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ABSTRACT

Graphs are known to have complicated structures and have myriad applications.
How to utilize deep learning methods for graph classification tasks has attracted
considerable research attention in the past few years. Two properties of graph data
have imposed significant challenges on existing graph learning techniques. (1) Di-
versity: each graph has a variable size of unordered nodes and diverse node/edge
types. (2) Complexity: graphs have not only node/edge features but also complex
topological features. These two properties motivate us to use a multiplex structure
to learn graph features in a diverse way. In this paper, we propose a simple but
effective approach, MxPool, which concurrently uses multiple graph convolution
networks and graph pooling networks to build hierarchical learning structure for
graph representation learning tasks. Our experiments on numerous graph classifi-
cation benchmarks show that our MxPool has marked superiority over other state-
of-the-art graph representation learning methods. For example, MxPool achieves
92.1% accuracy on the D&D dataset while the second best method DiffPool only
achieves 80.64% accuracy.

1 INTRODUCTION

Graphs are known to have complicated structures and have myriad of real world applications. Re-
cently, great efforts have been put on utilizing deep learning methods for graph data analysis. Many
newly proposed graph learning approaches are inspired by Convolutional Neural Networks (CNNs)
(LeCun & Bengio, 1998), which have been greatly successful in learning two-dimensional image
data (grid structure). The convolution and pooling layers in CNNs have been redefined to process
graph data. Multitude of different Graph Convolutional Networks (GCNs) (Shuman et al., 2013)
have been proposed, which can learn node level representations by aggregating feature information
from neighbors (spatial-based approaches) (Hamilton et al., 2017) or by introducing filters from the
perspective of graph signal processing (spectral-based approaches) (Bengio & LeCun, 2014). On
the other hand, similar to the original pooling layer which comes with CNNs, graph pooling module
(Defferrard et al., 2016; Zhang et al., 2018) could easily reduce the variance and computation com-
plexity by down-sampling from original feature data, which is of vital importance, particularly for
graph level classification tasks. Recently, hierarchical pooling methods that can learn hierarchical
representations of graphs have been proposed (Ying et al., 2018; Gao & Ji, 2019; Lee et al., 2019)
and shows state-of-the-art performance for graph classification tasks.

However, two properties of graph data have imposed significant challenges on existing graph learn-
ing techniques. 1) Diversity: each graph has a variable size of unordered nodes and has diverse
node/edge types. 2) Complexity: graphs have not only node/edge features but also complex topo-
logical features. These two properties can bring troubles in both of the graph convolution operation
and the graph pooling operation.

For example, when performing node-representation learning tasks (by graph convolution operation),
it is enough to use small output embedding size for simple and small graphs, as shown in Figure 1(a),
since large embedding size could result in overfitting problem. By contrast, it is necessary to set large
output embedding sizes for complex and large graphs to learn complex graph structure properties,
as shown Figure in 1(b). This creates a contradiction when processing a set of irregular graphs.
For another example, when coarsening graphs (by graph pooling operation), if more attention is
put on the graph structure, we may obtain a coarsened graph as shown in Figure 1(c). If more
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attention is put on the node features, we may obtain another coarsened graph as shown in Figure
1(d). This creates another contradiction when processing graphs with not only node features but
also topological features.

(b) Complex and large graph 

needs large node embeddings

(a) Simple and small graph 

needs small node embeddings

(c) Coarsen graph according 

to graph structure

(d) Coarsen graph according 

to node features

Figure 1: Multiple graph convolution networks with different output node embedding sizes are
needed since graph sizes and complexities are not consistent, e.g., (a) and (b). Multiple graph
pooling networks are needed to coarsen graphs according to different graph properties. For example,
the original graph can be coarsened according to graph structure as shown in (c) or according to node
features as shown in (d), where circle vertices have similar node features and triangle vertices have
similar node features.

The diversity property and the complexity property of graph data motivate us to use multiplex GNN
structure to learn graph features in a diverse way. On the other hand, as known, a common solu-
tion for augmenting the traditional CNN convolution layers is to use multiple convolution kernels
in order to learn multiple local features. The success of CNNs on image data also inspires us to
concurrently use multiple graph convolution networks and multiple graph pooling networks to learn
graph representations.

