
Under review as a conference paper at ICLR 2020

MULTI-TASK ADAPTERS
FOR ON-DEVICE AUDIO INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The deployment of deep networks on mobile devices requires to efficiently use the
scarce computational resources, expressed as either available memory or computing
cost. When addressing multiple tasks simultaneously, it is extremely important
to share resources across tasks, especially when they all consume the same input
data, e.g., audio samples captured by the on-board microphones. In this paper
we propose a multi-task model architecture that consists of a shared encoder and
multiple task-specific adapters. During training, we learn the model parameters as
well as the allocation of the task-specific additional resources across both tasks and
layers. A global tuning parameter can be used to obtain different multi-task network
configurations finding the desired trade-off between cost and the level of accuracy
across tasks. Our results show that this solution significantly outperforms a multi-
head model baseline. Interestingly, we observe that the optimal resource allocation
depends on both the task intrinsic characteristics as well as on the targeted cost
measure (e.g., memory or computing cost).

1 INTRODUCTION

The availability of large annotated audio datasets (e.g., AudioSet (Gemmeke et al., 2017)) has enabled
to train models that are able to target a large number of audio classes, ranging from speech and music,
to coughing and baby crying. However, to achieve a good level of accuracy, it is necessary to use
complex network architectures, characterized by a large number of parameters and floating point
operations (FLOPs) (Hershey et al., 2017). For this reason, when models need to be deployed on
mobile device, it is customary to train more focused detectors, each targeting a handful of classes.
This approach has two main advantages: i) the resulting model is typically significantly less complex,
thus lending itself to be deployed on device; ii) training can leverage task-specific datasets and data
augmentation strategies, thus leading to a higher level of accuracy when deployed in-the-wild.

On the other side, training and deploying independent models for each task fails to leverage the fact
that such models might be extracting common features, given that they all consume the same input.
Indeed, it might be argued that especially in the early layers of the network architecture, models
might be learning low-level features that are not task-specific. As a consequence, such independent
models do not make optimal use of the scarce computational resources.

A common solution to this problem is to deploy a multi-head model (Georgiev et al., 2017; Lee
et al., 2019), in which a shared common encoder computes general-purpose audio embeddings, and
task-specific fully connected heads are added to target each task. However, when the number and
heterogeneity of tasks increases, the audio embeddings might fail to capture all the information needed
to solve all tasks. In this paper we propose a multi-task model that overcomes the aforementioned
issue by adding task adapter networks in parallel to a shared encoder, as illustrated in Figure 1. The
goal of such adapters is to learn task-specific features, possibly at different depths. The adapters have
the same architecture as that of the shared encoder, but with a smaller number of channels in each
layer. We designed the architecture in such a way that each layer in a task adapter receives as input
the concatenation of the activations at the layer below, computed by both the shared encoder and
the task adapter itself. As a consequence, there are no inter-dependencies across tasks, and during
inference one can decide to compute simultaneously either all tasks or a subset of them, depending
on the available resource budget.

1

Under review as a conference paper at ICLR 2020

Task 1 Task 2 Task K

Layer L - 2 (Conv)

Layer L - 1 (Conv)

Layer L - 2 (Conv)

Layer L - 1 (FC)

Shared Encoder
Layer L (softmax)

Input

Figure 1: Overview of the proposed model architecture with task adapters. Each parallelogram
denotes a 2-dimensional channel (time and frequency). Arrow with square ending denote gating
variables that control which subset of the channels contribute to the input of the layer above.

Generally, tasks might be characterized by a different level of intrinsic difficulty, and require adapta-
tion at different layers in the network. A fixed allocation of extra channels is likely to be suboptimal
when costs are explicitly taken into account. Thus, our key contribution is to let the network learn
which additional channels to use in each layer of each task adapter network, subject to a global
cost constraint. Note that cost can be expressed either in terms of number of parameters or FLOPs,
depending on the requirements imposed by the deployment on device (respectively due to memory or
battery constraints).

