||πk)[s]

]
≤ δ}, is called

Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a). It effectively constraints the
policy changes and guarantees reward improvement.

Projection Step. Second, we project the intermediate policy πk+
1
2 onto the constraint set by mini-

mizing distance measure D subject to the constraint set (we assume that the constraint set is closed
and convex, and thus the projection is well-defined):

πk+1 = argmin
π

D(π, πk+
1
2)

s.t. JC(πk) + E
s∼dπ

k

a∼π
[Aπ

k

C (s, a)] ≤ h. (3)

The projection step says that the constraint-satisfying policy πk+1 is within the neighbourhood of
πk+

1
2 . We consider two distance measures – L2 norm and KL divergence. If the neighbourhood

is defined in the parameter space, a natural way is to use L2 norm projection. However, for the
projection that defines in the parameter space, it is difficult to make connection to the policy defined
in the probability distribution space, and hence hard to provide guarantees. Fortunately, using KL
divergence projection in the probability distribution space enables us to provide provable guarantees
for PCPO with KL divergence projection.

3.1 PERFORMANCE BOUND FOR PCPO WITH KL DIVERGENCE PROJECTION

To give performance guarantees for PCPO with KL divergence projection, we analyze worst-case
performance degradation for each policy update when the current policy πk satisfies the constraint.
The following theorem provides (1) a lower bound on reward improvement, and (2) an upper bound
on constraint violation for each policy update.

Theorem 3.1 (Worst-case Bound on Updating Constraint-satisfying Policies). Define επ
k+1

R
.
=

max
s

∣∣Ea∼πk+1 [Aπ
k

R (s, a)]
∣∣, and επ

k+1

C
.
= max

s

∣∣Ea∼πk+1 [Aπ
k

C (s, a)]
∣∣. If the current policy πk satis-

3

Under review as a conference paper at ICLR 2020

fies the constraint, and KL divergence projection is used, then the lower bound on reward improve-
ment, and upper bound on constraint violation for each policy update are

JR(πk+1)− JR(πk) ≥ −
√
2δγεπ

k+1

R

(1− γ)2
, and JC(πk+1) ≤ h+

√
2δγεπ

k+1

C

(1− γ)2
.

Theorem 3.1 states that if δ is small, the worst-case performance degradation is tolerable.

Due to approximation errors or random initialization of policies, PCPO may produce a constraint-
violating policy. To give performance guarantees for PCPO with KL divergence projection, we
analyze worst-case performance degradation for each policy update when the current policy πk

violates the constraint. The following theorem provides (1) a lower bound on reward improvement,
and (2) an upper bound on constraint violation for each policy update.

Theorem 3.2 (Worst-case Bound on Updating Constraint-violating Policies). Define επ
k+1

R
.
=

max
s

∣∣Ea∼πk+1 [Aπ
k

R (s, a)]
∣∣, επk+1

C
.
= max

s

∣∣Ea∼πk+1 [Aπ
k

C (s, a)]
∣∣, b+ .

= max(0, JC(πk) − h), and

αKL
.
= 1

2aTH−1a
, where a is the gradient of the cost advantage function, and H is the Hessian of

the KL divergence constraint. If the current policy πk violates the constraint, and KL divergence
projection is used, then the lower bound on reward improvement, and the upper bound on constraint
violation for each policy update are

JR(πk+1)−JR(πk) ≥ −

√
2(δ + b+2αKL)γε

πk+1

R

(1− γ)2
, and JC(πk+1) ≤ h+

√
2(δ + b+2αKL)γε

πk+1

C

(1− γ)2
.

Theorem 3.2 states that when the policy has more constraint violation (b+ increases), its worst-case
performance degradation increases. Note that Theorem 3.2 boils down to Theorem 3.1 if the current
policy πk satisfies the constraint (b+ = 0).

4 PCPO UPDATES

For a large neural network policy with many parameters, it is impractical to directly solve for the
PCPO update due to the computational cost. However, with a small step size δ, we can approximate
the reward function and constraints with a first order expansion, and approximate the KL divergence
constraint in reward improvement step, and the KL divergence measure in projection step with a
second order expansion. We now make several definitions:

g
.
= ∇θE

s∼dπ
k
a∼π

[Aπ
k

R (s, a)] is the gradient of the reward advantage function,

a
.
= ∇θE

s∼dπ
k
a∼π

[Aπ
k

C (s, a)] is the gradient of the cost advantage function,
H is the Hessian of the KL divergence constraint (H is also called the Fisher information matrix),
b
.
= JC(πk)− h,

and θ is the parameter of the policy.

Reward Improvement Step. First, we linearize the objective function at πk subject to second order
approximation of KL divergence constraint in order to obtain the following updates:

θk+
1
2 = argmax

θ
gT (θ − θk)

s.t.
1

2
(θ − θk)TH(θ − θk) ≤ δ.

Projection Step. Second, if the projection is defined in the parameter space, we can directly use L2

norm projection. On the other hand, if the projection is defined in the probability space, we can use
KL divergence, which can be approximated thought second order expansion. Again, we linearize
the cost constraint at πk. Finally, we have the following update for the projection step:

θk+1 = argmin
θ

1

2
(θ − θk+ 1

2)TL(θ − θk+ 1
2)

s.t. aT (θ − θk) + b ≤ 0,

4

Under review as a conference paper at ICLR 2020

Algorithm 1 Projection Based Constrained Policy Optimization (PCPO)

Initialize policy π0 = π(θ0)
for k = 0, 1, 2, · · · do

Run πk = π(θk) and store trajectories in D
Compute g,a,H, and b using D
Obtain θk+1 using update in Eq. (4)
Empty D

where L = I for L2 norm projection, and L = H for KL divergence projection. One may argue
that using linear approximation to the constraint set is not enough to ensure constraint satisfaction
since the real constraint set is non-convex and non-smooth in general. However, if the step size δ is
small, then the linearization of the constraint set is accurate enough to locally approximate it.

