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ABSTRACT

In this paper, we consider the problem of learning control policies that optimize a
reward function while satisfying constraints due to considerations of safety, fair-
ness, or other costs. We propose a new algorithm – Projection Based Constrained
Policy Optimization (PCPO), an iterative method for optimizing policies in a two-
step process – the first step performs an unconstrained update while the second
step reconciles the constraint violation by projection the policy back onto the con-
straint set. We theoretically analyze PCPO and provide a lower bound on reward
improvement, as well as an upper bound on constraint violation for each policy
update. We further characterize the convergence of PCPO with projection based
on two different metrics – L2 norm and Kullback-Leibler divergence. Our em-
pirical results over several control tasks demonstrate that our algorithm achieves
superior performance, averaging more than 3.5 times less constraint violation and
around 15% higher reward compared to state-of-the-art methods.1

1 INTRODUCTION

Recent advances in deep reinforcement learning (deep RL) have demonstrated excellent perfor-
mance on several domains ranging from games like Go (Silver et al., 2017) and StarCraft (AlphaS-
tar, 2019) to tasks like robotic control (Levine et al., 2016). In these settings, agents are allowed to
explore the entire state space and experiment with all possible actions during training. However, in
many real-world applications such as self-driving cars and unmanned aerial vehicles, considerations
of safety, fairness and other costs prevent the agent from having complete freedom to explore the en-
vironment. For instance, an autonomous car, while optimizing for its driving policies, must not take
any actions that could cause harm to pedestrians or property (including itself). In effect, the agent is
constrained to take actions that do not violate a specified set of constraints on state-action pairs. In
this work, we address the problem of learning control policies that optimize a reward function while
satisfying predefined constraints.

The problem of policy learning with constraints is challenging since directly optimizing for the
reward, like in Q-Learning (Mnih et al., 2013) or policy gradient (Sutton et al., 2000) approaches,
would violate the constraints at some point. One approach to incorporate constraints into the learning
process is by formulating a constrained optimization problem (Achiam et al., 2017). This work
performs policy updates using a conditional gradient descent with line search to ensure constraint
satisfaction. However, their base optimization problem becomes infeasible when the current policy
violates the constraints. Another approach (Tessler et al., 2018) adds weighted constraints to make
the optimization easier, but requires extensive hyperparameter tuning of the weights.

To address the above issues, we propose projection based constrained policy optimization (PCPO)
– an iterative algorithm that performs policy updates in two stages. In the first stage, we maximize
reward using a trust region optimization method (e.g., TRPO (Schulman et al., 2015a)) without
any constraints – this might result in a new intermediate policy that does not satisfy the provided
constraints. In the second state, we reconcile the constraint violation (if any) by projecting the
policy back onto the constraint set, i.e., choosing the policy in the constraint set that is closest to
the intermediate policy chosen. This allows us to perform efficient updates while not violating the

1We provide the link to anonymized code: https://sites.google.com/view/
iclr2020-submission-pcpo
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constraints, without requiring line search (Achiam et al., 2017) or constraint approximations (Tessler
et al., 2018). Further, due to the projection step, PCPO offers efficient recovery from infeasible (i.e.,
constraint-violating) starting states, which existing methods cannot handle well.

We analyze PCPO theoretically and derive performance bounds for our algorithm. Specifically,
based on information geometry and policy optimization theory, we construct (1) a lower bound on
reward improvement, and (2) an upper bound on constraint violations for each policy update. We
find that with a relatively small step size for each policy update, the worst-case constraint violation
and reward degradation are tolerable. We further analyze two distance measures for the projection
step onto the constraint set. We find that the convergence of PCPO is affected by the singular value
of the Fisher information matrix used during training, providing a prescription for choosing the type
of projection depending on the problem.

Empirically, we compare PCPO with state-of-the-art algorithms on four different control tasks, in-
cluding two Mujoco environments with safety constraints introduced by Achiam et al. (2017) and
two traffic management tasks with fairness constraints introduced by Vinitsky et al. (2018). In all
cases, our algorithm achieves comparable or superior performance to prior approaches, averaging
more reward with less cumulative constraint violations. For instance, across these environments,
PCPO performs 3.5 times less constraint violations and around 15% more reward. This demon-
strates the ability of PCPO robustly learn constraint-satisfying policies, and represents a step towards
reliable deployment of RL in the real world.

