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ABSTRACT

Stochastic gradient descent (SGD) with stochastic momentum is popular in non-
convex stochastic optimization and particularly for the training of deep neural
networks. In standard SGD, parameters are updated by improving along the path
of the gradient at the current iterate on a batch of examples, where the addition of
a “momentum” term biases the update in the direction of the previous change in
parameters. In non-stochastic convex optimization one can show that a momentum
adjustment provably reduces convergence time in many settings, yet such results
have been elusive in the stochastic and non-convex settings. At the same time, a
widely-observed empirical phenomenon is that in training deep networks stochas-
tic momentum appears to significantly improve convergence time, variants of it
have flourished in the development of other popular update methods, e.g. ADAM
(Kingma & Ba (2015)), AMSGrad (Reddi et al. (2018b)), etc. Yet theoretical
justification for the use of stochastic momentum has remained a significant open
question. In this paper we propose an answer: stochastic momentum improves
deep network training because it modifies SGD to escape saddle points faster and,
consequently, to more quickly find a second order stationary point. Our theoretical
results also shed light on the related question of how to choose the ideal momentum
parameter–our analysis suggests that β ∈ [0, 1) should be large (close to 1), which
comports with empirical findings. We also provide experimental findings that
further validate these conclusions.

1 INTRODUCTION

SGD with stochastic momentum has been a de facto algorithm in nonconvex optimization and deep
learning. It has been widely adopted for training machine learning models in various applications.
Modern techniques in computer vision (e.g.Krizhevsky et al. (2012); He et al. (2016); Cubuk et al.
(2018); Gastaldi (2017)), speech recognition (e.g. Amodei et al. (2016)), natural language processing
(e.g. Vaswani et al. (2017)), and reinforcement learning (e.g. Silver et al. (2017)) use SGD with
stochastic momentum to train models. The advantage of SGD with stochastic momentum has been
widely observed (Hoffer et al. (2017); Loshchilov & Hutter (2019); Wilson et al. (2017)). Sutskever
et al. (2013) demonstrate that training deep neural nets by SGD with stochastic momentum helps
achieving in faster convergence compared with the standard SGD (i.e. without momentum). The
success of momentum makes it a necessary tool for designing new optimization algorithms in
optimization and deep learning. For example, all the popular variants of adaptive stochastic gradient
methods like Adam (Kingma & Ba (2015)) or AMSGrad (Reddi et al. (2018b)) include the use of
momentum.

Despite the wide use of stochastic momentum (Algorithm 1) in practice, justification for the clear
empirical improvements has remained elusive, as has any mathematical guidelines for actually setting
the momentum parameter—it has been observed that large values (e.g. β = 0.9) work well in practice.
It should be noted that Algorithm 1 is the default momentum-method in popular software packages
such as PyTorch and Tensorflow 1. In this paper we provide a theoretical analysis for SGD with

1Heavy ball momentum is the default choice of momentum method in PyTorch and Tensorflow, instead
of Nesterov’s momentum. See the manual pages https://pytorch.org/docs/stable/_modules/
torch/optim/sgd.html and https://www.tensorflow.org/api_docs/python/tf/
keras/optimizers/SGD.
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Algorithm 1: SGD with stochastic heavy ball momentum
1: Required: Step size parameter η and momentum parameter β.
2: Init: w0 ∈ Rd and m−1 = 0 ∈ Rd.
3: for t = 0 to T do
4: Given current iterate wt, obtain stochastic gradient gt := ∇f(wt; ξt).
5: Update stochastic momentum mt := βmt−1 + gt.
6: Update iterate wt+1 := wt − ηmt.
7: end for

momentum. We identify some mild conditions that guarantees SGD with stochastic momentum will
provably escape saddle points faster than the standard SGD, which provides clear evidence for the
benefit of using stochastic momentum. For stochastic heavy ball momentum, a weighted average of
stochastic gradients at the visited points is maintained. The new update is computed as the current
update minus a step in the direction of the momentum. Our analysis shows that these updates can
amplify a component in an escape direction of the saddle points.

In this paper, we focus on finding a second-order stationary point for smooth non-convex optimization
by SGD with stochastic heavy ball momentum. Specifically, we consider the stochastic nonconvex
optimization problem, minw∈Rd f(w) := Eξ∼D[f(w; ξ)], where we overload the notation so that
f(w; ξ) represents a stochastic function induced by the randomness ξ while f(w) is the expectation
of the stochastic functions. An (ε, ε)-second-order stationary point w satisfies

‖∇f(w)‖ ≤ ε and ∇2f(w) � −εI. (1)

Obtaining a second order guarantee has emerged as a desired goal in the nonconvex optimization
community. Since finding a global minimum or even a local minimum in general nonconvex
optimization can be NP hard, most of the papers in nonconvex optimization target at reaching an
approximate second-order stationary point with additional assumptions like Lipschitzness in the
gradients and the Hessian (e.g. Allen-Zhu & Li (2018); Carmon & Duchi (2018); Curtis et al. (2017);
Daneshmand et al. (2018); Du et al. (2017); Fang et al. (2018; 2019); Ge et al. (2015); Jin et al. (2017;
2019); Kohler & Lucchi (2017); Lei et al. (2017); Lee et al. (2019); Levy (2016); Mokhtari et al.
(2018); Nesterov & Polyak (2006); Reddi et al. (2018a); Staib et al. (2019); Tripuraneni et al. (2018);
Xu et al. (2018) 2). We follow these related works for the goal and aim at showing the benefit of the
use of the momentum in reaching an (ε, ε)-second-order stationary point.

We introduce a required condition, akin to a model assumption made in (Daneshmand et al. (2018)),
that ensures the dynamic procedure in Algorithm 2 produces updates with suitable correlation with
the negative curvature directions of the function f .