We solve these two problems using convex programming. For each policy update, we have

θk+1 = θk+

√
2δ

gTH−1g
H−1g −max(0,

√
2δ

gTH−1g
aTH−1g + b

aTL−1a
)L−1a. (4)

However, PCPO requires to invertH , which is impractical for huge neural network policies. Hence
we use the conjugate gradient method (Schulman et al., 2015a). Algorithm 1 shows the pseudocode.

Analysis of PCPO Update Rule. The update rule in Eq. (4) shows that the difference between
PCPO with KL divergence and L2 norm projection is the cost update direction, leading to reward
improvement difference. The policy iterate of L2 norm projection has more reward fluctuation than
KL divergence projection since L2 norm projection does not use the Fisher information matrix to
scale the cost update direction. However, when the Fisher information matrix of KL divergence
projection is ill-conditioned or not well-estimated, the reward and cost updates may be unstable
because of pathological curvature. In addition, these two projections converge to different stationary
points with different converge rates related to the Fisher information matrix shown in Theorem 4.1.
To make our analysis valid, we consider the following assumptions are satisfied. Assume that we
minimize the objective function f : Rn → R with L-smooth and twice continuously differentiable
over the closed and convex constraint set C, and the Fisher information matrixH is positive definite.

Theorem 4.1. Define η as the coefficient for the reward updates in Eq. (4), i.e., η .
=
√

2δ
gTH−1g

,

and σmax(A) is the largest singular value of matrix A. Then PCPO with KL divergence projection
converges to stationary points with g ∈ a, and the objective value changes by

f(θk+1) ≤ f(θk) + ||θk+1 − θk||2− 1
ηH+L

2 I
,

and PCPO with L2 norm projection converges to stationary points with H−1g ∈ a, and if
σmax(H) ≤ 1, then the objective value changes by

f(θk+1) ≤ f(θk) + (
L

2
− 1

η
)||θk+1 − θk||22.

Theorem 4.1 shows that the improvement of the objective value is affected by the singular value
of the Fisher information matrix. Specifically, the objective of KL divergence projection decreases
when Lη

2 I ≺H, implying that σmin(H) > Lη
2 . And the objective of L2 norm projection decreases

when η < 2
L , implying that condition number of H is upper bounded: σmax(H)

σmin(H) <
2||g||22
L2δ . Ob-

serving the Fisher information matrix allows us to adaptively choose the type of projection to fit the
landscape of the function.

5 RELATED WORK

Policy Learning with Constraints. Learning constraint-satisfying policies has been explored in the
context of safe RL (Garcia & Fernandez, 2015). The agent learns policies either by (1) exploration
of the environment (Achiam et al., 2017; Tessler et al., 2018; Chow et al., 2017) or (2) through

5

Under review as a conference paper at ICLR 2020

(a) Gather (b) Circle (c) Grid (d) Bottleneck

Figure 2: The gather, circle, grid and bottleneck tasks. (a) Gather task: the agent is rewarded for gathering
green apples but is constrained to collect a limited number of red fruit (Achiam et al., 2017). (b) Circle task: the
agent is rewarded for moving in a specified wide circle, but is constrained to stay within a safe region smaller
than the radius of the circle (Achiam et al., 2017). (c) Grid task: the agent controls the traffic lights in a grid
road network and is rewarded for high throughput but constrained to let lights stay red for at most 7 consecutive
seconds (Vinitsky et al., 2018). (d) Bottleneck task: the agent controls a set of autonomous vehicles (shown in
red) in a traffic merge situation and is rewarded for achieving high throughput but constrained to ensure that
human-driven vehicles (shown in white) have low speed for no more than 10 seconds (Vinitsky et al., 2018).

expert demonstrations (Ross et al., 2011; Rajeswaran et al., 2017; Gao et al., 2018). However, using
expert demonstrations require humans to label the constraint-satisfying behavior for every possible
situation. The scalability of these rule-based approaches is an issue since many real autonomous
systems such as self-driving cars and industrial robots are inherently complex. To overcome this
issue, our algorithm uses the first approach in which the agent learn by trial and error. To prevent
the agent from having constraint-violating behavior during exploring the environment, PCPO uses
projection onto the constraint set to ensure constraint satisfaction throughout learning.

Using a projection onto a constraint set is an approach that has been explored for general constrained
optimization in other contexts. For example, Akrour et al. (2019) projected the policy from a pa-
rameter space onto the constraint that constrains the updated policy to stay in the neighbourhood of
the previous policy. In contrast to their work, we examine constraints that are defined in terms of
states and actions. Similarly, Chow et al. (2019) proposed θ-projection. This projected the policy
parameters θ onto the constraint set. However, they did not provide provable guarantees for their
algorithm. Moreover, they modelled the problem using a constrained optimization problem with the
weighted constraint for step size added to the reward function. Since the weight must be tuned, this
incurs the cost of hyperparameter tuning. In contrast to their work, PCPO eliminates the cost of the
hyperparameter tuning, and provides provable guarantees on learning constraint-satisfying policies.

Comparison to CPO (Achiam et al., 2017). Perhaps the closest work to ours is the approach of
Achiam et al. (2017), who proposed the constrained policy optimization (CPO) algorithm to solve
the following:

θk+1 = argmax
θ

gT (θ − θk) s.t.
1

2
(θ − θk)TH(θ − θk) ≤ δ, aT (θ − θk) + b ≤ 0. (5)

PCPO is different from CPO since PCPO first optimizes a reward and uses projection to satisfy the
constraint, while CPO simultaneously considers the trust region and the constraint. The update rule
of CPO becomes infeasible when the current policy violates the constraint (b > 0). CPO recovers
by replacing Problem (5) with an update to purely decrease the constraint value: θk+1 = θk −√

2δ
aTH−1a

H−1a. This update rule may lead to a slow progress in learning constraint-satisfying
policies. In contrast, PCPO ensures a feasible solution, allowing the agent to improve the reward
while ensuring constraint satisfaction simultaneously.