2 PRELIMINARIES

We frame our policy learning as a constrained Markov Decision Process (CMDP) (Altman, 1999),
where policies will direct the agent to obtain the reward while avoiding the cost. We define CMDP
as the tuple < S,A, T,R,C >, where S is the set of states, A is the set of actions that the agent
can take, T : S � A � S ! [0, 1] is the transition probability of the CMDP, R : S � A ! R is
the reward function, and C : S � A ! R is the cost function. Given the agent’s current state s, the
policy π(ajs) : S ! A selects an action a for the agent to take. Based on s and a, the agent transits
to the next state (denoted by s0) according to the state transition model T (s0js, a), and receives a
reward and pays a cost, denoted by R(s, a) and C(s, a), respectively.

We aim to learn a policy π that maximizes a cumulative discounted reward, denoted by

JR(π)
.
= E���

� 1X
t=0

γtR(st, at)
�
,

while satisfying constraints, i.e., making a cumulative discounted cost constraint below a desired
threshold h, denoted by

JC(π)
.
= E���

� 1X
t=0

γtC(st, at)
�
� h,

where γ is the discount factor, τ is the trajectory (τ = (s0, a0, s1, � � � )), and τ � π is shorthand
for showing that the distribution over the trajectory depends on π : s0 � µ, at � π(atjst), st+1 �
T (st+1jst, at), where µ is the initial state distribution.

Kakade & Langford (2002) derived an identity to express the performance of one policy π0 in terms
of the advantage function over π :

JR(π0)� JR(π) =
1

1� γ
E
s�d�

0

a��0
[A�R(s, a)], (1)

where d� is the discounted future state distribution, denoted by d�(s)
.
= (1 � γ)

P1
t=0 γ

tP (st =
tjπ), and A�R(s, a) is the reward advantage function, denoted by A�R(s, a)

.
= Q�R(s, a) � V �R (s).

Here Q�R(s, a) is the discounted cumulative reward obtained by the policy π given the initial state
s and action a, and V �R (s) is the discounted cumulative reward obtained by the policy π given the
initial state s. Lastly, we also have A�C , Q�C(s, a) and V �C (s) for the cost function.
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3 PROJECTION BASED CONSTRAINED POLICY OPTIMIZATION

Learning constraint-satisfying policies is challenging because the policy optimization landscape is
no longer smooth. Further, in many cases, the constraints often conflict with the best direction of
policy updates to maximize reward. Therefore, we require an algorithm that can make progress in
terms of policy improvement without being shackled by the constraints and potentially getting stuck
in local minima. A further challenge is that if we do end up with an infeasible (i.e., constraint-
violating) policy, we need some efficient means of recovering back to a constraint-satisfying policy.

Figure 1: The update procedures for PCPO. In the first
step, PCPO follows the reward improvement direction
in the trust region. In the second step, PCPO projects
the policy onto the constraint set.

To this end, we develop PCPO – a trust re-
gion method that performs policy updates cor-
responding to reward improvement, followed
by projections onto the constraint set. Formally,
PCPO, inspired by projected gradient descent,
is composed of two steps for each policy update
– a reward improvement step and a projection
step (See Fig. 1 for illustrating the procedure of
PCPO).

Reward Improvement Step. First, we opti-
mize a reward function by maximizing the re-
ward advantage function A�R(s, a) subject to a
Kullback-Leibler (KL) divergence constraint that constraints the intermediate policy πk+

1
2 within

δ-neighbourhood of πk:

πk+
1
2 = arg max

�
E
s�d�

k

a��
[A�

k

R (s, a)]

s.t. E
s�d�k

�
DKL(πjjπk)[s]

�
� δ. (2)

This update rule with the trust region, denoted by fπ : E
s�d�k

�
DKL(πjjπk)[s]

�
� δg, is called

Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a). It effectively constraints the
policy changes and guarantees reward improvement.