In this paper, we propose MxPool in hierarchical graph representation learning for graph classifica-
tion tasks1. MxPool comprises multiple graph convolution networks to learn node-level represen-
tations and also comprises multiple graph pooling networks to coarsen the graph. The node-level
representations resulted from multiple convolution networks and the coarsened graphs resulted from
multiple pooling networks are merged in a learnable way, respectively. The merged node represen-
tations and the merged coarsened graph are then used to generate a new coarsened graph, which
is used in the next layer. This multiplex structure can adapt to graphs with different sizes and can
extract useful information from different perspectives.

We conduct extensive experiments on numerous graph classification benchmarks and show that our
MxPool has marked superiority over other state-of-the-art graph representation learning methods.
For example, MxPool achieves 92.1% accuracy on the D&D dataset while the second best method
DiffPool only achieves 80.64% accuracy.

2 RELATED WORK

In this section, we review the recent literature on GNNs, graph convolution variants, and graph
pooling variants.

Graph Neural Networks Inspired by Traditional Deep Learning Techniques. GNNs have re-
cently drawn considerable attention due to their superiority in a wide variety of graph related tasks,
including node classification (Kipf & Welling., 2017), link prediction (Schlichtkrull et al., 2018),
and graph classification (Dai et al., 2016). Many of these GNN models are inspired by traditional
learning techniques. Inspired by the huge success of convolutional networks in the computer vision
domain, a large number of Graph Convolutional Networks (GCNs) have emerged. Besides convo-
lution operation, pooling operation, as another key component in CNNs, has also inspired research
communities to propose graph pooling operations. There are also GNN optimizations originating
from other learning approaches. Inspired by Recurrent Neural Networks (RNNs), You et al. (2018a)
apply Graph RNN to the graph generation problem. DGNN (Ma et al., 2018) proposes using LSTM
(Hochreiter & Schmidhuber, 1997) to learn node representations in dynamic graphs. Inspired by the
attention mechanism (Vaswani et al., 2017) Graph Attention Networks (GATs) (Velickovic et al.,

1Our code is available at https://github.com/JucatL/MxPool/.
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2017) introduce attentions into GCNs by differentiating the influence of neighbors. Graph Au-
toEncoders (GAEs) (Wang et al., 2016) origin from the autoencoder mechanism widely used for
unsupervised learning and are suitable to learn node representations for graphs. GCPN (You et al.,
2018b) utilizes Reinforcement Learning (RL) for goal-directed molecular graph generation.

Graph Convolution. Graph convolution operations fall into two categories, spectral-based ap-
proaches and spatial-based approaches. Bengio & LeCun (2014) first introduce convolution for
graph data from spectral domain using the graph Laplacian matrix L. Besides, there exist numerous
spectral-based graph convolution methods, such as ChebNet (Defferrard et al., 2016), 1stChebNet
(Kipf & Welling, 2017), and AGCN (Li et al., 2018). In contrast, spatial-based convolution meth-
ods define graph convolution based on a node’s spatial relations. It takes the aggregation of a node
representation and its neighbors’ representations to obtain a new representation for this node. In
order to explore the depth and breadth of a node’s receptive field, multiple graph convolution lay-
er are stacked together, so that the features of two or more hops away neighbors can be learned.
For example, GGNNs (Li et al., 2015), MPNN (Gilmer et al., 2017), GraphSage (Hamilton et al.,
2017), PATCHY-SAN (Niepert et al., 2016), and DCNN (Atwood & Towsley, 2016) all fall into the
spatial-based category.

Graph Pooling. Graph pooling operation is of vital importance for graph classification tasks
(Zhang et al., 2018). It coarsens a graph into sub-graphs (Defferrard et al., 2016; Ying et al.,
2018) or to sum/average over the node representations (Duvenaud et al., 2015; Gilmer et al., 2017),
which can obtain a compact representation on graph level. The graph coarsening approach-
es obtain hierarchical graph representations either by using deterministic pooling methods or
by using learned pooling methods. The deterministic pooling methods (Defferrard et al., 2016;
Simonovsky & Komodakis, 2017) utilizes graph clustering algorithms to obtain next level coarsened
graph that is going to be processed by GNNs, following a two-stage approach. On the other hand,
the learned pooling methods (Ying et al., 2018; Lee et al., 2019; Diehl, 2019; Gao & Ji, 2019) seek
to learn the hierarchical structure, which have shown to outperform deterministic pooling methods.
DiffPool (Ying et al., 2018) was the first to propose learned graph pooling. It learns a soft cluster as-
signment matrix in layer l which contains the probability values of nodes being assigned to clusters.
A cluster in layer l will be reduced to a node in layer l + 1. A GNN with input node features and
adjacency matrix is used to generate the soft assignment matrix, based on which we can learn the
cluster embeddings (i.e., node features in the next layer) and the coarsened adjacency matrix denot-
ing the connectivity strength between each pair of the clusters. Besides DiffPool, numerous graph
pooling methods have emerged recently, including gPool (Gao & Ji, 2019), SAGPool (Lee et al.,
2019), EigenPooling (Ma et al., 2019), and Relational Pooling (Murphy et al., 2019). This paper
will focus on the learned pooling.