Definition 1. Assume, at some time t, that the Hessian Ht = ∇2f(wt) has some eigenvalue smaller
than −ε and ‖∇f(wt)‖ ≤ ε. Let vt be the eigenvector corresponding to the smallest eigenvalue of
∇2f(wt). The stochastic momentum mt satisfies Correlated Negative Curvature (CNC) at t with
parameter γ > 0 if

Et[〈mt, vt〉2] ≥ γ. (2)

As we will show, the recursive dynamics of SGD with heavy ball momentum helps in amplifying the
escape signal γ, which allows it to escape saddle points faster.

Contribution: We show that, under CNC assumption and some minor constraints that upper-bound
parameter β, if SGD with momentum has properties called Almost Positively Aligned with Gradient
(APAG), Almost Positively Correlated with Gradient (APCG), and Gradient Alignment or Curvature
Exploitation (GrACE), defined in the later section, then it takes T = O((1−β) log(1/(1−β)ε)ε−10)
iterations to return an (ε, ε) second order stationary point. Alternatively, one can obtain an (ε,

√
ε)

second order stationary point in T = O((1 − β) log(1/(1 − β)ε)ε−5) iterations. Our theoretical
result demonstrates that a larger momentum parameter β can help in escaping saddle points faster.
As saddle points are pervasive in the loss landscape of optimization and deep learning (Dauphin et al.
(2014); Choromanska et al. (2015)), the result sheds light on explaining why SGD with momentum
enables training faster in optimization and deep learning.

2We apologize that the list is far from exhaustive.
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Notation: In this paper we use Et[·] to represent conditional expectation E[·|w1, w2, . . . , wt], which
is about fixing the randomness upto but not including t and notice that wt was determined at t− 1.

2 BACKGROUND

2.1 A THOUGHT EXPERIMENT.

Figure 1: The trajectory of the standard
SGD (left) and SGD with momentum (right).

Let us provide some high-level intuition about the benefit
of stochastic momentum with respect to avoiding saddle
points. In an iterative update scheme, at some time t0 the
parameters wt0 can enter a saddle point region, that is a
place where Hessian∇2f(wt0) has a non-trivial negative
eigenvalue, say λmin(∇2f(wt0)) ≤ −ε, and the gradient
∇f(wt0) is small in norm, say ‖∇f(wt0)‖ ≤ ε. The
challenge here is that gradient updates may drift only very
slowly away from the saddle point, and may not escape
this region; see (Du et al. (2017); Lee et al. (2019)) for
additional details. On the other hand, if the iterates were
to move in one particular direction, namely along vt0 the
direction of the smallest eigenvector of ∇2f(wt0), then a
fast escape is guaranteed under certain constraints on the
step size η; see e.g. (Carmon et al. (2018)). While the negative eigenvector could be computed
directly, this 2nd-order method is prohibitively expensive and hence we typically aim to rely on
gradient methods. With this in mind, Daneshmand et al. (2018), who study non-momentum SGD,
make an assumption akin to our CNC property described above that each stochastic gradient gt0 is
strongly non-orthogonal to vt0 the direction of large negative curvature. This suffices to drive the
updates out of the saddle point region.

In the present paper we study stochastic momentum, and our CNC property requires that the update
direction mt0 is strongly non-orthogonal to vt0 ; more precisely, Et0 [〈mt0 , vt0〉2] ≥ γ > 0. We are
able to take advantage of the analysis of (Daneshmand et al. (2018)) to establish that updates begin
to escape a saddle point region for similar reasons. Further, this effect is amplified in successive
iterations through the momentum update when β is close to 1. Assume that at some wt0 we have mt0
which possesses significant correlation with the negative curvature direction vt0 , then on successive
rounds mt0+1 is quite close to βmt0 , mt0+2 is quite close to β2mt0 , and so forth; see Figure 1 for an
example. This provides an intuitive perspective on how momentum might help accelerate the escape
process. Yet one might ask does this procedure provably contribute to the escape process and, if so,
what is the aggregate performance improvement of the momentum? We answer the first question in
the affirmative, and we answer the second question essentially by showing that momentum can help
speed up saddle-point escape by a multiplicative factor of 1− β. On the negative side, we also show
that β is constrained and may not be chosen arbitrarily close to 1.

2.2 MOMENTUM HELPS ESCAPE SADDLE POINTS: AN EMPIRICAL VIEW

Let us now establish, empirically, the clear benefit of stochastic momentum on the problem of
saddle-point escape. We construct two stochastic optimization tasks, and each exhibits at least one
significant saddle point. The two objectives are as follows.

min
w
f(w) :=

1

n

n∑
i=1

(1

2
w>Hw + b>i w + ‖w‖1010

)
, (3)

min
w
f(w) :=

1

n

n∑
i=1

(
(a>i w)2 − y

)2
. (4)

The first (3) of these was considered by (Staib et al. (2019); Reddi et al. (2018a)) and represents a very
straightforward non-convex optimization challenge, with an embedded saddle given by the matrix
H := diag([1,−0.1]), and stochastic gaussian perturbations given by bi ∼ N (0, diag([0.1, 0.001]));
the small variance in the second component provides lower noise in the escape direction. Here we
have set n = 10. Observe that the origin is in the neighborhood of saddle points and has objective
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(a) Solving objective (3). (b) Solving objective (4). (phase retrieval)

Figure 2: Performance of SGD with different values of β = {0, 0.3, 0.5, 0.7, 0.9}; β = 0 corresponds to the
standard SGD. Fig. 4a: We plot convergence in function value f(·) given in (3). Initialization is always set as
w0 = 0. All the algorithms use the same step size η = 5 × 10−5. Fig. 4b: We plot convergence in relative
distance to the true model w∗, defined as min(‖wt − w∗‖, ‖wt + w∗‖)/‖w∗‖, which more appropriately
captures progress as the global sign of the objective (4) is unrecoverable. All the algorithms are initialized at the
same point w0 ∼ N (0, Id/(10000d)) and use the same step size η = 5× 10−4.

value zero. SGD and SGD with momentum are initialized at the origin in the experiment so that
they have to escape saddle points before the convergence. The second objective (4) appears in
the phase retrieval problem, that has real applications in physical sciences (Candés et al. (2013);
Shechtman et al. (2015)). In phase retrieval3, one wants to find an unknown w∗ ∈ Rd with access
to but a few samples yi = (a>i w

∗)2; the design vector ai is known a priori. Here we have sampled
w∗ ∼ N (0, Id/d) and ai ∼ N (0, Id) with d = 10 and n = 200.