Our solution consists of introducing an explicit gating mechanism, controlled by a small set of
trainable variables that determine whether each channel of the task adapters is used as input to the
layer above. By learning such gating variables, the model can effectively decide to turn off some of
the channels in the task adapter networks, thus learning how to allocate the available budget to tasks
and layers. In summary, we propose the following main contributions:

• We propose a model that addresses multiple audio tasks simultaneously, sharing representa-
tions via a common encoder network and learning task-specific adapters at different depths,
which are able to augment the common representation and achieving higher accuracy.

• We propose a learnable gating mechanism that allows one to sweep different trade-offs
between accuracy and overall cost, by selectively turning off some of the channels in the
task adapter networks.

• We evaluate the proposed model simultaneously on eight different audio tasks, ranging
from keyword spotting to audio scene recognition, speaker identification, etc. Our empirical
results show that it is possible to significantly improve the level of accuracy of several tasks
with respect to a multi-head model by only marginally increasing the cost.

2 RELATED WORK

Learning representations that can be re-used for multiple tasks has received a great deal of attention
in the recent literature. Domain adaptation and transfer learning (Yosinski et al., 2014; Donahue
et al., 2014) are common methods used to fine-tune a linear classifier on top of the embeddings

2

Under review as a conference paper at ICLR 2020

produced by a pre-trained network to address multiple tasks. An alternative approach consists of full
fine-tuning (Cui et al., 2018), in which a pre-trained network is used as starting point for the training
process. However, when multiple tasks need to be addressed, neither solution is particularly suitable.
In the first case, task-adaptation is limited to the output layer of the network, which might not be
sufficient when tasks require heterogeneous representations. In the second case, full fine-tuning
might lead to very different models for each task, due to catastrophic forgetting. To overcome these
limitations, Rebuffi et al. (2017) address the problem of adapting a common representation to different
visual domains. They propose to use residual adapter modules, i.e., parametric modules that can steer
the internal network representation from one domain to another. This approach was later extended
in (Rebuffi et al., 2018), introducing a form of adapter that can be added in parallel to the main
network architecture, and successfully applied to the NLP domain in (Houlsby et al., 2019). An
alternative approach is proposed in (Mudrakarta et al., 2019), in which a task-specific model patch
is learned to produce different embeddings for different downstream tasks. The patch can take the
form of either batch-norm parameters or a subset of the weights of spatial convolution filters. All
these methods allow to adapt the network by changing a small number of weights. At the same time,
during inference the whole network has to be reevaluated from scratch when moving from one task to
the other, due to the dependencies introduced in the computation graph. This is in constrast with our
model, which is able to target simultaneously multiple tasks at once.

Most of the works above deal with vision-related tasks. Multi-task learning in the context of general-
purpose audio has been less explored. The prevailing approach is to train a single model addressing
multiple classes at once (Hershey et al., 2017). However, this approach does not benefit from the
availability of task-specific datasets, and model capacity might not be tailored to the subset of classes
of interest. Recently, Lee et al. (2019) proposed a model architecture that addresses simultaneously
three tasks. Unlike our approach, they start directly from time-domain waveforms. In addition, the
task adaptation only occurs in the last layer of a multi-head model architecture. Similarly to our
work, Georgiev et al. (2017) address multi-task audio learning for deployment on embedded devices.
Depending on their characteristics, tasks can be processed by a multi-head model, in which only
the last layer is task-specific, or have its own task-specific network. Conversely, our model can
accommodate task adaptation at different depths and in a task-specific manner.

In our work we deliberately keep the task adapters of individual tasks separate from each other, so
that it is possible to select the subset of tasks to evaluate depending on the available budget. This is
in constrast to the approach explored by Cheung et al. (2019), which superimpose multiple models
into a single entangled model, from which task-specific models can be later retrieved. At the same
time, this approach seems to be more suitable for server-side inference, where the overall model
complexity is less critical. In addition, while in our work we focus on a single modality, we recognize
the importance of handling multiple modalities at once. For example, Kaiser et al. (2017) explored
the case in which multiple tasks belong to different modalities (e.g., image, speech, text), showing
that they might still benefit from sharing part of the network architecture when training is performed
concurrently on all tasks. Also in this case the resulting model is large and not specifically tailored to
be deployed on mobile devices.