6 EXPERIMENTS

We compare our method with existing approaches on four control tasks in total: two tasks with safety
constraints ((a) and (b) in Fig. 2), and two tasks with fairness constraints ((c) and (d) in Fig. 2). These
tasks are briefly described in the caption of Fig. 2. The first two tasks – Gather and Circle – are
Mujoco environments with state space constraints introduced by Achiam et al. (2017). The other
two tasks – Grid and Bottleneck – are traffic management problems where the agent controls either
a traffic light or a fleet of autonomous vehicles. This is especially challenging since the dimensions
of state and action spaces are larger, and the dynamics of the environment are inherently complex.

6

Under review as a conference paper at ICLR 2020

(a) Point circle (b) Point gather (c) Ant circle

(d) Ant gather (e) Grid (f) Bottleneck

Figure 3: The values of the reward and the undiscounted constraint value (the total number of
constraint violation) along policy updates for the tested algorithms and task pairs. The solid line
is the mean and the shaded area is the standard deviation, over five runs. The dash line in the cost
constraint plot is the cost constraint threshold h. The curves for baseline oracle, TRPO, indicate the
reward and constraint violation values when the constraint is ignored. (Best viewed in color, and the
legend is shared across all the figures.)

We compare our algorithm with four baselines outlined below.

(1) Constrained Policy Optimization (CPO) (Achiam et al., 2017).

(2) Primal-dual Optimization (PDO) (Chow et al., 2017). In PDO, the weight (dual variables) is
learned based on the current constraint satisfaction. A PDO policy update solves:

θk+1 = argmax
θ

gT (θ − θk) + λkaT (θ − θk), (6)

where λk is updated using λk+1 = λk + β(JC(πk)− h). Here β is a fixed learning rate.

(3) Fixed-point Policy Optimization (FPO). A variant of PDO that solves Eq. (6) using a constant λ.

7

Under review as a conference paper at ICLR 2020

(a) Point circle (b) Point gather

Figure 4: The reward versus the cumulative constraint value for the tested algorithms and task pairs.
See supplementary material for learning curves in the other tasks. PCPO achieves less constraint
violation under the same reward improvement compared to the other algorithms.

(4) Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a). The TRPO policy update is
an unconstrained one:

θk+1 = θk +

√
2δ

gTH−1g
H−1g.

Note that TRPO ignores any constraints – we include it to serve as an upper bound baseline on the
performance.

Since our main focus is to compare our algorithm with the state-of-the-art algorithm, CPO, PDO
and FPO are not shown in the ant circle, ant gather, grid and bottleneck tasks for clarity.

For the gather and circle tasks we test two distinct agents: a point-mass (S ⊆ R9, A ⊆ R2), and
an ant robot (S ⊆ R32, A ⊆ R8). The agent in the grid task is S ⊆ R156, A ⊆ R4, and the agent
in bottleneck task is S ⊆ R141, A ⊆ R20. For the simulations in the gather and circle tasks, we
use a neural network with two hidden layers of size (64, 32) to represent Gaussian policies. For the
simulations in the grid and bottleneck tasks, we use a neural network with two hidden layers of size
(16, 16) and (50,25) to represent Gaussian policies, respectively. The step size δ is set to 10−4 for
all tasks and all tested algorithms. For each task, we conduct 5 runs to get the mean and standard
deviation for both the reward and the constraint value over the policy updates. The experiments are
implemented in rllab (Duan et al., 2016), a tool for developing and evaluating RL algorithms.

Overall Performance. The learning curves of the discounted reward and the undiscounted con-
straint value (the total number of constraint violation) over policy updates are shown for all tested
algorithms and tasks in Fig. 3. The dashed line in the constraint figure is the cost constraint threshold
h. The curves for baseline oracle, TRPO, indicate the reward and constraint value when the con-
straint is ignored. Overall, we find that PCPO is able to improve the reward while having the fastest
constraint satisfaction in all tasks. In particular, PCPO is only algorithm that learns constraint-
satisfying policies across all the tasks. Moreover we observe that (1) CPO has more constraint
violation than PCPO, (2) PDO is too conservative in optimizing the reward, and (3) FPO requires a
significant effort to select a good vlaue of λ.

We also observe that in Grid and Bottleneck task, there is slightly more constraint violation than the
easier task such as point circle and point gather. This is due to complexity of the policy behavior
and non-convexity of the constraint set. However, even with linear approximation of the constraint
set, PCPO still outperforms CPO with 85.15% and 5.42 times less constraint violation in Grid and
Bottleneck task, respectively.

These observations suggest that projection step in PCPO drives the agent to learn the constraint-
satisfying policy within few policy update, giving PCPO a great advantage for the real world appli-
cations. To show that PCPO achieves the same reward with less constraint violation, we examine
the reward versus the cumulative constraint value for the tested algorithms in point circle and point
gather task shown in Fig. 4. We observe that PCPO outperforms CPO significantly with 66 times
and 15 times less constraint violation under the same reward improvement in point circle and point
gather tasks, respectively. This observation suggests that PCPO enables the agent to cautiously
explore the environment under the constraints.

8

Under review as a conference paper at ICLR 2020

Comparison of PCPO with KL Divergence vs. L2 Norm Projections. We observe that PCPO
with L2 norm projection is more constraint-satisfying than PCPO with KL divergence projection.
In addition, PCPO with L2 norm projection tends to have reward fluctuation (point circle, ant cir-
cle, and ant gather tasks), while with KL divergence projection tends to have more stable reward
improvement (all the tasks).

The above observations confirm our discussion in Section 4 that since the update direction of con-
straint does not scale by the Fisher information matrix, the update direction of the constraint is
deviated from the update direction of the reward, which reduces the reward improvement. However,
when the Fisher information matrix is ill-conditioned or not well-estimated especially in the high
dimensional policy space, the bad constraint update direction may hinder the constraint-satisfaction
(ant circle, ant gather, grid and bottleneck tasks). In addition, since the stationary points of KL di-
vergence and L2 norm projections are different, they converge to the policies with different reward
(observe that PCPO with L2 norm projection has higher reward than the one with KL divergence
projection around 2250 iterations in ant circle task, and has less reward in point gather task).