Projection Step. Second, we project the intermediate policy πk+
1
2 onto the constraint set by mini-

mizing distance measure D subject to the constraint set (we assume that the constraint set is closed
and convex, and thus the projection is well-defined):

πk+1 = arg min
�

D(π, πk+
1
2 )

s.t. JC(πk) + E
s�d�

k

a��
[A�

k

C (s, a)] � h. (3)

The projection step says that the constraint-satisfying policy πk+1 is within the neighbourhood of
πk+

1
2 . We consider two distance measures – L2 norm and KL divergence. If the neighbourhood

is defined in the parameter space, a natural way is to use L2 norm projection. However, for the
projection that defines in the parameter space, it is difficult to make connection to the policy defined
in the probability distribution space, and hence hard to provide guarantees. Fortunately, using KL
divergence projection in the probability distribution space enables us to provide provable guarantees
for PCPO with KL divergence projection.

3.1 PERFORMANCE BOUND FOR PCPO WITH KL DIVERGENCE PROJECTION

To give performance guarantees for PCPO with KL divergence projection, we analyze worst-case
performance degradation for each policy update when the current policy πk satisfies the constraint.
The following theorem provides (1) a lower bound on reward improvement, and (2) an upper bound
on constraint violation for each policy update.

Theorem 3.1 (Worst-case Bound on Updating Constraint-satisfying Policies). Define ε�
k+1

R
.
=

max
s

��Ea��k+1 [A�
k

R (s, a)]
��, and ε�

k+1

C
.
= max

s

��Ea��k+1 [A�
k

C (s, a)]
��. If the current policy πk satis-
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�es the constraint, and KL divergence projection is used, then the lower bound on reward improve-
ment, and upper bound on constraint violation for each policy update are

J R (� k+1 ) � J R (� k ) � �

p
2�
� � k +1

R

(1 � 
 )2 ; andJ C (� k+1 ) � h +

p
2�
� � k +1

C

(1 � 
 )2 :

Theorem 3.1 states that if� is small, the worst-case performance degradation is tolerable.

Due to approximation errors or random initialization of policies, PCPO may produce a constraint-
violating policy. To give performance guarantees for PCPO with KL divergence projection, we
analyze worst-case performance degradation for each policy update when the current policy� k

violates the constraint. The following theorem provides (1) a lower bound on reward improvement,
and (2) an upper bound on constraint violation for each policy update.

Theorem 3.2(Worst-case Bound on Updating Constraint-violating Policies). De�ne � � k +1

R
:=

max
s

�
�Ea� � k +1 [A � k

R (s; a)]
�
� , � � k +1

C
:= max

s

�
�Ea� � k +1 [A � k

C (s; a)]
�
� , b+ := max(0 ; J C (� k ) � h); and

� KL
:= 1

2a T H � 1 a ; wherea is the gradient of the cost advantage function, andH is the Hessian of
the KL divergence constraint. If the current policy� k violates the constraint, and KL divergence
projection is used, then the lower bound on reward improvement, and the upper bound on constraint
violation for each policy update are

J R (� k+1 )� J R (� k ) � �

q
2(� + b+ 2� KL )
� � k +1

R

(1 � 
 )2 ; andJ C (� k+1 ) � h+

q
2(� + b+ 2� KL )
� � k +1

C

(1 � 
 )2 :

Theorem 3.2 states that when the policy has more constraint violation (b+ increases), its worst-case
performance degradation increases. Note that Theorem 3.2 boils down to Theorem 3.1 if the current
policy � k satis�es the constraint (b+ = 0 ).

4 PCPO UPDATES

For a large neural network policy with many parameters, it is impractical to directly solve for the
PCPO update due to the computational cost. However, with a small step size� , we can approximate
the reward function and constraints with a �rst order expansion, and approximate the KL divergence
constraint in reward improvement step, and the KL divergence measure in projection step with a
second order expansion. We now make several de�nitions:

g := r � E
s� d� k

a� �
[A � k

R (s; a)] is the gradient of the reward advantage function,

a := r � E
s� d� k

a� �
[A � k

C (s; a)] is the gradient of the cost advantage function,
H is the Hessian of the KL divergence constraint (H is also called the Fisher information matrix),
b := J C (� k ) � h;
and� is the parameter of the policy.