The empirical findings, displayed in Figure 2, are quite stark: for both objectives, convergence
is significantly accelerated by larger choices of β. In the first objective (Figure 4a), we see each
optimization trajectory entering a saddle point region, apparent from the “flat” progress, yet we
observe that large-momentum trajectories escape the saddle much more quickly than those with
smaller momentum. A similar affect appears in Figure 4b. To the best of our knowledge, this is the
first reported empirical finding that establishes the dramatic speed up of stochastic momentum for
finding an optimal solution in phase retrieval.

2.3 RELATED WORKS.

Heavy ball method: The heavy ball method was originally proposed by Polyak (1964). It has been
observed that this algorithm, even in the deterministic setting, provides no convergence speedup over
standard gradient descent, except in some highly structure cases such as convex quadratic objectives
where an “accelerated” rate is possible (Lessard et al. (2016); Goh (2017); Ghadimi et al. (2015);
Sun et al. (2019); Loizou & Richtárik (2017); Gadat et al. (2016); Yang et al. (2018); Kidambi et al.
(2018); Can et al. (2019)). We provide a comprehensive survey of the related works about heavy ball
method in Appendix A.

Reaching a second order stationary point: As we mentioned earlier, there are many works aim at
reaching a second order stationary point. We classify them into two categories: specialized algorithms
and simple GD/SGD variants. Specialized algorithms are those designed to exploit the negative
curvature explicitly and escape saddle points faster than the ones without the explicit exploitation
(e.g. Carmon et al. (2018); Agarwal et al. (2017); Allen-Zhu & Li (2018); Xu et al. (2018)). Simple
GD/SGD variants are those with minimal tweaks of standard GD/SGD or their variants (e.g. Ge et al.
(2015); Levy (2016); Fang et al. (2019); Jin et al. (2017; 2018; 2019); Daneshmand et al. (2018);
Staib et al. (2019)). Our work belongs to this category. In this category, perhaps the pioneer works
are (Ge et al. (2015)) and (Jin et al. (2017)). Jin et al. (2017) show that explicitly adding isotropic
noise in each iteration guarantees that GD escapes saddle points and finds a second order stationary

3It is known that phase retrieval is nonconvex and has the so-called strict saddle property: (1) every local
minimizer {w∗,−w∗} is global up to phase, (2) each saddle exhibits negative curvature (see e.g. (Sun et al.
(2015; 2016); Chen et al. (2018)))
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point with high probability. Following (Jin et al. (2017)), Daneshmand et al. (2018) assume that
stochastic gradient inherently has a component to escape. Specifically, they make assumption of the
Correlated Negative Curvature (CNC) for stochastic gradient gt so that Et[〈gt, vt〉2] ≥ γ > 0. The
assumption allows the algorithm to avoid the procedure of perturbing the updates by adding isotropic
noise. Our work is motivated by (Daneshmand et al. (2018)) but assumes CNC for the stochastic
momentum mt instead. In Appendix A, we compare the results of our work with the related works.

3 MAIN RESULTS

We assume that the gradient∇f is L-Lipschitz; that is, f is L-smooth. Further, we assume that the
Hessian∇2f is ρ-Lipschitz. These two properties ensure that ‖∇f(w)−∇f(w′)‖ ≤ L‖w−w′‖ and
that ‖∇2f(w)−∇2f(w′)‖ ≤ ρ‖w−w′‖, ∀w,w′. The L-Lipschitz gradient assumption implies that
|f(w′)−f(w)−〈∇f(w), w′−w〉| ≤ L

2 ‖w−w
′‖2,∀w,w′, while the ρ-Lipschitz Hessian assumption

implies that |f(w′)−f(w)−〈∇f(w), w′−w〉−(w′−w)>∇2f(w)(w′−w)| ≤ ρ
6‖w−w

′‖3, ∀w,w′.
Furthermore, we assume that the stochastic gradient has bounded noise ‖∇f(w)−∇f(w; ξ)‖2 ≤ σ2

and that the norm of stochastic momentum is bounded so that ‖mt‖ ≤ cm. We denote ΠiMi as the
matrix product of matrices {Mi} and we use σmax(M) = ‖M‖2 := supx6=0

〈x,Mx〉
〈x,x〉 to denote the

spectral norm of the matrix M .

3.1 REQUIRED PROPERTIES WITH EMPIRICAL VALIDATION

Our analysis of stochastic momentum relies on three properties of the stochastic momentum dynamic.
These properties are somewhat unusual, but we argue they should hold in natural settings, and later
we aim to demonstrate that they hold empirically in a couple of standard problems of interest.

Definition 2. We say that SGD with stochastic momentum satisfies Almost Positively Aligned with
Gradient (APAG) 4 if we have

Et[〈∇f(wt),mt − gt〉] ≥ −
1

2
‖∇f(wt)‖2. (5)

We say that SGD with stochastic momentum satisfies Almost Positively Correlated with Gradient
(APCG) with parameter τ if ∃c′ > 0 such that,

Et[〈∇f(wt),Mtmt〉] ≥ −c′ησmax(Mt)‖∇f(wt)‖2, (6)

where the PSD matrix Mt is defined as

Mt = (Πτ−1
s=1Gs,t)(Π

τ−1
s=kGs,t) with Gs,t := I − η

∑s
k=1 β

s−k∇2f(wt)

for any integer 1 ≤ k ≤ τ − 1, and η is any step size chosen that guarantees each Gs,t is PSD.