3 PROPOSED METHOD

In this section, we propose MxPool to learn graph representations such that graph level classification
can be applied. Before going to the details, we first introduce some notations and the problem setting.

Problem Setting A graph can be represented as G = {A,F}, where A ∈ Rn×n denotes the adja-
cency matrix (n is the number of nodes contained in G), and F ∈ RN×d denotes the node feature
matrix (d is the dimension of features). In the graph classification setting, given a set of graphs and
each being associated with a label, we aim to train a model that takes an unseen graph as input and
predicts its corresponding label. To make the prediction, it is important to extract useful information
from multiple perspectives including both graph structure and node features.

3.1 OVERVIEW

MxPool is a multi-layer hierarchical GNN model. At each layer, MxPool consists of convolution
operation and pooling operation. The convolution operation aims to learn node-level representations,
while the pooling operation aims to learn a coarsened graph. The new coarsened graph can then be
used as input to next layer. This process can be repeated several times, generating a multi-layer GNN
model to learn hierarchical graph representations. The convolution operation and pooling operation
are both important for graph representation learning. To simplify the illustration, we choose GCN
(Kipf & Welling., 2017) as the convolution layer and DiffPool (Ying et al., 2018) as the pooling
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Figure 2: An illustrative example of MxPool. At each hierarchical layer, we first run multiple GCNs
with different hyperparameters on the original graph, so we will have multiple diverse sets of node
embeddings, which form the multiplex convolution step. Next, we use a learnable approach to merge
these embeddings for each node into one. We also run multiple differentiable pooling operations on
the original graph and cluster nodes together in diverse ways, which forms the multiplex pooling
step. These coarsened graphs are then merged into one in a learnable approach. The merged node
embeddings and the merged coarsened graph are used to generate a new coarsened graph with a new
set of node features, which is going to be processed in the next hierarchical layer.

layer (which is a differentiable pooling method), but it can be extended to use other convolution
variant and pooling variant as well.

Different from other hierarchical GNNs, MxPool launches multiple GCNs to learn node-level rep-
resentations and also launches multiple pooling networks to coarsen the graph. The node-level
representations resulted from multiple GCNs are then merged in a learnable way, and the coarsened
graphs resulted from multiple pooling networks are also merged. The merged node embeddings and
the merged coarsened graph are used to generate a new coarsened graph with a new set of node fea-
tures. This multiplex structure can help extract useful information from different perspectives (e.g.,
graph structure perspective and node feature perspective) and can adapt to graphs with different
sizes. We provide an illustrative example as shown in Figure 3.

The procedure of the GCN (Kipf & Welling., 2017) is to “horizontally” learn node representations,
as it can only “pass message” between nodes through edges. The procedure of differentiable pool-
ing (Ying et al., 2018) is to “vertically” summarize the node features into the higher level graph
representation. The procedure of multiplexing is to “diversely” learn node representations or graph
representations from different perspectives. The procedure of merging is to “synthetically” learn
the diverse results and put more attention to one or more perspectives. Since the convolution, pool-
ing, and merging operations are all differentiable, we can define an end-to-end differentiable graph
representation learning framework in a hierarchical manner.

3.2 MULTIPLEX CONVOLUTION

In our model, we use GCN for the convolution operation. The original GCN (Kipf & Welling.,
2017) is stacked by several convolutional layers, and a single convolutional layer can be written as

H(k+1) = ReLU(D̃− 1
2 ÃD̃− 1

2H(k)W (k)), (1)

where H(k) ∈ Rn×d are the node embeddings computed after k steps, Ã = A+I , D̃ =
∑

j Ãij , and
W (k) ∈ Rd×d is a trainable weighted matrix2. Equation (1) can be understood as a message passing
process. The node embeddings H(k) are the “messages” transferred along edges, which are going to
be used to generate new node embeddings in next round. A total number of K convolutional layers

2The number of dimensions of W can be different from d, i.e., W ∈ Rd×o, where o denotes the output
embedding’s size.
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are stacked to learn node representations and the output matrix Z = HK can be viewed as the final
node representations learned by the GCN model.