Reward Improvement Step.First, we linearize the objective function at� k subject to second order
approximation of KL divergence constraint in order to obtain the following updates:

� k+ 1
2 = arg max

�
gT (� � � k )

s.t.
1
2

(� � � k )T H (� � � k ) � �:

Projection Step.Second, if the projection is de�ned in the parameter space, we can directly useL 2

norm projection. On the other hand, if the projection is de�ned in the probability space, we can use
KL divergence, which can be approximated thought second order expansion. Again, we linearize
the cost constraint at� k : Finally, we have the following update for the projection step:

� k+1 = arg min
�

1
2

(� � � k+ 1
2 )T L (� � � k+ 1

2 )

s.t. aT (� � � k ) + b � 0;
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Algorithm 1 Projection Based Constrained Policy Optimization (PCPO)

Initialize policy � 0 = � (� 0)
for k = 0 ; 1; 2; � � � do

Run� k = � (� k ) and store trajectories inD
Computeg; a; H ; andbusingD
Obtain� k+1 using update in Eq. (4)
EmptyD

whereL = I for L 2 norm projection, andL = H for KL divergence projection. One may argue
that using linear approximation to the constraint set is not enough to ensure constraint satisfaction
since the real constraint set is non-convex and non-smooth in general. However, if the step size� is
small, then the linearization of the constraint set is accurate enough to locally approximate it.

We solve these two problems using convex programming. For each policy update, we have

� k+1 = � k +

s
2�

gT H � 1g
H � 1g � max(0;

q
2�

gT H � 1 g aT H � 1g + b

aT L � 1a
)L � 1a: (4)

However, PCPO requires to invertH , which is impractical for huge neural network policies. Hence
we use the conjugate gradient method (Schulman et al., 2015a). Algorithm 1 shows the pseudocode.

Analysis of PCPO Update Rule. The update rule in Eq. (4) shows that the difference between
PCPO with KL divergence andL 2 norm projection is the cost update direction, leading to reward
improvement difference. The policy iterate ofL 2 norm projection has more reward �uctuation than
KL divergence projection sinceL 2 norm projection does not use the Fisher information matrix to
scale the cost update direction. However, when the Fisher information matrix of KL divergence
projection is ill-conditioned or not well-estimated, the reward and cost updates may be unstable
because of pathological curvature. In addition, these two projections converge to different stationary
points with different converge rates related to the Fisher information matrix shown in Theorem 4.1.
To make our analysis valid, we consider the following assumptions are satis�ed. Assume that we
minimizethe objective functionf : Rn ! R with L-smooth and twice continuously differentiable
over the closed and convex constraint setC, and the Fisher information matrixH is positive de�nite.

Theorem 4.1. De�ne � as the coef�cient for the reward updates in Eq. (4), i.e.,� :=
q

2�
gT H � 1 g ,

and� max (A ) is the largest singular value of matrixA : Then PCPO with KL divergence projection
converges to stationary points withg 2 a; and the objective value changes by

f (� k+1 ) � f (� k ) + jj � k+1 � � k jj2
� 1

� H + L
2 I ;

and PCPO withL 2 norm projection converges to stationary points withH � 1g 2 a, and if
� max (H ) � 1; then the objective value changes by

f (� k+1 ) � f (� k ) + (
L
2

�
1
�

)jj � k+1 � � k jj2
2:

Theorem 4.1 shows that the improvement of the objective value is affected by the singular value
of the Fisher information matrix. Speci�cally, the objective of KL divergence projection decreases
when L�

2 I � H ; implying that� min (H ) > L�
2 : And the objective ofL 2 norm projection decreases

when � < 2
L ; implying that condition number ofH is upper bounded:� max (H )

� min (H ) < 2jj g jj 2
2

L 2 � : Ob-
serving the Fisher information matrix allows us to adaptively choose the type of projection to �t the
landscape of the function.