Finally, the proposed method for determining how to size the adapters based on the available budget
is related to the MorphNet solution previously appeared in (Gordon et al., 2018). However, our
approach differs from multiple angles: i) a single-task learning model is discussed in (Gordon et al.,
2018), while we focus on multi-task learning, thus investigating how allocation is performed across
tasks; ii) we introduce explicit gating variables instead of re-using batch-norm scaling variables.
This has the advantage of applying the solution also to layers in which batch norm might not be
used (e.g., fully connected layers); iii) we adopt a different relaxation of the discrete cost allocation
problem (further discussed in Section 3); iv) we evaluate the model in the context of audio tasks,
while (Gordon et al., 2018) is mostly concerned with vision tasks.

3 METHODS

We consider a model architecture that receives one audio recording as input and produces as output
predictions for K downstream tasks simultaneously. The architecture consists of a shared encoder
and K task-adapter encoders. The underlying idea is that the shared encoder provides a general
purpose representation for the audio inputs, which might be suitable for different downstream tasks.

3

Under review as a conference paper at ICLR 2020

However, higher level of accuracy might be achieved by refining the representations computed at
different depths adding task-specific adapters in the form of additional channels.

The overall architecture of the model is illustrated in Figure 1. Both the shared encoder and each of the
task adapters consist of the same number of convolutional layers, followed by a global max-pooling
layer and a fully connected layer, for a total of L layers. Let fk,i(·), i = 1, . . . , L, denote the function
computed by the generic layer at depth i. To simplify the notation, we denote with k = 0 the shared
encoder and with k = 1, . . . ,K, the task specific encoders. The function fk,i(·) produces as output a
tensor of size Ti×Fi×Ck,i. Note that the number of temporal frames Ti and frequency bins Fi is the
same for all values of k. For the task-specific encoders, we include a number of task-specific channels
Ck,i = max(1, bαiC0,ic), where C0,i and αi are hyperparameters that determine the maximum
achievable complexity of the model. Although it is possible to use a different value of αi at each
layer, throughout the rest of this paper we assume αi = α, i = 1, . . . , L.

In the shared encoder, f0,i receives as input only the output of the previous layer. However, in each
task-adapter encoder, fk,i, k 6= 0, receives as input the concatenation of the outputs of f0,i−1 and
fk,i−1 along the channel dimension. Therefore, the cost of computing fk,i, k 6= 0, can be expressed
as:

costk,i = ηi,k · Ck,i · (C0,i−1 + Ck,i−1) (1)

(with C0,0 = 1, and Ck,0 = 0, for k 6= 0). That is, the cost is proportional to the number of output
channels Ck,i multiplied by the number of input channels (C0,i−1 + Ck,i−1). The cost scaling factor
ηi,k is a constant value that can be computed based on: i) the intrinsic architecture of the layer; ii) the
known sizes Ti × Fi; iii) the target cost measure, i.e., FLOPs or number of parameters.

The proposed method aims at learning how to scale the number of channels to be used in each layer
of the task adapters encoder, i.e., to determine ck,i ≤ Ck,i, subject to a constraint on the total cost.
To this end, we introduce a gating mechanism that controls the flow of the activations in the task
adapters encoders. Namely, for each layer of the task adapters we introduce Ck,i additional trainable
variables ak,i = [ak,i,1, . . . , ak,i,Ck,i

], which modulate the output of each channel:

f̃k,i,c(x) = σ(ak,i,c) · fk,i,c(x), (2)

where σ(·) is a non-linear function that maps its input to non-negative real numbers, i.e., R→ R+.
In our work, we use a clipped ReLU nonlinearity defined as follows:

σ(a; s) = min(1, ReLU(s · a+ 0.5)) (3)

The slope of the non-linearity s is progressively increased during training, in such a way that, as
s→∞, (3) acts as a gating function. Note that when the gating non-linearity is driven to be either
0 or 1, it is locked at this value, as the gradients are equal to zero. Therefore, it performs a hard
selection of those channels that are contributing to the network output and those that can be discarded.
The number of active channels in the i-th layer of the k-th task adapter is equal to:

ck,i =

Ck,i∑
c=1

1σ(ak,i,c)>0 (4)

During training, we jointly learn both the parameters of the network and the gating variables. This is
achieved by optimizing the following loss function:

L =

K∑
k=1

wk

[
LXEk + λCadaptersk

]
(5)

4

Under review as a conference paper at ICLR 2020

(a) Accuracy vs. cost.