Discussion of PDO and CPO. For the PDO baseline, we see that its constraint values fluctuate
especially in the point circle task. This phenomena suggests that PDO is not able to adjust the
weight λk quickly enough to meet the constraint threshold, which hinders the efficiency of learning
constraint-satisfying policies. If learning rate β is too big, the agent will be too conservative in
improving the reward. For the FPO, we also see that it learns near constraint-satisfying policies with
slightly larger reward improvement compared to PDO. However, in practice FPO requires a lot of
engineering effort to select a good λ. Since PCPO requites no hyperparameter tuning, it has the
advantage of robustly learning constraint-satisfying policies.

7 CONCLUSION

We address the problem of finding constraint-satisfying policies. Our algorithm – projection-based
constrained policy optimization (PCPO) – optimizes for a reward function while using policy projec-
tions to ensure constraint satisfaction. Our algorithm achieves comparable or superior performance
to state-of-the-art approaches in terms of reward improvement and constraint satisfaction in all cases.
We further analyze the convergence of PCPO, and find that certain tasks may prefer either KL di-
vergence projection or L2 norm projection. Future work will consider the following: (1) integrating
a line search method in highly non-convex constraint set to ensure constraint satisfaction, (2) exam-
ining the Fisher information to iteratively prescribe the choice of projection for policy update, and
hence robustly learn constraint-satisfying policies with more reward improvement, and (3) using
expert demonstration or other domain knowledge to reduce the sample complexity.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
Proceedings of International Conference on Machine Learning, pp. 22–31, 2017.

Riad Akrour, Joni Pajarinen, Gerhard Neumann, and Jan Peters. Projections for approximate policy
iteration algorithms. In Proceedings of International Conference on Machine Learning, pp. 181–
190, 2019.

AlphaStar. Alphastar: Mastering the real-time strategy game star-
craft ii, 2019. URL https://deepmind.com/blog/article/
alphastar-mastering-real-time-strategy-game-starcraft-ii.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained re-
inforcement learning with percentile risk criteria. Journal of Machine Learning Research, 18(1):
6070–6120, 2017.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Mohammad Ghavamzadeh, and Edgar Duenez-
Guzman. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

9

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

Under review as a conference paper at ICLR 2020

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In Proceedings of International Conference on
Machine Learning, pp. 1329–1338, 2016.

Yang Gao, Ji Lin, Fisher Yu, Sergey Levine, Trevor Darrell, et al. Reinforcement learning from
imperfect demonstrations. arXiv preprint arXiv:1802.05313, 2018.

Javier Garcia and Fernando Fernandez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of International Conference on Machine Learning, pp. 267–274, 2002.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of International Conference on
Artificial Intelligence and Statistics, pp. 627–635, 2011.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of International Conference on Machine Learning, pp. 1889–
1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In Proceedings of Neural
Information Processing Systems, pp. 1057–1063, 2000.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization.
arXiv preprint arXiv:1805.11074, 2018.

Eugene Vinitsky, Aboudy Kreidieh, Luc Le Flem, Nishant Kheterpal, Kathy Jang, Fangyu Wu,
Richard Liaw, Eric Liang, and Alexandre M. Bayen. Benchmarks for reinforcement learning in
mixed-autonomy traffic. In Proceedings of Conference on Robot Learning, pp. 399–409, 2018.

10

Under review as a conference paper at ICLR 2020

A PROOF OF PERFORMANCE BOUND ON UPDATING THE
CONSTRAINT-SATISFYING POLICY

To prove the policy performance bound when the current policy is feasible, we prove KL divergence
between πk and πk+1 for KL divergence projection. We then prove our main theorem for worst-case
performance degradation.

Lemma A.1. If the current policy πk satisfies the constraint, the constraint set is closed and con-
vex, the KL divergence constraint for the first step is E

s∼dπk
[
DKL(π

k+ 1
2 ||πk)[s]

]
≤ δ, and KL

divergence projection is used, then we have

E
s∼dπk

[
DKL(π

k+1||πk)[s]
]
≤ δ.

Proof. By the Bregman divergence projection inequality, πk being in the constraint set, and πk+1

being the projection of the πk+
1
2 onto the constraint set, we have

E
s∼dπk

[
DKL(π

k||πk+ 1
2)[s]

]
≥ E

s∼dπk
[
DKL(π

k||πk+1)[s]
]
+ E

s∼dπk
[
DKL(π

k+1||πk+ 1
2)[s]

]
⇒ δ ≥E

s∼dπk
[
DKL(π

k||πk+ 1
2)[s]

]
≥ E

s∼dπk
[
DKL(π

k||πk+1)[s]
]
.

The derivation uses the fact that KL divergence is always greater than zero. We know that KL
divergence is asymptotically symmetric when updating the policy within a local neighbourhood.
Thus, we have

δ ≥ E
s∼dπk

[
DKL(π

k+ 1
2 ||πk)[s]

]
≥ E

s∼dπk
[
DKL(π

k+1||πk)[s]
]
.

Now we use Lemma A.1 to prove our main theorem.

Theorem A.2. Define επ
k+1

R
.
= max

s

∣∣Ea∼πk+1 [Aπ
k

R (s, a)]
∣∣, επk+1

C
.
= max

s

∣∣Ea∼πk+1 [Aπ
k

C (s, a)]
∣∣. If

the current policy πk satisfies the constraint, and KL divergence projection is used, then the lower
bound on reward improvement, and the upper bound on constraint violation for each policy update
are

JR(πk+1)− JR(πk) ≥ −
√
2δγεπ

k+1

R

(1− γ)2
, and JC(πk+1) ≤ h+

√
2δγεπ

k+1

C

(1− γ)2
.

Proof. By the theorem in Achiam et al. (2017) and Lemma A.1, we have the following reward
degradation bound for each policy update:

JR(πk+1)− JR(πk) ≥ 1

1− γ
E
s∼dπ

k

a∼πk+1

[
Aπ

k

R (s, a)− 2γεπ
k+1

R

1− γ

√
1

2
DKL(πk+1||πk)[s]

]
≥ 1

1− γ
E
s∼dπ

k

a∼πk+1

[
− 2γεπ

k+1

R

1− γ

√
1

2
DKL(πk+1||πk)[s]

]
≥ −
√
2δγεπ

k+1

R

(1− γ)2
.