5 RELATED WORK

Policy Learning with Constraints. Learning constraint-satisfying policies has been explored in the
context of safe RL (Garcia & Fernandez, 2015). The agent learns policies either by (1) exploration
of the environment (Achiam et al., 2017; Tessler et al., 2018; Chow et al., 2017) or (2) through

5



Under review as a conference paper at ICLR 2020

(a) Gather (b) Circle (c) Grid (d) Bottleneck

Figure 2: The gather, circle, grid and bottleneck tasks. (a) Gather task: the agent is rewarded for gathering
green apples but is constrained to collect a limited number of red fruit (Achiam et al., 2017). (b) Circle task: the
agent is rewarded for moving in a speci�ed wide circle, but is constrained to stay within a safe region smaller
than the radius of the circle (Achiam et al., 2017). (c) Grid task: the agent controls the traf�c lights in a grid
road network and is rewarded for high throughput but constrained to let lights stay red for at most 7 consecutive
seconds (Vinitsky et al., 2018). (d) Bottleneck task: the agent controls a set of autonomous vehicles (shown in
red) in a traf�c merge situation and is rewarded for achieving high throughput but constrained to ensure that
human-driven vehicles (shown in white) have low speed for no more than 10 seconds (Vinitsky et al., 2018).

expert demonstrations (Ross et al., 2011; Rajeswaran et al., 2017; Gao et al., 2018). However, using
expert demonstrations require humans to label the constraint-satisfying behavior for every possible
situation. The scalability of these rule-based approaches is an issue since many real autonomous
systems such as self-driving cars and industrial robots are inherently complex. To overcome this
issue, our algorithm uses the �rst approach in which the agent learn by trial and error. To prevent
the agent from having constraint-violating behavior during exploring the environment, PCPO uses
projection onto the constraint set to ensure constraint satisfaction throughout learning.

Using a projection onto a constraint set is an approach that has been explored for general constrained
optimization in other contexts. For example, Akrour et al. (2019) projected the policy from a pa-
rameter space onto the constraint that constrains the updated policy to stay in the neighbourhood of
the previous policy. In contrast to their work, we examine constraints that are de�ned in terms of
states and actions. Similarly, Chow et al. (2019) proposed� -projection. This projected the policy
parameters� onto the constraint set. However, they did not provide provable guarantees for their
algorithm. Moreover, they modelled the problem using a constrained optimization problem with the
weighted constraint for step size added to the reward function. Since the weight must be tuned, this
incurs the cost of hyperparameter tuning. In contrast to their work, PCPO eliminates the cost of the
hyperparameter tuning, and provides provable guarantees on learning constraint-satisfying policies.

Comparison to CPO (Achiam et al., 2017).Perhaps the closest work to ours is the approach of
Achiam et al. (2017), who proposed the constrained policy optimization (CPO) algorithm to solve
the following:

� k+1 = arg max
�

gT (� � � k ) s.t.
1
2

(� � � k )T H (� � � k ) � �; aT (� � � k ) + b � 0: (5)

PCPO is different from CPO since PCPO �rst optimizes a reward and uses projection to satisfy the
constraint, while CPO simultaneously considers the trust region and the constraint. The update rule
of CPO becomes infeasible when the current policy violates the constraint (b > 0). CPO recovers
by replacing Problem (5) with an update to purely decrease the constraint value:� k+1 = � k �q

2�
a T H � 1 a H � 1a: This update rule may lead to a slow progress in learning constraint-satisfying

policies. In contrast, PCPO ensures a feasible solution, allowing the agent to improve the reward
while ensuring constraint satisfaction simultaneously.

6 EXPERIMENTS

We compare our method with existing approaches on four control tasks in total: two tasks with safety
constraints ((a) and (b) in Fig. 2), and two tasks with fairness constraints ((c) and (d) in Fig. 2). These
tasks are brie�y described in the caption of Fig. 2. The �rst two tasks –GatherandCircle – are
Mujoco environments with state space constraints introduced by Achiam et al. (2017). The other
two tasks –Grid andBottleneck– are traf�c management problems where the agent controls either
a traf�c light or a �eet of autonomous vehicles. This is especially challenging since the dimensions
of state and action spaces are larger, and the dynamics of the environment are inherently complex.
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