Num. params FLOPs
Task Multi-head λ = 10−2 λ = 10−4 λ = 10−2 λ = 10−4 Single-task
MUS 0.94 0.94 (+0.5%) 0.93 (-1.1%) 0.95 (+0.4%) 0.95 (+0.3%) 0.98
LSP 0.91 0.91 (+0.8%) 0.95 (+5.2%) 0.94 (+4.2%) 0.95 (+5.0%) 0.98
BSD 0.74 0.75 (+0.8%) 0.76 (+2.6%) 0.76 (+2.3%) 0.76 (+2.1%) 0.73
TUT 0.71 0.72 (+1.8%) 0.76 (+7.8%) 0.75 (+5.0%) 0.77 (+6.7%) 0.82
SPC 0.66 0.65 (-0.3%) 0.65 (-0.4%) 0.66 (+2.2%) 0.67 (+3.1%) 0.75
LID 0.59 0.65 (+11.9%) 0.67 (+14.7%) 0.63 (+5.3%) 0.65 (+8.9%) 0.64
NPI 0.62 0.65 (+4.6%) 0.70 (+12.8%) 0.66 (+6.8%) 0.71 (+15.0%) 0.79
NIF 0.55 0.57 (+2.7%) 0.59 (+6.6%) 0.59 (+8.1%) 0.59 (+7.8%) 0.63
Mean 0.71 0.73 (+2.9%) 0.75 (+6.0%) 0.74 (+4.3%) 0.75 (+6.1%) 0.79

10k 20k 30k 40k 50k 60k 70k

params

50%

60%

70%

80%

90%

100%

A
cc

u
ra

cy

Shared encoder: trained

MUS

LSP

BSD

TUT

SPC

LID

NPI

NIF

(b) Number of parameters

0m 1m 2m 3m 4m 5m

FLOPs

50%

60%

70%

80%

90%

100%

A
cc

u
ra

cy

Shared encoder: trained

MUS

LSP

BSD

TUT

SPC

LID

NPI

NIF

(c) FLOPs

Figure 2: Accuracy vs. cost for the multi-task learning scenario.

where LXEk is the cross-entropy loss for the k-th task, wk is an optional weighting term, and Cadaptersk
is a penalty term that captures the cost of the k-th task adapter for a given configuration of the gating
variables:

Cadaptersk =

L∑
i=1

ηi,k · ‖ak,i‖1 · (C0,i−1 + ‖ak−1,i‖1). (6)

The Lagrange multiplier λ controls indirectly the target cost, i.e., when λ = 0 the optimizer minimizes
the cross-entropy loss LXEk only, thus potentially using all the available capacity, both of the shared
encoder and of the task-adapter channels (i.e., ck,i = Ck,i). Conversely, when increasing λ the use
of additional channels is penalized, thus inducing the network to use fewer channels. Note that
‖ak−1,i‖1 is upper bounded by αbC0,i−1c, therefore when α� 1, the second term in equation (6) is
dominated by the constant C0,i−1, and Cadaptersk is proportional to the l-1 norm of the gating variable
vector, thus promoting a sparse solution in which only a subset of the channels are used.

4 EXPERIMENTS

Audio front-end: In our work we consistently use the same audio frontend, which processes input
sequences sampled at 16 kHz, with a window size of 25 ms and a hop size equal to 10 ms to compute
the short-time Fourier transform (STFT), and then computes F = 64 mel-spaced frequency bins in
the range 60–7800 Hz. Finally, we take the logarithm of the resulting spectrogram.