Definition 3. We say that the SGD with momentum exhibits Gradient Alignment or Curvature
Exploitation (GrACE) if ∃ch ≥ 0 such that

Et[η〈∇f(wt), gt −mt〉+ η2

2 m
>
t ∇2f(wt)mt] ≤ η2ch. (7)

APAG requires that the momentum term mt must, in expectation, not be significantly misaligned
with the gradient ∇f(wt). This is a very natural condition when one sees that the momentum term is
acting as a biased estimate of the gradient of the deterministic f . APAG demands that the bias can
not be too large relative to the size of ∇f(wt). Indeed this property is only needed in our analysis
when the gradient is large (i.e. ‖∇f(wt)‖ ≥ ε) as it guarantees that the algorithm makes progress;
our analysis does not require APAG holds when gradient is small.

APCG is a related property, but requires that the current momentum term mt is almost positively
correlated with the the gradient∇f(wt), but measured in the Mahalanobis norm induced by Mt. It
may appear to be an unusual object, but one can view the PSD matrix Mt as measuring something
about the local curvature of the function with respect to the trajectory of the SGD with momentum
dynamic. We will show that this property holds empirically on two natural problems for a reasonable
constant c′. APCG is only needed in our analysis when the update is in a saddle region with significant

5
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(a) Gradient norm ‖∇f(wt)‖. (b) About APAG. (c) About APCG.

(d) Gradient norm ‖∇f(wt)‖. (e) About APAG. (f) About APCG.

Figure 3: Plots of the related properties. Sub-figures on the top row are regarding solving (3) and sub-figures on
the bottom row are regarding solving (4) (phase retrieval). Note that the function value/relative distance to w∗ are
plotted on Figure 2. Above, sub-figures (a) and (d): We plot the gradient norms versus iterations. Sub-figures (b)
and (e): We plot the values of 〈∇f(wt),mt − gt〉/‖∇f(wt)‖2 versus iterations. For (b), we only report them
when the gradient is large (‖∇f(wt)‖ ≥ 0.02). It shows that the value is large than −0.5 except the transition.
For (e), we observe that the value is almost always nonnegative. Sub-figures (c) and (f): We plot the value of
〈∇f(wt),Mtmt〉/ησmax(Mt)‖∇f(wt)‖2. For (c), we let Mt = (Π3×105

s=1 Gs,t)(Π
3×105

s=1 Gs,t) and we only
report the values when the update is in the region of saddle points. For (f), we let Mt = (Π500

s=1Gs,t)(Π
500
s=1Gs,t)

and we observe that the value is almost always nonnegative. The figures implies that SGD with momentum has
APAG and APCG properties in the experiments. Furthermore, an interesting observation is that, for the phase
retrieval problem, the expected values might actually be nonnegative.

negative curvature, ‖∇f(w)‖ ≤ ε and λmin(∇2f(w)) ≤ −ε. Our analysis does not require APCG
holds when the gradient is large or the update is at an (ε, ε)-second order stationary point.

For GrACE, the first term on l.h.s of (7) measures the alignment between stochastic momentum
mt and the gradient ∇f(wt), while the second term on l.h.s measures the curvature exploitation.
The first term is small (or even negative) when the stochastic momentum mt is aligned with the
gradient∇f(wt), while the second term is small (or even negative) when the stochastic momentum
mt can exploit a negative curvature (i.e. the subspace of eigenvectors that corresponds to the
negative eigenvalues of the Hessian∇2f(wt) if exists). Overall, a small sum of the two terms (and,
consequently, a small ch) allows one to bound the function value of the next iterate (see Lemma 8).

On Figure 3, we report some quantities related to APAG and APCG as well as the gradient norm
when solving the previously discussed problems (3) and (4) using SGD with momentum. We also
report a quantity regarding GrACE on Figure 4 in the appendix.

3.2 CONVERGENCE RESULTS

The high level idea of our analysis follows as a similar template to (Jin et al. (2017); Daneshmand et al.
(2018); Staib et al. (2019)). Our proof is structured into three cases: either (a) ‖∇f(w)‖ ≥ ε, or (b)
‖∇f(w)‖ ≤ ε and λmin(∇2f(w)) ≤ −ε, or otherwise (c) ‖∇f(w)‖ ≤ ε and λmin(∇2f(w)) ≥ −ε,
meaning we have arrived in a second-order stationary region. The precise algorithm we analyze is
Algorithm 2, which identical to Algorithm 1 except that we boost the step size to a larger value r on

4Note that our analysis still go through if one replaces 1
2

on r.h.s. of (5) with any larger number c < 1; the
resulted iteration complexity would be only a constant multiple worse.
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Algorithm 2: SGD with stochastic heavy ball momentum
1: Required: Step size parameters r and η, momentum parameter β, and period parameter Tthred.
2: Init: w0 ∈ Rd and m−1 = 0 ∈ Rd.
3: for t = 0 to T do
4: Get stochastic gradient gt at wt, and set stochastic momentum mt := βmt−1 + gt.
5: Set learning rate: η̂ := η unless (t mod Tthred) = 0 in which case η̂ := r
6: wt+1 = wt − η̂mt.
7: end for

occasion. We will show that the algorithm makes progress in cases (a) and (b). In case (c), when the
goal has already been met, further execution of the algorithm only weakly hurts progress. Ultimately,
we prove that a second order stationary point is arrived at with high probability. While our proof
borrows tools from (Daneshmand et al. (2018); Staib et al. (2019)), much of the momentum analysis
is entirely novel to our knowledge.