In multi-layer GNN, suppose there are totally L layers. At each layer l, with the input node feature
matrix X l ∈ Rnl×dl

and the adjacency matrix Al ∈ Rnl×nl

generated from previous layer, we
learn an embedding matrix Z(l) ∈ Rnl×dl+1

. Here, we use dl+1 to denote the output embeddings’
dimension since it will determine the input node embeddings X(l+1) at next layer l + 1 that will
be introduced later. For simplicity’s sake, we will use Z(l) = GCNc(A

(l), X l) to denote the GCN
process (containing K iterations of message passing). Initially, A(0) = A ∈ Rn×n is the original
graph’s adjacency matrix, and X(0) = F ∈ Rn×d is the original graph’s node features.

In MxPool, we use multiple GCNs to learn multiple sets of node embeddings. These GCNs can be
trained with different sets of hyperparameters θ, such as weight matrix W ’s dimension. Suppose
there are nc GCNs running concurrently at each layer l, we will have nc sets of node embeddings
{Z(l)

1 , Z
(l)
2 , . . . , Z

(l)
nc }. Let θi be the hyperparameters set of the ith GCN. Then at layer l, we have

node embeddings Z(l)
i resulted from the ith GCN as follows:

Z
(l)
i = GCNc(A

(l), X l, θi). (2)

Then, the multiple sets of node embeddings {Z(l)
1 , Z

(l)
2 , . . . , Z

(l)
nc } are merged into one set of node

embeddings Z(l) using a neural network:

Z(l) = fc(Z
(l)
1 ||Z(l)

2 || . . . ||Z(l)
nc

), (3)

where “||” denotes row-wise concatenation operation and fc() is a trainable neural network. One
important hyperparameter of fc() is the output embeddings’ dimension dl+1, i.e., Z(l) ∈ Rnl×dl+1

.
We set dl+1 by averaging the dimensions of the multiple weight matrices {W1,W2, . . . ,Wnc}.
Suppose Wi ∈ Rnl×dl

i , we can set dl+1 =
∑nc

i=1 d
l
i/nc.

3.3 MULTIPLEX POOLING

We follow DiffPool (Ying et al., 2018) to construct our multiplex pooling layer. We learn to assign
nodes to clusters at each layer l using node embeddings and adjacency matrix generated from previ-
ous layer. Specifically, at each layer l, we learn np cluster assignment matrices {S1, S2, . . . , Snp},
and each cluster assignment matrix Si is generated as follows:

S
(l)
i = softmax

(
GCNp(A

(l), X(l), µi)
)
. (4)

It is noticeable that GCNp is a GCN different from the GCNc used in the convolution layer, though
these two GNNs consume the same input data. Each row of S(l)

i corresponds to one of the nl nodes at
layer l, and each column of S(l)

i corresponds to one of the cli clusters, so that we have S(l)
i ∈ Rnl×cli .

0 < µi < 1 denotes the hyperparameters set of the ith GCN. One important hyperparameter could
be the compression ratio that determines the number of clusters to be assigned, i.e., cli. Different
pooling networks can use different number of clusters.

Similar to the merging process in the convolution operation, these generated assignment matrices
{S(l)

1 , S
(l)
2 , . . . , S

(l)
np} are merged into a single assignment matrix S(l) using a neural network:

S(l) = fp(S
(l)
1 ||S(l)

2 || . . . ||S(l)
np
), (5)

where “||” denotes row-wise concatenation operation and fg() is a trainable neural network. Given
the number of nodes at the next layer l+ 1, nl+1, we should configure fg() to output an assignment
matrix with nl+1 columns, i.e., S(l) ∈ Rnl×nl+1

.