Audio tasks: We evaluate the proposed multi-task adapters architecture addressing simultaneously 8
different audio-based tasks, covering both speech and non-speech related tasks. In all cases, the model
receives as input a spectrogram slice of size 96×64, so that the receptive field is equal to T = 975 ms.
We use the Speech Commands (SPC) dataset (Warden, 2018) to evaluate keyword spotting on 35
distinct keywords. LibriSpeech (LSP) (Panayotov et al., 2015) contains audio books read by 251

5

Under review as a conference paper at ICLR 2020

different speakers. We use the 100 hours training set to evaluate a speaker identification task. The
Spoken Language Identification (LID) dataset (Tomasz, 2018) contains samples that belong to three
different languages: English, Spanish and German, while the MUSAN (MUS) dataset (Snyder et al.,
2015) distinguishes across three classes, namely music, speech and noise. We also use two datasets
released in the context of the recent DCASE2018 Challenge, Bird Audio Detection (Stowell et al.,
2018) (BSD), and TUT Urban Acoustic Scenes 2018 (Mesaros et al., 2018) (TUT), which contains
labeled audio samples from 10 different urban environments. Finally, we consider two tasks based
on the NSynth dataset (Engel et al., 2017). NSynthPitch (NPI) contains notes played by different
musical instruments at 128 different pitch levels, while NSynthInstrument (NIF) distinguishes 11
different families of musical instruments. For all datasets, we consider the default train/test split, and
provide results on slices extracted from the test set only. Note that the choice of the tasks used for the
evaluation is consistent with the selected temporal granularity. As such, we do not consider speech
recognition tasks, which generally require a much finer temporal granularity.

Model architecture: For both the shared encoder and the task-adapter networks, we use a convo-
lutional neural network with L = 5 layers. Each convolutional layer is followed by max-pooling,
to reduce the time-frequency dimensions by a factor of two at each layer, a ReLU non-linearity and
batch-normalization. Finally, a global max-pooling layer is followed by a fully-connected layer.
For each task, the output softmax layer receives as input the embeddings produced by the encoder,
concatenated with the embeddings produced by the task-adapter network.

We consider two scenarios for the shared encoder architecture. In the multi-task learning scenario, the
encoder is trained together with the task adapters. In this case, the number of channels in each layer
is equal to [6, 12, 24, 48, 96], for a total of 65k parameters and 6M FLOPs. In the transfer learning
scenario, we consider embeddings produced by an encoder pre-trained using a self-supervised
learning method (Audio2Vec - CBoW), as described in (Tagliasacchi et al., 2019). In this case we use
[8, 16, 32, 64, 128] channels in each layer and the encoder weights are frozen during training, for a
total of 125k parameters and 18M FLOPs. The maximum number of channels in the task-adapter
networks is determined by setting α = 0.2.

The loss function is minimized with stochastic gradient descent using the Adam optimizer with a
learning rate equal to 10−3. The batch size is set equal to 256 samples, that is, 256 / 8 = 32 samples
from each task in a batch. Training is stopped after 1 million batch iterations, when the level of
accuracy of all tasks is saturated.

Baselines: As a baseline, we consider a multi-head architecture which consists of a shared encoder
and 8 different fully connected layers, one for each task. We also include results obtained by training
a task specific model. In this case, we use a model with [8, 16, 32, 64, 128] channels in each layer for
a total of 125k parameters and 18M FLOPs up to the embedding layer. The number of parameters of
the output softmax layer depends on the number of output classes. For example, the LibriSpeech head
requires additional 251× 128 ' 32k parameters, the MUSAN head only 3× 128 = 384 parameters.
The FLOPs cost of this layer is negligible when compared to the rest of the network.

Results: We evaluate the proposed model architecture by computing the classification accuracy of
each of the 8 tasks. We consider cost expressed either as number of task-specific parameters, or
task-specific FLOPs. Figure 2 shows the results for the multi-task learning scenario. We let the
parameter λ vary, so as to target different cost levels, and report the task accuracy in each case. The
leftmost point in each curve represents the multi-head baseline, and the other two points are obtained
by setting λ = 10−2, 10−4, when expressing number of parameters in thousands and FLOPs in
millions. Note that the x-axis in both figures represents the task-specific cost only, i.e., it does not
include the cost of computing the shared encoder. For this reason the curves do not start at zero,
because we include the task-specific cost of the softmax layer of head, particularly noticeable when
considering cost based on the number of parameters.