Theorem 1. Assume that the stochastic momentum satisfies CNC. Set 5 r = O(ε2), η = O(ε5), and
Tthred = O((1 − β) log( 1

(1−β)ε )ε
−6). If SGD with momentum (Algorithm 2) has APAG property

when gradient is large (‖∇f(w)‖ ≥ ε), APCGTthred property when it enters a region of saddle
points that exhibits a negative curvature (‖∇f(w)‖ ≤ ε and λmin(∇2f(w)) ≤ −ε), and GrACE
property throughout the iterations, then it reaches an (ε, ε) second order stationary point in T =

O((1− β) log(Lcmσ
2ρc′ch

(1−β)δγε )ε−10) iterations with high probability 1− δ.

The theorem implies the advantage of using stochastic momentum for SGD. Higher β leads to
reaching a second order stationary point faster. As we will show in the following, this is due to that
higher β enables escaping the saddle points faster. Below we provide some key details of the proof of
Theorem 1. The interested reader can read a high-level sketch of the proof, as well as the detailed
version, in Appendix G.

3.2.1 ESCAPING SADDLE POINTS

In this subsection, we analyze the process of escaping saddle points by SGD with momentum. Denote
t0 any time such that (t0 mod Tthred) = 0. Suppose that it enters the region exhibiting a small
gradient but a large negative eigenvalue of the Hessian (i.e. ‖∇f(wt0)‖ ≤ ε and λmin(∇2f(wt0)) ≤
−ε). We want to show that it takes at most Tthred iterations to escape the region and whenever it
escapes, the function value decreases at least by Fthred = O(ε4) on expectation, where the precise
expression of Fthred will be determined later in Appendix E. The technique that we use is proving
by contradiction. Assume that the function value on expectation does not decrease at least Fthred
in Tthred iterations. Then, we get an upper bound of the expected distance Et0 [‖wt0+Tthred −
wt0‖2] ≤ Cupper. Yet, by leveraging the negative curvature, we also show a lower bound of the
form Et0 [‖wt0+Tthred − wt0‖2] ≥ Clower. The analysis will show that the lower bound is larger
than the upper bound (namely, Clower > Cupper), which leads to the contradiction and concludes
that the function value must decrease at least Fthred in Tthred iterations on expectation. Since
Tthred = O((1− β) log( 1

(1−β)ε )ε
6), the dependency on β suggests that larger β can leads to smaller

Tthred, which implies that larger momentum helps in escaping saddle points faster.

Lemma 1 below provides an upper bound of the expected distance. The proof is in Appendix C.

Lemma 1. Denote t0 any time such that (t0 mod Tthred) = 0. Suppose that Et0 [f(wt0) −
f(wt0+t)] ≤ Fthred for any 0 ≤ t ≤ Tthred. Then, Et0 [‖wt0+t − wt0‖2] ≤ Cupper,t :=
8ηt
(
Fthred+2r2ch+

ρ
3 r

3c3m

)
(1−β)2 + 8η2 tσ2

(1−β)2 + 4η2
(

β
1−β

)2
c2m + 2r2c2m.

5See Table 3 in Appendix E for the precise expressions of the parameters. Here, we hide the parameters’
dependencies on γ, L, cm, c′, σ2, ρ, ch, and δ. We also need some minor constraints on β so that β cannot be
too close to 1. They are 1) L(1− β)3 > 1, 2) σ2(1− β)3 > 1, 3) c′(1− β)2 > 1, 4) η ≤ 1−β

L
, 5) η ≤ 1−β

ε
,

and 6) Tthred ≥ 1 + 2β
1−β , where the precise expressions of η and Tthred are on Table 3 in Appendix E. W.l.o.g,

we also assume that cm, L, σ2, c′, ch, and ρ are not less than one and ε ≤ 1. Please see Appendix E.1 for details.
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We see thatCupper,t in Lemma 1 is monotone increasing with t, so we can defineCupper := Cupper,Tthred .
Now let us switch to obtaining the lower bound of Et0 [‖wt0+Tthred − wt0‖2]. The key to get the
lower bound comes from the recursive dynamics of SGD with momentum.
Lemma 2. Denote t0 any time such that (t0 mod Tthred) = 0. Let us define a quadratic ap-
proximation at wt0 , Q(w) := f(wt0) + 〈w − wt0 ,∇f(wt0)〉 + 1

2 (w − wt0)>H(w − wt0), where
H := ∇2f(wt0). Also, define Gs := (I − η

∑s
k=1 β

s−kH). Then we can write wt0+t −wt0 exactly
using the following decomposition.

qv,t−1︷ ︸︸ ︷(
Πt−1
j=1Gj

)(
− rmt0

)
+η

qm,t−1︷ ︸︸ ︷
(−1)

t−1∑
s=1

(
Πt−1
j=s+1Gj

)
βsmt0

+ η

qq,t−1︷ ︸︸ ︷
(−1)

t−1∑
s=1

(
Πt−1
j=s+1Gj

) s∑
k=1

βs−k
(
∇f(wt0+k)−∇Q(wt0+s)

)

+ η

qw,t−1︷ ︸︸ ︷
(−1)

t−1∑
s=1

(
Πt−1
j=s+1Gj

) s∑
k=1

βs−k∇f(wt0) +η

qξ,t−1︷ ︸︸ ︷
(−1)

t−1∑
s=1

(
Πt−1
j=s+1Gj

) s∑
k=1

βs−kξt0+k .

The proof of Lemma 2 is in Appendix D. Furthermore, we will use the quantities
qv,t−1, qm,t−1, qq,t−1, qw,t−1, qξ,t−1 as defined above throughout the analysis.
Lemma 3. Following the notations of Lemma 2, we have that

Et0 [‖wt0+t−wt0‖2] ≥ Et0 [‖qv,t−1‖2]+2ηEt0 [〈qv,t−1, qm,t−1+qq,t−1+qw,t−1+qξ,t−1〉] =: Clower.

We are going to show that the dominant term in the lower bound of Et0 [‖wt0+t − wt0‖2] is
Et0 [‖qv,t−1‖2], which is the critical component for ensuring that the lower bound is larger than
the upper bound of the expected distance.