Again, we have the following constraint violation bound for each policy update:

JC(πk) +
1

1− γ
E
s∼dπ

k

a∼πk+1

[
Aπ

k

R (s, a)
]
≤ h, (7)

and

JC(πk+1)− JC(πk) ≤ 1

1− γ
E
s∼dπ

k

a∼πk+1

[
Aπ

k

C (s, a) +
2γεπ

k+1

C

1− γ

√
1

2
DKL(πk+1||πk)[s]

]
. (8)

11

Under review as a conference paper at ICLR 2020

Combining Eq. (7) and Eq. (8), we have

JC(πk+1) ≤ h+
1

1− γ
E
s∼dπ

k

a∼πk+1

[2γεπk+1

C

1− γ

√
1

2
DKL(πk+1||πk)[s]

]
≤ h+

√
2δγεπ

k+1

C

(1− γ)2
.

B PROOF OF PERFORMANCE BOUND ON UPDATING THE
CONSTRAINT-VIOLATING POLICY

To prove the policy performance bound when the current policy is infeasible (i.e., constraint-
violating), we prove KL divergence between πk and πk+1 for KL divergence projection. We then
prove our main theorem for worst-case performance degradation.
Lemma B.1. If the current policy πk violates the constraint, the constraint set is closed and con-
vex, the KL divergence constraint for the first step is E

s∼dπk
[
DKL(π

k+ 1
2 ||πk)[s]

]
≤ δ, and KL

divergence projection is used, then we have

E
s∼dπk

[
DKL(π

k+1||πk)[s]
]
≤ δ + b+

2
αKL,

where αKL
.
= 1

2aTH−1a
, a is the gradient of the cost advantage function, H is the Hessian of the

KL divergence constraint, and b+ .
= max(0, JC(πk)− h).

Proof. We define the sublevel set of cost constraint function for the current infeasible policy πk:

Lπ
k

= {π | JC(πk) + E
s∼dπ

k

a∼π
[Aπ

k

C (s, a)] ≤ JC(πk)}.

This implies that the current policy πk lies in Lπ
k

, and πk+
1
2 is projected onto the constraint set:

{π | JC(πk)+E
s∼dπ

k

a∼π
[Aπ

k

C (s, a)] ≤ h}. Next, we define the policy πk+1
l as the projection of πk+

1
2

onto Lπ
k

.

By Three-point Lemma, for these three polices πk, πk+1, and πk+1
l , with ϕ(x) .=

∑
i xi log xi (Fig.

5 shows these three polices), we have

δ ≥ E
s∼dπk

[
DKL(π

k+1
l ||πk)[s]

]
= E

s∼dπk
[
DKL(π

k+1||πk)[s]
]

− E
s∼dπk

[
DKL(π

k+1||πk+1
l)[s]

]
+ E

s∼dπk
[
(∇ϕ(πk)−∇ϕ(πk+1

l))T (πk+1 − πk+1
l)[s]

]
⇒ E

s∼dπk
[
DKL(π

k+1||πk)[s]
]
≤ δ + E

s∼dπk
[
DKL(π

k+1||πk+1
l)[s]

]
− E

s∼dπk
[
(∇ϕ(πk)−∇ϕ(πk+1

l))T (πk+1 − πk+1
l)[s]

]
. (9)

The inequality E
s∼dπk

[
DKL(π

k+1
l ||πk)[s]

]
≤ δ comes from that πk and πk+1

l are in Lπ
k

, and
Lemma A.1.

If the constraint violation of the current policy πk is small, i.e., b+ is small,
E
s∼dπk

[
DKL(π

k+1||πk+1
l)[s]

]
can be approximated by second order expansion. By the up-

date rule in Eq. (4), we have

E
s∼dπk

[
DKL(π

k+1||πk+1
l)[s]

]
≈ 1

2
(θk+1 − θk+1

l)TH(θk+1 − θk+1
l)

=
1

2

(b+

aTH−1a
H−1a

)T
H
(b+

aTH−1a
H−1a

)
=

b+
2

2aTH−1a

= b+
2
αKL, (10)

12

Under review as a conference paper at ICLR 2020

Figure 5: The update procedures for PCPO when the current policy πk is infeasible. πk+1
l is the

projection of πk+
1
2 onto the sublevel set of the constraint set. We want to find the KL divergence

between πk and πk+1.

where αKL
.
= 1

2aTH−1a
.

And since δ is small, we have ∇ϕ(πk) − ∇ϕ(πk+1
l) ≈ 0 given s. Thus, the third term in Eq. (9)

can be eliminated.

Combining Eq. (9) and Eq. (10), we have

E
s∼dπk

[
DKL(π

k+1||πk)[s]
]
≤ δ + b+

2
αKL.

Now we use Lemma B.1 to prove our main theorem.

Theorem B.2. Define επ
k+1

R
.
= max

s

∣∣Ea∼πk+1 [Aπ
k

R (s, a)]
∣∣, επk+1

C
.
= max

s

∣∣Ea∼πk+1 [Aπ
k

C (s, a)]
∣∣,

b+
.
= max(0, JC(πk) − h), and αKL

.
= 1

2aTH−1a
, where a is the gradient of the cost advantage

function, andH is the Hessian of the KL divergence constraint. If the current policy πk violates the
constraint, and the KL divergence projection is used, then the lower bound on the reward improve-
ment, and the upper bound on the constraint violation for each policy update are

JR(πk+1)−JR(πk) ≥ −

√
2(δ + b+2αKL)γε

πk+1

R

(1− γ)2
, and JC(πk+1) ≤ h+

√
2(δ + b+2αKL)γε

πk+1

C

(1− γ)2
.

Proof. Following the same proof in Theorem A.2, we complete the proof.

Note that the bounds we obtain for the infeasibe case; to the best of our knowledge, are new results.