Overall, the average accuracy across tasks grows from 0.71 to 0.75 by adding task-specific adapters
(+6% in relative terms). However, there are significant differences across tasks. For example, MUSAN
starts from a higher level of accuracy in the multi-head model, and no improvement is observed
when adding task-specific adapters. Conversely, NSynthPitch is quite different from all other tasks,
and the shared encoder is unable to capture the features necessary to solve this task. As a result, a
relative +15% / + 13% is observed when cost is measured in terms of number of parameters and
FLOPs, respectively. For 6 out of the 8 tasks, the proposed model achieves a level of accuracy which

6

Under review as a conference paper at ICLR 2020

(a) Accuracy vs. cost.

Num. params FLOPs
Task Multi-head λ = 10−2 λ = 10−4 λ = 10−2 λ = 10−4 Single-task
MUS 0.93 0.94 (+1.2%) 0.94 (+0.4%) 0.95 (+1.9%) 0.94 (+0.8%) 0.98
LSP 0.62 0.73 (+17.5%) 0.83 (+33.8%) 0.82 (+32.4%) 0.85 (+37.8%) 0.98
BSD 0.67 0.72 (+6.8%) 0.75 (+11.2%) 0.73 (+7.9%) 0.74 (+8.4%) 0.73
TUT 0.47 0.51 (+8.6%) 0.54 (+15.3%) 0.55 (+16.7%) 0.56 (+18.3%) 0.82
SPC 0.19 0.49 (+160%) 0.61 (+223%) 0.59 (+209%) 0.63 (+228%) 0.75
LID 0.52 0.68 (+32.0%) 0.66 (+28.1%) 0.69 (+38.4%) 0.72 (+44.0%) 0.64
NPI 0.46 0.50 (+9.2%) 0.59 (+28.6%) 0.58 (+27.2%) 0.60 (+30.8%) 0.79
NIF 0.40 0.47 (+18.4%) 0.51 (+27.9%) 0.54 (+35.6%) 0.51 (+30.2%) 0.63
Mean 0.53 0.63 (+31.6%) 0.68 (+46.0%) 0.68 (+46.2%) 0.69 (+49.8%) 0.79

10k 20k 30k 40k 50k 60k 70k

params

0%

20%

40%

60%

80%

100%

A
cc

u
ra

cy

Shared encoder: frozen

MUS

LSP

BSD

TUT

SPC

LID

NPI

NIF

(b) Number of parameters

0m 1m 2m 3m

FLOPs

0%

20%

40%

60%

80%

100%

A
cc

u
ra

cy

Shared encoder: frozen

MUS

LSP

BSD

TUT

SPC

LID

NPI

NIF

(c) FLOPs

Figure 3: Accuracy vs. cost for the transfer learning scenario.

is in-between the multi-head baseline and independent single-task models. When comparing with the
latter, one needs to bear in mind that the overall complexity of the single task models is significantly
larger than the architecture evaluated in the multi-task learning scenario, also when λ→ 0 and all
gates are open. To further bridge the gap, one could increase α, thus allocating additional task-specific
channels, in exchange for additional complexity. For two tasks, namely Bird Audio Detection and
Spoken Language Identification, the proposed multi-task architecture outperforms the corresponding
single-task baselines. This can be explained by the fact that both tasks have a relatively small dataset
and the single-task model is likely to overfit. Conversely, when trained jointly with other tasks, this
acts as a form of regularization, thus leading to higher accuracy on the test set.

Figure 3 show similar results for the transfer learning scenario. In this case, the pre-trained encoder
is frozen and, as already observed in (Tagliasacchi et al., 2019), it provides good representations only
for some of the tasks. For example, a simple multi-head model achieves a level of accuracy equal to
0.19 on the Speech Commands task. By adding task-specific adapters, the accuracy grows above 0.60,
regardless of the adopted cost measure. In general, much larger improvements are observed in this
case, with an average relative increase in accuracy above 40%.

It is also interesting to observe how the model decides to allocate the additional budget available for
task adapters, inspecting the status of the gates upon training convergence. Figure 4a illustrates this
aspect for two tasks, namely Bird Audio Detection and NSynthPitch. Each sub-figure shows how
the gates evolve by decreasing the value of λ, thus relaxing the cost constraint. First, we observe
that different tasks require a different level of adaptation. In this example, NSynthPitch uses a larger
number of additional channels. Second, the status of the gates depend on the selected cost measure.
When considering FLOPs, the last fully layer is relatively inexpensive. Thus, most of the gates are
kept open. Conversely, when considering number of parameters requires a more parsimonious use of
the fully connected layer, as this accounts for a large fraction of the total cost.