Lemma 4. Denote θj :=
∑j
k=1 β

j−k =
∑j
k=1 β

k−1 and λ := −λmin(H). Following the condi-
tions and notations in Lemma 1 and Lemma 2, we have that

Et0 [‖qv,t−1‖2] ≥
(
Πt−1
j=1(1 + ηθjλ)

)2
r2γ. (8)

Proof. We know that λmin(H) ≤ −ε < 0. Let v be the eigenvector of the Hessian H with unit norm
that corresponds to λmin(H) so that Hv = λmin(H)v. We have (I − ηH)v = v − ηλmin(H)v =
(1− ηλmin(H))v. Then,

Et0 [‖qv,t−1‖2]
(a)
= Et0 [‖qv,t−1‖2‖v‖2]

(b)

≥ Et0 [〈qv,t−1, v〉2]
(c)
= Et0 [〈

(
Πt−1
j=1Gj

)
rmt0 , v〉2]

(d)
= Et0 [〈

(
Πt−1
j=1(I − ηθjH)

)
rmt0 , v〉2] = Et0〈

(
Πt−1
j=1(1− ηθjλmin(H))

)
rmt0 , v〉2]

(e)

≥
(
Πt−1
j=1(1 + ηθjλ)

)2
r2γ,

(9)

where (a) is because v is with unit norm, (b) is by Cauchy–Schwarz inequality, (c), (d) are by the
definitions, and (e) is by the CNC assumption so that Et0 [〈mt0 , v〉2] ≥ γ.

Observe that the lower bound in (8) is monotone increasing with t and the momentum parameter
β. Moreover, it actually grows exponentially in t. To get the contradiction, we have to show that
the lower bound is larger than the upper bound. By Lemma 1 and Lemma 3, it suffices to prove the
following lemma. We provide its proof in Appendix E.
Lemma 5. Let Fthred = O(ε4) and η2Tthred ≤ r2. By following the conditions and notations in
Theorem 1, Lemma 1 and Lemma 2, we conclude that if SGD with momentum (Algorithm 2) has the
APCG property, then we have that Clower := Et0 [‖qv,Tthred−1‖2]+2ηEt0 [〈qv,Tthred−1, qm,Tthred−1 +
qq,Tthred−1 + qw,Tthred−1 + qξ,Tthred−1〉] > Cupper.

8
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4 CONCLUSION

In this paper, we identify three properties that guarantee SGD with momentum in reaching a second-
order stationary point faster by a higher momentum, which justifies the practice of using a large value
of momentum parameter β. We show that a greater momentum leads to escaping strict saddle points
faster due to that SGD with momentum recursively enlarges the projection to an escape direction.
However, how to make sure that SGD with momentum has the three properties is not very clear. It
would be interesting to identify conditions that guarantee SGD with momentum to have the properties.
Perhaps a good starting point is understanding why the properties hold in phase retrieval. We believe
that our results shed light on understanding the recent success of SGD with momentum in non-convex
optimization and deep learning.
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(a) About GrACE for problem (3). (b) About GrACE for problem (4) (phase re-
trieval).

Figure 4: Plot regarding the GrACE property. We plot the values of η〈∇f(wt),gt−mt〉+ 1
2
η2m>t Htmt

η2
versus

iterations. An interesting observation is that the value is well upper-bounded by zero for the phase retrieval
problem. The results imply that the constant ch is indeed small.

A LITERATURE SURVEY

Heavy ball method: The heavy ball method was originally proposed by Polyak (1964). It has been
observed that this algorithm, even in the deterministic setting, provides no convergence speedup
over standard gradient descent, except in some highly structure cases such as convex quadratic
objectives where an “accelerated” rate is possible (Lessard et al. (2016); Goh (2017)). In recent years,
some works make some efforts in analyzing heavy ball method for other classes of optimization
problems besides the quadratic functions. For example, Ghadimi et al. (2015) prove an O(1/T )
ergodic convergence rate when the problem is smooth convex, while Sun et al. (2019) provide a
non-ergodic convergence rate for certain classes of convex problems. Ochs et al. (2014) combine the
technique of forward-backward splitting with heavy ball method for a specific class of nonconvex
optimization problem. For stochastic heavy ball method, Loizou & Richtárik (2017) analyze a class
of linear regression problems and shows a linear convergence rate of stochastic momentum, in which
the linear regression problems actually belongs to the case of strongly convex quadratic functions.
Other works includes (Gadat et al. (2016)), which shows almost sure convergence to the critical
points by stochastic heavy ball for general non-convex coercive functions. Yet, the result does not
show any advantage of stochastic heavy ball over other optimization algorithms like SGD. Can et al.
(2019) show an accelerated linear convergence to a stationary distribution under Wasserstein distance
for strongly convex quadratic functions by SGD with stochastic heavy ball momentum. Yang et al.
(2018) provide a unified analysis of stochastic heavy ball momentum and Nesterov’s momentum for
smooth non-convex objective functions. They show that the expected gradient norm converges at rate
O(1/

√
t). Yet, the rate is not better than that of the standard SGD. We are also aware of the works

(Ghadimi & Lan (2016; 2013)), which propose some variants of stochastic accelerated algorithms
with first order stationary point guarantees. Yet, the framework in (Ghadimi & Lan (2016; 2013))
does not capture the stochastic heavy ball momentum used in practice. There is also a negative result
about the heavy ball momentum. Kidambi et al. (2018) show that for a specific strongly convex and
strongly smooth problem, SGD with heavy ball momentum fails to achieving the best convergence
rate while some algorithms can.