C PROOF OF ANALYTICAL SOLUTION TO PCPO

Theorem C.1. Consider the PCPO problem. In the first step, we optimize the reward:

θk+
1
2 = argmax

θ
gT (θ − θk)

s.t.
1

2
(θ − θk)TH(θ − θk) ≤ δ,

and in the second step, we project the policy onto the constraint set:

θk+1 = argmin
θ

1

2
(θ − θk+ 1

2)TL(θ − θk+ 1
2)

s.t. aT (θ − θk) + b ≤ 0,

where g,a,θ ∈ Rn, b, δ ∈ R, δ > 0, andH,L ∈ Rn×n,L =H if using KL divergence projection,
andL = I if using L2 norm projection. When there is at least one strictly feasible point, the optimal
solution satisfies

θk+1 = θk +

√
2δ

gTH−1g
H−1g −max(0,

√
2δ

gTH−1g
aTH−1g + b

aTL−1a
)L−1a.

13

Under review as a conference paper at ICLR 2020

Proof. For the first problem, it is a convex program with quadratic inequality constraints. Hence
if the primal problem has a feasible point, then Slaters condition is satisfied and strong duality
holds. Let θ∗ and λ∗ denote the solutions to the primal and dual problems, respectively. In addition,
the primal objective function is continuously differentiable. Hence the Karush-Kuhn-Tucker (KKT)
conditions are necessary and sufficient for the optimality of θ∗ and λ∗.We now form the Lagrangian:

L(θ, λ) = −gT (θ − θk) + λ
(1
2
(θ − θk)TH(θ − θk)− δ

)
.

And we have the following KKT conditions:

−g + λ∗Hθ∗ − λ∗Hθk = 0 ∇θL(θ∗, λ∗) = 0 (11)
1

2
(θ∗ − θk)TH(θ∗ − θk)− δ = 0 ∇λL(θ∗, λ∗) = 0 (12)

1

2
(θ∗ − θk)TH(θ∗ − θk)− δ ≤ 0 primal constraints (13)

λ∗ ≥ 0 dual constraints (14)

λ∗
(1
2
(θ∗ − θk)TH(θ∗ − θk)− δ

)
= 0 complementary slackness (15)

By Eq. (11), we have θ∗ = θk + 1
λ∗H

−1g. And by plugging Eq. (11) into Eq. (12), we have

λ∗ =
√
gTH−1g

2δ . Hence we have our optimal solution:

θk+
1
2 = θ∗ = θk +

√
2δ

gTH−1g
H−1g, (16)

which also satisfies Eq. (13), Eq. (14), and Eq. (15).

Following the same reasoning, we now form the Lagrangian of the second problem:

L(θ, λ) = 1

2
(θ − θk+ 1

2)TL(θ − θk+ 1
2) + λ(aT (θ − θk) + b).

And we have the following KKT conditions:

Lθ∗ −Lθk+ 1
2 + λ∗a = 0 ∇θL(θ∗, λ∗) = 0 (17)

aT (θ∗ − θk) + b = 0 ∇λL(θ∗, λ∗) = 0 (18)

aT (θ∗ − θk) + b ≤ 0 primal constraints (19)
λ∗ ≥ 0 dual constraints (20)

λ∗(aT (θ∗ − θk) + b) = 0 complementary slackness (21)

By Eq. (17), we have θ∗ = θk+1 + λ∗L−1a. And by plugging Eq. (17) into Eq. (18) and Eq. (20),

we have λ∗ = max(0, a
T (θk+

1
2−θk)+b

aL−1a). Hence we have our optimal solution:

θk+1 = θ∗ = θk+
1
2 −max(0,

aT (θk+
1
2 − θk) + b

aTL−1aT
)L−1a, (22)

which also satisfies Eq. (19) and Eq. (21). Hence by Eq. (16) and Eq. (22), we have

θk+1 = θk +

√
2δ

gTH−1g
H−1g −max(0,

√
2δ

gTH−1g
aTH−1g + b

aTL−1a
)L−1a.

14

Under review as a conference paper at ICLR 2020

Figure 6: Projection onto a convex set. We have θ′ ∈ C, and θ∗ = ProjLC (θ).

D PROOF OF STATIONARY POINTS OF PCPO WITH KL DIVERGENCE AND L2

NORM PROJECTIONS

To make our analysis valid, we assume that we minimize the objective function f : Rn → R with
L-smooth and twice continuously differentiable over the closed and convex constraint set C, and the
Fisher information matrix H is positive definite. We have the following lemma to characterize the
projection (See Fig. 6).

Lemma D.1. For any θ 6∈ C, θ∗ = ProjLC (θ) if and only if (θ − θ∗)TL(θ′ − θ∗) ≤ 0,∀θ′ ∈ C,
where ProjLC (θ)

.
= argmin

θ′∈C
||θ − θ′||2L, and L =H if using KL divergence projection, and L = I

if using L2 norm projection.

Proof. (⇒) Let θ∗ = ProjLC (θ) for a given θ 6∈ C, θ′ ∈ C be such that θ′ 6= θ∗, and α ∈ (0, 1).
Then we have

||θ − θ∗||2L ≤ ||θ −
(
θ∗ + α(θ′ − θ∗)

)
||2L

= ||θ − θ∗||2L + α2||θ′ − θ∗||2L − 2α(θ − θ∗)TL(θ′ − θ∗)

⇒ (θ − θ∗)TL(θ′ − θ∗) ≤ α

2
||θ′ − θ∗||2L. (23)

Since the right hand side of Eq. (23) can be made arbitrarily small for a given α, and hence we have:

(θ − θ∗)TL(θ′ − θ∗) ≤ 0,∀θ′ ∈ C.

(⇐) Let θ∗ ∈ C be such that (θ − θ∗)TL(θ′ − θ∗) ≤ 0,∀θ′ ∈ C. We show that θ∗ must be the
optimal solution. Let θ′ ∈ C and θ′ 6= θ∗. Then we have

||θ − θ′||2L − ||θ − θ∗||2L = ||θ − θ∗ + θ∗ − θ′||2L − ||θ − θ∗||2L
= ||θ − θ∗||2L + ||θ′ − θ∗||2L − 2(θ − θ∗)TL(θ′ − θ∗)− ||θ − θ∗||2L
> 0

⇒ ||θ − θ′||2L > ||θ − θ∗||2L.