Following the pooling approach proposed in (Ying et al., 2018), we then use the merged node em-
beddings Z(l) as shown in Equation (3) and the merged assignment matrix S(l) as shown in Equation
(5) to generate embeddings for each of the nl+1 clusters. We also take the adjacency matrix A(l)
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and the merged assignment matrix S(l) to generate a coarsened adjacency matrix denoting the edge
weights between each pair of cluster:

X(l+1) = S(l)TZ(l),

A(l+1) = S(l)TA(l)S(l),
(6)

Here, since S(l) ∈ Rnl×nl+1

and Z(l) ∈ Rnl×dl+1

, we have the cluster embeddings X(l+1) ∈
Rnl+1×dl+1

. Similarly, we have the coarsened adjacency matrix A(l+1) ∈ Rnl+1×nl+1

Note that, the coarsened graph is a fully connected weighted graph, so that the coarsened adjacency
matrix A(l+1) is a real matrix and each entry in A(l+1) denotes the edge weight between two clusters.
The cluster embeddings X(l+1) and the coarsened adjacency matrix A(l+1) will then be used as input
to the next layer, where one cluster at layer l corresponds to one node at layer l + 1.

4 EXPERIMENTS

In this section, we compare MxPool with the state-of-the-art graph representation learning methods
in the context of graph classification task.

Datasets. In our experiments, we use four graph data sets chosen from benchmarks commonly used
in graph classification. These include D&D (Dobson & Doig, 2003), ENZYMES (Borgwardt et al.,
2005), PROTEINS (Dobson & Doig, 2003; Borgwardt et al., 2005), NCI109 (Wale et al., 2008), and
COLLAB (Yanardag & Vishwanathan, 2015). Each of these datasets include hundreds to thousands
graphs. The details of these datasets are provided in Table 1.

Table 1: Statistics of data sets.

Dataset # of graphs # of classes max # of nodes avg # of nodes avg # of edges
D&D 1178 2 5748 284.32 715.66
ENZYMES 600 6 126 32.63 62.14
PROTEINS 1113 2 620 39.06 72.82
NCI109 4127 2 111 29.68 32.13
COLLAB 5000 3 492 74.49 2457.78

Model Configurations. We implement MxPool by modifying DiffPool. The convolution GNN
model used is the “mean” variant of GraphSAGE (Hamilton et al., 2017) architecture, which is sim-
ilar to the GCN and provides various aggregation methods. The pooling GNN model used is the
DiffPool model. The model configurations for convolution GNN and pooling GNN is the same as
DiffPool. Besides, our MxPool comprises multiple graph convolution networks and multiple graph
pooling networks with different sets of hyperparameters to learn graph features from different per-
spectives. Besides the hyperparameters used in each convolutional/pooling GNN, the number of
graph convolution networks and the number of graph pooling networks are two hyperparameter-
s. We concurrently run 3 graph convolution networks and also concurrently run 3 graph pooling
networks. The learning rate is set as 0.001. Regarding the ENZYMES dataset, since there exist 6
classes, we use cross entropy to compute the loss.

4.1 BASELINES AND EXPERIMENTAL SETTINGS

We consider the following state-of-the-art methods for graph classification task as baselines:

GraphSAGE (Hamilton et al., 2017) is a graph convolution framework proposed for semi-
supervised node classification. GraphSAGE with global mean-pooling on the learned node rep-
resentations can realize graph representation learning so that it can be used for graph classification
task. Other graph convolution variants are omitted as empirically GraphSAGE obtained higher per-
formance in the task (Hamilton et al., 2017).

SortPool (Zhang et al., 2018) is a global pooling method which uses sorting for pooling. It is built
upon the GCN layer, where the features of nodes are sorted before feeding them into traditional 1D
convolutional and dense layers.
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Table 2: Performance comparison on graph classification.

Baselines D&D ENZYMES PROTEINS NCI109 COLLAB
GraphSAGE (Hamilton et al., 2017) 75.42 54.25 70.48 76.50 68.25
SortPool (Zhang et al., 2018) 79.37 57.12 75.54 70.80 73.76
gPool (Gao & Ji, 2019) 75.01 48.33 73.63 66.12 71.12
SAGPool (Lee et al., 2019) 76.45 - 71.86 67.86 -
DiffPool (Ying et al., 2018) 80.64 62.53 76.25 78.86 75.48
MxPool (Ours) 92.10 66.90 77.21 82.21 73.44

gPool (Gao & Ji, 2019) is a recently proposed graph pooling method. It achieves pooling operation
by adaptively selecting some nodes to form a smaller graph based on their scalar projection values
on a trainable projection vector.