7

Under review as a conference paper at ICLR 2020

0.0

0.5

1.0

G
a
te

 v
a
lu

e

birdsong_detection

0.0

0.5

1.0

G
a
te

 v
a
lu

e

0 1 2 3 4 5

Layer

0.0

0.5

1.0

G
a
te

 v
a
lu

e

(a)

0.0

0.5

1.0

G
a
te

 v
a
lu

e

birdsong_detection

0.0

0.5

1.0

G
a
te

 v
a
lu

e

0 1 2 3 4 5

Layer

0.0

0.5

1.0

G
a
te

 v
a
lu

e

(b)

0.0

0.5

1.0

G
a
te

 v
a
lu

e

nsynth_pitch

0.0

0.5

1.0

G
a
te

 v
a
lu

e

0 1 2 3 4 5

Layer

0.0

0.5

1.0

G
a
te

 v
a
lu

e

(c)

0.0

0.5

1.0

G
a
te

 v
a
lu

e

nsynth_pitch

0.0

0.5

1.0

G
a
te

 v
a
lu

e

0 1 2 3 4 5

Layer

0.0

0.5

1.0
G

a
te

 v
a
lu

e

(d)

Figure 4: Gate values - Cost measure: Number of parameters (a) and (c); FLOPs (b) and (d). Crosses
represent closed gates corresponding to unused channels. Within each sub-figure, the Lagrange
multiplier λ increases going top-to-bottom, allowing more gates to stay open.

5 CONCLUSION

In this paper we propose a multi-task learning model that is able to address a wide variety of audio
tasks. Unlike previously proposed approaches, our model can compute simultaneously either all
tasks at once, or a subset of them, depending on the available computational resource budget. The
allocation of the task-specific resources is handled jointly with training, by learning which additional
channels should be used for each task and layer. Experimental results show that the proposed model
outperforms a multi-head architecture baseline and approaches the accuracy achievable when using
separate task-specific models. Our future research will pursue two different directions: i) on the
one hand, we will explore how tasks can be group together, so as to share a common representation
within each group; ii) on the other hand, we will relax the constraint on the input audio front-end,
investigating how different tasks may benefit from task-specific time-to-frequency transformations.

REFERENCES

Brian Cheung, Alex Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Superposition
of many models into one. Technical report, 2019. URL https://arxiv.org/pdf/1902.
05522v1.pdf.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large Scale Fine-Grained Cat-
egorization and Domain-Specific Transfer Learning. In Computer Vision and Pattern Recognition
Conference (CVPR), jun 2018. URL http://arxiv.org/abs/1806.06193.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In
International Conference on Machine Learning (ICML), oct 2014. URL http://arxiv.org/
abs/1310.1531.

8

https://arxiv.org/pdf/1902.05522v1.pdf
https://arxiv.org/pdf/1902.05522v1.pdf
http://arxiv.org/abs/1806.06193
http://arxiv.org/abs/1310.1531
http://arxiv.org/abs/1310.1531

Under review as a conference paper at ICLR 2020

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck, Karen Simonyan, and
Mohammad Norouzi. Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders.
Technical report, apr 2017. URL http://arxiv.org/abs/1704.01279.

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio Set: An ontology and human-labeled dataset
for audio events. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, pp. 776–780. IEEE, mar 2017. ISBN 978-1-5090-4117-6. doi: 10.1109/
ICASSP.2017.7952261. URL http://ieeexplore.ieee.org/document/7952261/.

Petko Georgiev, Sourav Bhattacharya, Nicholas D Lane, and Cecilia Mascolo. Low-resource Multi-
task Audio Sensing for Mobile and Embedded Devices via Shared Deep Neural Network Represen-
tations. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
39(4):39, 2017. URL https://doi.org/0000001.0000001.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi.
MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks. In
Computer Vision and Pattern Recognition Conference (CVPR), 2018. URL https://arxiv.
org/pdf/1711.06798.pdf.