Reaching a second order stationary point: As we mentioned earlier, there are many works aim at
reaching a second order stationary point. We classify them into two categories: specialized algorithms
and simple GD/SGD variants. Specialized algorithms are those designed to exploit the negative
curvature explicitly and escape saddle points faster than the ones without the explicit exploitation
(e.g. Carmon et al. (2018); Agarwal et al. (2017); Allen-Zhu & Li (2018); Xu et al. (2018)). Simple
GD/SGD variants are those with minimal tweaks of standard GD/SGD or their variants (e.g. Ge et al.
(2015); Levy (2016); Fang et al. (2019); Jin et al. (2017; 2018; 2019); Daneshmand et al. (2018);
Staib et al. (2019)). Our work belongs to this category. In this category, perhaps the pioneer works
are (Ge et al. (2015)) and (Jin et al. (2017)). Jin et al. (2017) show that explicitly adding isotropic
noise in each iteration guarantees that GD escapes saddle points and finds a second order stationary

12
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Algorithm Complexity
Perturbed SGD (Ge et al. (2015)) O(ε−16)

Average-SGD (Fang et al. (2019)) O(ε−7)
Perturbed SGD (Jin et al. (2019)) O(ε−8)

CNC-SGD (Daneshmand et al. (2018)) O(ε−10)
Adaptive SGD (Staib et al. (2019)) O(ε−10)

SGD+momentum (this work) O((1− β) log( 1
(1−β)ε )ε

−10)

Table 1: Iteration complexity to find an (ε, ε) second-order stationary point .

point with high probability. Following (Jin et al. (2017)), Daneshmand et al. (2018) assume that
stochastic gradient inherently has a component to escape. Specifically, they make assumption of the
Correlated Negative Curvature (CNC) for stochastic gradient gt so that Et[〈gt, vt〉2] ≥ γ > 0. The
assumption allows the algorithm to avoid the procedure of perturbing the updates by adding isotropic
noise. Our work is motivated by (Daneshmand et al. (2018)) but assumes CNC for the stochastic
momentum mt instead. Very recently, Jin et al. (2019) consider perturbing the update of SGD and
provide a second order guarantee. Staib et al. (2019) consider a variant of RMSProp (Tieleman
& Hinton (2012)), in which the gradient gt is multiplied by a preconditioning matrix Gt and the
update is wt+1 = wt − G−1/2t gt. The work shows that the algorithm can help in escaping saddle
points faster compared to the standard SGD under certain conditions. Fang et al. (2019) propose
average-SGD, in which a suffix averaging scheme is conducted for the updates. They also assume an
inherent property of stochastic gradients that allows SGD to escape saddle points.

We summarize the iteration complexity results of the related works for simple SGD variants on
Table 1 6 . The readers can see that the iteration complexity of (Fang et al. (2019)) and (Jin et al.
(2019)) are better than (Daneshmand et al. (2018); Staib et al. (2019)) and our result. So, we want
to explain the results and clarify the differences. First, we focus on explaining why the popular
algorithm, SGD with heavy ball momentum, works well in practice, which is without the suffix
averaging scheme used in (Fang et al. (2019)) and is without the explicit perturbation used in (Jin
et al. (2019)). Specifically, we focus on studying the effect of stochastic heavy ball momentum and
showing the advantage of using it. Furthermore, our analysis framework is built on the work of
(Daneshmand et al. (2018)). We believe that, based on the insight in our work, one can also show
the advantage of stochastic momentum by modifying the assumptions and algorithms in (Fang et al.
(2019)) or (Jin et al. (2019)) and consequently get a better dependency on ε.

B LEMMA 6, 7, AND 8

In the following, Lemma 7 says that under the APAG property, when the gradient norm is large, on
expectation SGD with momentum decreases the function value by a constant and consequently makes
progress. On the other hand, Lemma 8 upper-bounds the increase of function value of the next iterate
(if happens) by leveraging the GrACE property.

Lemma 6. If SGD with momentum has the APAG property, then, considering the update step
wt+1 = wt − ηmt, we have that Et[f(wt+1)] ≤ f(wt)− η

2‖∇f(wt)‖2 +
Lη2c2m

2 .

Proof. By the L-smoothness assumption,

f(wt+1) ≤ f(wt)− η〈∇f(wt),mt〉+
Lη2

2
‖mt‖2

≤f(wt)− η〈∇f(wt), gt〉 − η〈∇f(wt),mt − gt〉+
Lη2c2m

2
. (10)

6We follow the work (Daneshmand et al. (2018)) for reaching an (ε, ε)-stationary point, while some works
are for an (ε,

√
ε)-stationary point. We translate them into the complexity of getting an (ε, ε)-stationary point.
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Taking the expectation on both sides. We have

Et[f(wt+1)] ≤ f(wt)− η‖∇f(wt)‖2 − ηEt[〈∇f(wt),mt − gt〉] +
Lη2c2m

2

≤ f(wt)−
η

2
‖∇f(wt)‖2 +

Lη2c2m
2

. (11)

where we use the APAG property in the last inequality.

Lemma 7. Assume that the step size η satisfies η ≤ ε2

8Lc2m
. If SGD with momentum has the

APAG property, then, considering the update step wt+1 = wt − ηmt, we have that Et[f(wt+1)] ≤
f(wt)− η

4 ε
2 when ‖∇f(wt)‖ ≥ ε.

Proof. Et[f(wt+1)−f(wt)]
Lemma 6
≤ −η2‖∇f(wt)‖2+

Lη2c2m
2

‖∇f(wt)‖≥ε
≤ −η2 ε

2+
Lη2c2m

2 ≤ −η4 ε
2,

where the last inequality is due to the constraint of η.

Lemma 8. If SGD with momentum has the GrACE property, then, considering the update step
wt+1 = wt − ηmt, we have that Et[f(wt+1)] ≤ f(wt) + η2ch + ρη3

6 c3m.