SAGPool (Lee et al., 2019) is a Self-Attention Graph Pooling method for GNNs in the context of
hierarchical graph pooling. The self-attention mechanism is exploited to distinguish between the
nodes that should be dropped and the nodes that should be retained.

DiffPool (Ying et al., 2018) is the first end-to-end trainable graph pooling method that learns hierar-
chical representations of graphs. By setting a compression ratio parameter r, a graph with n nodes
is coarsened into a graph with n · r nodes at each layer. We also implement our method based on
DiffPool.

Experimental Setup In order to remove unwanted bias towards the training data, we use 10-fold
cross validation for all the baselines and our approach. Since GraphSAGE and DiffPool are the two
key components in our MxPool approach (GraphSAGE as the graph convolution layer and DiffPool
as the graph pooling layer), we use the base implementation and hyperparameter sweeps as in our
MxPool approach. Regarding the hyperparameters of SortPool, gPool, and SAGPool, we follow the
same experimental setups described in their original papers. In addition, we adopt the widely used
evaluation metric, i.e., accuracy, for graph classification to evaluate the performance.

4.2 PERFORMANCE ON GRAPH CLASSIFICATION

The graph classification performance in ter90o8ims of accuracy is reported in Table 2. For all the
baselines, we use 10-fold cross validation numbers reported by the original authors if we can obtain
the numbers close to the reported ones. Regarding the gPool baseline (Gao & Ji, 2019), we cannot
obtain the necessary published numbers, so we use the numbers on the ENZYMES dataset and PRO-
TEINS dataset reported by the third-party3 and the number on D&D dataset reported by Lee et al.
(2019). For the other datasets, we use the numbers tested by ourselves. Regarding the SAGPool
baseline (Lee et al., 2019), we meet RuntimeError when processing the ENZYMES dataset and
COLLAB dataset, and we denote this case by ‘-’.

From the table, we observe that our MxPool approach shows remarkable performance improvement
over the other state-of-the-art baselines on the first four datasets. Especially on the D&D dataset,
MxPool improves the performance of the second-best approach DiffPool over 11%. However, Diff-
Pool performs slightly better than MxPool on the COLLAB dataset. We tested DiffPool by ourselves
and could only obtain 71.78% accuracy, which is lower than the number 75.48% reported in the o-
riginal paper. This may be due to the unoptimized parameter settings, but we still use the reported
number 75.48% for the DiffPool baseline. In addition, GraphSAGE and DiffPool are the two basic
components in our multiplex model, working as the convolution layer and the pooling layer, re-
spectively. MxPool improves upon the base convolution GNN (i.e., GraphSAGE) by an average of
9.39% and improves upon the base pooling GNN (i.e., DiffPool) by an average of 3.62%.

4.3 ANALYSIS OF MULTIPLEX CONVOLUTION/POOLING

Our motivation for this work is to utilize multiplex hierarchical structure to deal with the diversity
and complexity challenges in graph representation learning. Multiple graph convolutional networks

3https://github.com/bknyaz/graph nn
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Table 3: Effect of multiplex convolution/pooling.

Variations D&D ENZYMES PROTEINS NCI109 COLLAB

SCSP
c1 ∗ p1 80.01 62.17 75.48 80.07 71.31
c2 ∗ p1 79.33 59.85 74.47 80.10 71.33
c3 ∗ p1 78.75 60.32 75.14 78.49 71.14

MCSP [c1|c2|c3] ∗ p1 88.60 63.01 75.57 81.43 72.23

SCSP
c1 ∗ p1 80.01 60.30 75.48 80.07 71.31
c1 ∗ p2 78.64 56.12 75.96 78.47 71.78
c1 ∗ p3 78.79 61.22 74.52 78.95 71.02

SCMP c1 ∗ [p1|p2|p3] 87.50 61.85 76.01 78.47 72.89
MCMP [c1|c2|c3] ∗ [p1|p2|p3] 92.10 66.90 77.21 82.21 73.44

(i.e., GraphSAGE) with different sets of hyperparameters are used to learn node representations. The
node embedding size, as a hyperparameter in GraphSAGE, plays an important role in determining
the quality of node representation. We vary the node embedding sizes in different GraphSAGE
networks. On the other hand, multiple graph pooling networks (i.e., DiffPool) with different sets
of hyperparameters are used to coarsen graphs. The compression ratio, as a hyperparameter in
DiffPool, plays an important role in determining the quality of graph representation. We vary the
compression ratios in different DiffPool networks.