Hence, θ∗ is the optimal solution to the optimization problem, and θ∗ = ProjLC (θ).

Based on Lemma D.1, we have the following theorem.

Theorem D.2. Define η as the coefficient for the reward updates in Eq. (4), and σmax(A) is the
largest singular value of matrixA. Then PCPO with KL divergence projection converges to station-
ary points with g ∈ a, and the objective value changes by

f(θk+1) ≤ f(θk) + ||θk+1 − θk||2− 1
ηH+L

2 I
, (24)

and PCPO with L2 norm projection converges to stationary points with H−1g ∈ a, and if
σmax(H) ≤ 1, then the objective value changes by

f(θk+1) ≤ f(θk) + (
L

2
− 1

η
)||θk+1 − θk||22. (25)

15

Under review as a conference paper at ICLR 2020

Proof. We first prove stationary points for PCPO with KL divergence and L2 norm projections, and
then prove the change of the objective value.

When in stationary points θ∗, we have

θ∗ = θ∗ +

√
2δ

gTH−1g
H−1g −max(0,

√
2δ

gTH−1g
aTH−1g + b

aTL−1a
)L−1a.

⇔

√
2δ

gTH−1g
H−1g = max(0,

√
2δ

gTH−1g
aTH−1g + b

aTL−1a
)L−1a

⇔H−1g ∈ L−1a. (26)

For KL divergence projection (L = H), Eq. (26) boils down to g ∈ a, and for L2 norm projection
(L = I), Eq. (26) is equivalent toH−1g ∈ a.
Now we prove the second part of the theorem. Based on Lemma D.1, for KL divergence projection,
we have

(θk − θk+1)TH(θk − ηH−1g − θk+1) ≤ 0

⇒ gT (θk+1 − θk) ≤ −1

η
||θk+1 − θk||2H . (27)

By Eq. (27), and L-smooth continuous function f, we have

f(θk+1) ≤ f(θk) + gT (θk+1 − θk) + L

2
||θk+1 − θk||22

≤ f(θk)− 1

η
||θk+1 − θk||2H +

L

2
||θk+1 − θk||22

= f(θk) + (θk+1 − θk)T (−1

η
H +

L

2
I)(θk+1 − θk)

= f(θk) + ||θk+1 − θk||2− 1
ηH+L

2 I
.

For L2 norm projection, we have

(θk − θk+1)T (θk − ηH−1g − θk+1) ≤ 0

⇒ gTH−1(θk+1 − θk) ≤ −1

η
||θk+1 − θk||22. (28)

By Eq. (28), L-smooth continuous function f, and if σmax(H) ≤ 1, we have

f(θk+1) ≤ f(θk) + gT (θk+1 − θk) + L

2
||θk+1 − θk||22

≤ f(θk) + (
L

2
− 1

η
)||θk+1 − θk||22.

To see why we need the assumption of σmax(H) ≤ 1, we defineH = UΣUT as the singular value
decomposition ofH with ui being the column vector of U . Then we have

gTH−1(θk+1 − θk) = gTUΣ−1UT (θk+1 − θk)

= gT (
∑
i

1

σi(H)
uiu

T
i)(θ

k+1 − θk)

=
∑
i

1

σi(H)
gT (θk+1 − θk).

If we want to have

gT (θk+1 − θk) ≤ gTH−1(θk+1 − θk) ≤ −1

η
||θk+1 − θk||22,

then every singular value σi(H) of H needs to be smaller than 1, and hence σmax(H) ≤ 1, which
justifies the assumption we use to prove the bound.

16

Under review as a conference paper at ICLR 2020

To make the objective value for PCPO with KL divergence projection improves, the right hand side
of Eq. (24) needs to be negative. Hence we have Lη

2 I ≺ H, implying that σmin(H) > Lη
2 . And

to make the objective value for PCPO with L2 norm projection improves, the right hand side of Eq.
(25) needs to be negative. Hence we have η < 2

L , implying that

η =

√
2δ

gTH−1g
<

2

L

⇒ 2δ

gTH−1g
<

4

L2

⇒g
TH−1g

2δ
>
L2

4

⇒L2δ

2
< gTH−1g

≤ ||g||2||H−1g||2
≤ ||g||2||H−1||2||g||2
= σmax(H

−1)||g||22
= σmin(H)||g||22

⇒σmin(H) >
L2δ

2||g||22
. (29)

By the definition of the condition number and Eq. (29), we have

1

σmin(H)
<

2||g||22
L2δ

⇒ σmax(H)

σmin(H)
<

2||g||22σmax(H)

L2δ

≤ 2||g||22
L2δ

,

which justifies what we discuss.

17

Under review as a conference paper at ICLR 2020

E ADDITIONAL COMPUTATIONAL EXPERIMENTS

E.1 IMPLEMENTATION DETAILS

For detailed explanation of the task in Achiam et al. (2017), please refer to the appendix of Achiam
et al. (2017). For detailed explanation of the task in Vinitsky et al. (2018), please refer to Vinitsky
et al. (2018).

We use neural networks that take the input of state, and output the mean and variance to be the
Gaussian policy in all experiments. For the simulations in the gather and circle tasks, we use a neural
network with two hidden layers of size (64, 32). For the simulations in the grid and bottleneck tasks,
we use a neural network with two hidden layers of size (16, 16) and (50, 25), respectively. We use
tanh as the activation function of the neural network.

We use GAE-λ approach (Schulman et al., 2015b) to estimate AπR(s, a) and AπC(s, a). For the
simulations in the gather and circle tasks, we use neural network baselines with the same architecture
and activation functions as the policy networks. For the simulations in the grid and bottleneck tasks,
we use linear baselines.