Shawn Hershey, Sourish Chaudhuri, Daniel P.W. Ellis, Jort F Gemmeke, Aren Jansen, R Channing
Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, Malcolm Slaney, Ron J Weiss,
and Kevin Wilson. CNN architectures for large-scale audio classification. In ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 131–135,
2017. ISBN 9781509041176. doi: 10.1109/ICASSP.2017.7952132.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-Efficient Transfer Learning for NLP.
In Proceedings of the 36th International Conference on Machine Learning, PMLR, pp. 2790–2799,
feb 2019. URL http://arxiv.org/abs/1902.00751.

Łukasz Kaiser, Google Brain, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Google
Research, Llion Jones, and Jakob Uszkoreit. One Model To Learn Them All. Technical report,
2017. URL https://github.com/tensorflow/tensor2tensor.

Tyler Lee, Ting Gong, Suchismita Padhy, Anthony Ndirango, and Andrew Rouditchenko. Label-
efficient audio classification through multitask learnign and self-supervision. In International
Conference on Machine Learning (ICML), 2019. URL https://openreview.net/pdf?
id=BkecJjCEuN.

Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Detection and Classification of Acoustic
Scenes and Events. In Detection and Classification of Acoustic Scenes and Events 2018 Workshop
(DCASE2018), pp. 9–13, 2018. doi: 10.5281/zenodo.1228142. URL https://doi.org/10.
5281/zenodo.1228142,.

Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, and Andrew Howard. K For The
Price Of 1: Parameter Efficient Multi-task And Transfer Learning. In International Conference on
Learning Representations (ICLR), oct 2019. URL http://arxiv.org/abs/1810.10703.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. LibriSpeech: An ASR
Corpus Based on Public Domain Adio Books. In ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, 2015. URL http://www.gutenberg.
org.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. In Neural Information Processing Systems (NIPS), may 2017. URL
http://arxiv.org/abs/1705.08045.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Computer Vision and Pattern Recognition Conference (CVPR),
mar 2018. URL http://arxiv.org/abs/1803.10082.

9

http://arxiv.org/abs/1704.01279
http://ieeexplore.ieee.org/document/7952261/
https://doi.org/0000001.0000001
https://arxiv.org/pdf/1711.06798.pdf
https://arxiv.org/pdf/1711.06798.pdf
http://arxiv.org/abs/1902.00751
https://github.com/tensorflow/tensor2tensor
https://openreview.net/pdf?id=BkecJjCEuN
https://openreview.net/pdf?id=BkecJjCEuN
https://doi.org/10.5281/zenodo.1228142,
https://doi.org/10.5281/zenodo.1228142,
http://arxiv.org/abs/1810.10703
http://www.gutenberg.org
http://www.gutenberg.org
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1803.10082

Under review as a conference paper at ICLR 2020

David Snyder, Guoguo Chen, and Daniel Povey. MUSAN: A Music, Speech, and Noise Corpus.
Technical report, 2015. URL http://www.itl.nist.gov/iad/mig/tests/sre/.

Dan Stowell, | Mike Wood, | Hanna Pamuła, Yannis Stylianou, and Hervé Glotin. Automatic acoustic
detection of birds through deep learning: the first Bird Audio Detection challenge. Technical
report, 2018. URL https://arxiv.org/pdf/1807.05812.pdf.

Marco Tagliasacchi, Beat Gfeller, Félix de Chaumont Quitry, and Dominik Roblek. Self-supervised
audio representation learning for mobile devices. Technical report, may 2019. URL http:
//arxiv.org/abs/1905.11796.

Tomasz. Spoken Language Identification, 2018.

Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. Technical
report, 2018. URL https://arxiv.org/pdf/1804.03209.pdf.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in
deep neural networks? In Neural Information Processing Systems (NIPS), nov 2014. URL
http://arxiv.org/abs/1411.1792.

10

http://www.itl.nist.gov/iad/mig/tests/sre/
https://arxiv.org/pdf/1807.05812.pdf
http://arxiv.org/abs/1905.11796
http://arxiv.org/abs/1905.11796
https://arxiv.org/pdf/1804.03209.pdf
http://arxiv.org/abs/1411.1792

	Introduction
	Related work
	Methods
	Experiments
	Conclusion