In order to verify the effectiveness of multiplex convolution and multiplex pooling, we run our
MxPool with single convolution network and single pooling network (SCSP), multiple convolution
networks and single pooling network (MCSP), single convolution network and multiple pooling
networks (SCMP), and multiple convolution networks and multiple pooling networks (MCMP), re-
spectively. The accuracy results for graph classification are shown in Table 3. Since the suitable node
embedding sizes and compression ratios are not consistent for different datasets, we use c1, c2, c3 to
denote three different graph convolution parameters (i.e., node embedding size) and p1, p2, p3 to de-
note three different graph pooling parameters (i.e., compression ratio). Note that, they are different
for different datasets. We have put the detailed parameter settings on our GitHub project page.

From the table, we observe that the multiplex structure significantly improves performance over the
singular structure. By fixing the pooling network with p1, multiplexing three convolution networks
with hyperparameters [c1|c2|c3] performs much better than using single convolution network with
either c1, c2, or c3. A similar trend can be observed when multiplexing pooling networks. Anyhow,
the best choice is to simultaneously multiplex convolution networks and multiplex pooling networks
(i.e., MCMP).

4.4 NUMBER OF CONVOLUTION/POOLING NETWORKS

The number of convolution/pooling networks is a hyperparamter in MxPool. In the previous ex-
periments, we use a fixed number of convolution/pooling GNNs to show the performance. In this
experiment, we vary the number of convolution/pooling networks from 1 to 6 and test the perfor-
mance. Our results listed in Appendix A show that the performance can be improved a lot when the
number is set to 3. But as the number is increased larger, the performance is reduced. This may be
because that too many networks with a large amount of parameters result in overfitting problem.

5 CONCLUSION

In this paper, we proposed a simple but effective multiplex GNN architecture MxPool for hierar-
chical graph representation learning. MxPool comprises multiple graph convolution networks to
learn node-level representations and also comprises multiple graph pooling networks to coarsen the
graph. The diversity challenge and the complexity challenge of graph representation learning can
be well addressed in our proposed approach. Our results show that MxPool has remarkable perfor-
mance improvement over the state-of-the-art graph representation learning methods. Future work
includes designing unpooling layers to form an encoder-decoder learning structure to deal with node
classification tasks and link prediction tasks.

8



Under review as a conference paper at ICLR 2020

REFERENCES

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Proceedings of the
30th International Conference on Neural Information Processing Systems (NIPS 2016), pp. 2001–
2009, 2016.

Yoshua Bengio and Yann LeCun. Spectral networks and locally connected networks on graphs.
In Proceedings of the 2nd International Conference on Learning Representations (ICLR 2014),
2014.

K. M. Borgwardt, C. S. Ong, S. Schonauer, S. Vishwanathan, A. J. Smola, and H. P. Kriegel. Protein
function prediction via graph kernels. Bioinformatics, 21(suppl 1):47–56, 2005.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for struc-
tured data. In Proceedings of the 33rd International Conference on International Conference on
Machine Learning (ICML 2016), pp. 2702–2711, 2016.

Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Proceedings of the 30th International Conference
on Neural Information Processing Systems (NIPS 2016), pp. 3844–3852, 2016.

Frederik Diehl. Edge contraction pooling for graph neural networks. CoRR, abs/1905.10990, 2019.
URL http://arxiv.org/abs/1905.10990.

P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from non-enzymes without align-
ments. Journal of molecular biology, 330(4):771–783, 2003.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
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A RESULTS OF THE NUMBER OF CONVOLUTION/POOLING NETWORKS

In this experiment, we vary the number of convolution/pooling networks from 1 to 6. The number
of convolution networks and the number of pooling networks are the same. The graph classification
accuracy results on D&D, ENZYMES, and PROTEINS datasets are shown in Table 4.

Table 4: Effect of number of convolution/pooling GNNs.

1 2 3 4 5 6
D&D 80.24 88.57 92.10 89.29 87.86 87.32
ENZYMES 62.02 60.80 66.90 64.89 65.71 62.70
PROTEINS 76.25 77.31 77.21 76.73 75.58 75.19

From the table, we can see that the best performance is achieved when the number is set as 2 or 3.
But as the number is increased larger than 3, the performance is reduced. This may be because that
too many networks with a large amount of parameters result in overfitting problem.
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