The hyperparameters of each task for all algorithms are as follows (PC: point circle, PG: point
gather, AC: Ant circle, AG: Ant gather, Gr: Grid, and BN: bottleneck tasks):

Parameter PC PG AC AG Gr BN
discount factor γ 0.995 0.995 0.995 0.995 0.999 0.999

step size δ 10−4 10−4 10−4 10−4 10−4 10−4

λGAE
R 0.95 0.95 0.95 0.95 0.97 0.97
λGAE
C 1.0 1.0 0.5 0.5 0.5 1.0

Batch size 50,000 50,000 100,000 100,000 10,000 25,000
Rollout length 50 15 500 500 400 500

Cost constraint threshold h 5 0.1 10 0.2 7 10

Note that we do not use a learned model to predict the probability of entering an undesirable state
within a fixed time horizon as CPO did for cost shaping.

E.2 EXPERIMENT RESULTS

To examine the performance of the algorithms with different metrics, we provide the learning curves
of the cumulative constraint value over policy update, and the reward versus the cumulative con-
straint value for the tested algorithms and task pairs in Section 6 shown in Fig. 7. The second
metric enables us to compare the reward difference under the same number of cumulative constraint
violation.

Overall, we find that,

(a) CPO has more cumulative constraint violation than PCPO.

(b) PCPO with L2 norm projection has less cumulative constraint violation than KL divergence
projection except for the point circle and point gather tasks. This observation suggests that
the Fisher information matrix is not well-estimated in the high dimensional policy space,
leading to have more constraint violation.

(c) PCPO has more reward improvement compared to CPO under the same number of cumu-
lative constraint violation in point circle, point gather, ant circle, ant gather, and bottleneck
task.

E.3 CPO WITHOUT LINE SEARCH

Due to approximation errors, CPO performs line search to check whether the updated policy sat-
isfies the trust region and cost constraints. To understand the necessity of line search in CPO, we
conducted the experiment with and without line search shown in Fig. 8. The step size δ is set to
0.01. We find that CPO without line search tends to (1) have large reward variance especially in

18

Under review as a conference paper at ICLR 2020

(a) Point circle (b) Point gather (c) Ant circle

(d) Ant gather (e) Grid (f) Bottleneck

Figure 7: The values of the cumulative constraint value over policy update, and the reward versus
the cumulative constraint value for the tested algorithms and task pairs. The solid line is the mean
and the shaded area is the standard deviation, over five runs. The curves for baseline oracle, TRPO,
indicate the performance when the constraint is ignored. (Best viewed in color, and the legend is
shared across all the figures.)

the point circle task, and (2) learn constraint-satisfying policies slightly faster. These observations
suggest that line search is more conservative in optimizing the policies since it usually take smaller
steps. However, we conjecture that if using smaller δ, the effect of line search is not significant.

E.4 THE TASKS WITH HARDER CONSTRAINTS

To understand the stability of PCPO and CPO when deployed in more constraint-critical tasks, we
increase the difficulty of the task by setting the constraint threshold to zero and reduce the safe area.
The learning curve of discounted reward and constraint value over policy updates are shown in Fig.
9.

We observe that even with more difficult constraint, PCPO still has more reward improvement and
constraint satisfaction than CPO, whereas CPO needs more feasible recovery steps to satisfy the

19

Under review as a conference paper at ICLR 2020

(a) Point circle (b) Point gather

con

Figure 8: The values of the reward and the constraint value for the tested algorithms and task pairs.
The solid line is the mean and the shaded area is the standard deviation, over five runs. The dash
line in the cost constraint plot is the cost constraint threshold h. Line search helps to stabilize the
training. (Best viewed in color)

(a) Point circle (b) Point gather

Figure 9: The values of the reward and the constraint value for the tested algorithms and task pairs.
The solid line is the mean and the shaded area is the standard deviation, over five runs. The dash line
in the cost constraint plot is the cost constraint threshold h. PCPO with KL divergence projection is
the only one that can satisfy the constraint with the highest reward. (Best viewed in color)

constraint. In addition, we observe that PCPO with L2 norm projection has high constraint variance
in point circle task, suggesting that the reward update direction is not well aligned with the cost
update direction. We also observe that PCPO with L2 norm projection converges to a bad local
optimum in terms of reward in point gather task, suggesting that in order to satisfy the constraint,
the cost update direction destroys the reward update direction.

20

Under review as a conference paper at ICLR 2020

(a) Point circle (b) Point gather

Figure 10: The values of the reward and the constraint value for the tested algorithms and task pairs.
The solid line is the mean and the shaded area is the standard deviation, over five runs. The dash line
in the cost constraint plot is the cost constraint threshold h. The curves for baseline oracle, TRPO,
indicate the reward and constraint violation values when the constraint is ignored. We only use 1%
of samples compared to the previous simulations for each policy update. PCPO still satisfies the
constraints quickly even when the constraint set is not well-estimated. (Best viewed in color)

E.5 SMALLER BATCH SAMPLES

To learn policies under constraints, PCPO and CPO require to have a good estimation of the con-
straint set. However, PCPO may project the policy onto the space that violates the constraint due
to the assumption of approximating the constraint set by linear half space constraint. To understand
whether the estimation accuracy of the constraint set affects the performance, we conducted the ex-
periments with batch sample size reducing to 1% of the previous experiments (only 500 samples for
each policy update) shown in Fig. 10.

We find that smaller training samples affects the performance of the algorithm, creating more reward
and cost fluctuation. However, we observe that even with smaller training samples, PCPO still has
more reward improvement and constraint satisfaction than CPO.

21

	Introduction
	Preliminaries
	Projection Based Constrained Policy Optimization
	Performance Bound for PCPO with KL Divergence Projection

	PCPO Updates
	Related Work
	Experiments
	Conclusion
	Proof of Performance Bound on Updating the Constraint-satisfying Policy
	Proof of Performance Bound on Updating the Constraint-violating Policy
	Proof of Analytical Solution to PCPO
	Proof of Stationary Points of PCPO with KL divergence and L2 Norm Projections
	Additional Computational Experiments
	Implementation Details
	Experiment Results
	CPO without Line Search
	The Tasks with Harder Constraints
	Smaller Batch Samples