Proof. Consider the update rule wt+1 = wt − ηmt, where mt represents the stochastic momentum
and η is the step size. By ρ-Lipschitzness of Hessian, we have f(wt+1) ≤ f(wt)− η〈∇f(wt), gt〉+

η〈∇f(wt), gt−mt〉+ η2

2 m
>
t ∇2f(wt)mt+ ρη3

6 ‖mt‖3. Taking the conditional expectation, one has

Et[f(wt+1)] ≤ f(wt)− Et[η‖∇f(wt)‖2] + Et[η〈∇f(wt), gt −mt〉+
η2

2
m>t ∇2f(wt)mt] +

ρη3

6
c3m.

≤ f(wt) + 0 + η2ch +
ρη3

6
c3m.

(12)

C PROOF OF LEMMA 1

Lemma 1 Denote t0 any time such that (t0 mod Tthred) = 0. Suppose that Et0 [f(wt0) −
f(wt0+t)] ≤ Fthred for any 0 ≤ t ≤ Tthred. Then,

Et0 [‖wt0+t − wt0‖2] ≤ Cupper,t

:=
8ηt
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+ 8η2
tσ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m.

(13)

Proof. Recall that the update is wt0+1 = wt0 − rmt0 , and wt0+t = wt0+t−1 − ηmt0+t−1, for t > 1.
We have that

‖wt0+t − wt0‖2 ≤ 2(‖wt0+t − wt0+1‖2 + ‖wt0+1 − wt0‖2) ≤ 2‖wt0+t − wt0+1‖2 + 2r2c2m,
(14)

where the first inequality is by the triangle inequality and the second one is due to the assumption
that ‖mt‖ ≤ cm for any t. Now let us denote

• αs :=
∑t−1−s
j=0 βj

• At−1 :=
∑t−1
s=1 αs
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and let us rewrite gt = ∇f(wt) + ξt, where ξt is the zero-mean noise. We have that

Et0 [‖wt0+t − wt0+1‖2] = Et0 [‖
t−1∑
s=1

−ηmt0+s‖2] = Et0 [η2‖
t−1∑
s=1

(
(

s∑
j=1

βs−jgt0+j) + βsmt0

)
‖2]

≤ Et0 [2η2‖
t−1∑
s=1

s∑
j=1

βs−jgt0+j‖2 + 2η2‖
t−1∑
s=1

βsmt0‖2]

≤ Et0 [2η2‖
t−1∑
s=1

s∑
j=1

βs−jgt0+j‖2] + 2η2
( β

1− β
)2
c2m

= Et0 [2η2‖
t−1∑
s=1

αsgt0+s‖2] + 2η2
( β

1− β
)2
c2m

= Et0 [2η2‖
t−1∑
s=1

αs
(
∇f(wt0+s) + ξt0+s

)
‖2] + 2η2

( β

1− β
)2
c2m

≤ Et0 [4η2‖
t−1∑
s=1

αs∇f(wt0+s)‖2] + Et0 [4η2‖
t−1∑
s=1

αsξt0+s‖2] + 2η2
( β

1− β
)2
c2m.

(15)

To proceed, we need to upper bound Et0 [4η2‖
∑t−1
s=1 αs∇f(wt0+s)‖2]. We have that

Et0 [4η2‖
t−1∑
s=1

αs∇f(wt0+s)‖2]
(a)

≤ Et0 [4η2A2
t−1

t−1∑
s=1

αs
At−1

‖∇f(wt0+s)‖2]

(b)

≤ Et0 [4η2
At−1
1− β

t−1∑
s=1

‖∇f(wt0+s)‖2]
(c)

≤ Et0 [4η2
t

(1− β)2

t−1∑
s=1

‖∇f(wt0+s)‖2].

(16)

where (a) is by Jensen’s inequality, (b) is by maxs αs ≤ 1
1−β , and (c) is by At−1 ≤ t

1−β . Now let
us switch to bound the other term.

Et0 [4η2‖
t−1∑
s=1

αsξt0+s‖2] = 4η2
(
Et0 [

t−1∑
i6=j

αiαjξ
>
t0+iξt0+j ] + Et0 [

t−1∑
s=1

α2
sξ
>
t0+sξt0+s]

)
(a)
= 4η2

(
0 + Et0 [

t−1∑
s=1

α2
sξ
>
t0+sξt0+s]

)
,

(b)

≤ 4η2
tσ2

(1− β)2
. (17)

where (a) is because Et0 [ξ>t0+iξt0+j ] = 0 for i 6= j, (b) is by that ‖ξt‖2 ≤ σ2 and maxt αt ≤ 1
1−β .

Combining (14), (15), (16), (17),

Et0 [‖wt0+t − wt0‖2] ≤ Et0 [8η2
t

(1− β)2

t−1∑
s=1

‖∇f(wt0+s)‖2] + 8η2
tσ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m.

(18)

Now we need to bound Et0 [
∑t−1
s=1 ‖∇f(wt0+s)‖2]. By using ρ-Lipschitzness of Hessian, we have

that

f(wt0+s) ≤ f(wt0+s−1)− η〈∇f(wt0+s−1),mt0+s−1〉+
1

2
η2m>t0+s−1∇

2f(wt0+s−1)mt0+s−1 +
ρ

6
η3‖mt0+s−1‖3.

(19)
By adding η〈∇f(wt0+s−1), gt0+s−1〉 on both sides, we have
η〈∇f(wt0+s−1), gt0+s−1〉 ≤ f(wt0+s−1)− f(wt0+s) + η〈∇f(wt0+s−1), gt0+s−1 −mt0+s−1〉

+
1

2
η2m>t0+s−1∇

2f(wt0+s−1)mt0+s−1 +
ρ

6
η3‖mt0+s−1‖3.

(20)

15



Under review as a conference paper at ICLR 2020

Taking conditional expectation on both sides leads to

Et0+s−1[η‖∇f(wt0+s−1)‖2] ≤ Et0+s−1[f(wt0+s−1)− f(wt0+s)] + η2ch +
ρ

6
η3c3m, (21)

where Et0+s−1[η〈∇f(wt0+s−1), gt0+s−1 −mt0+s−1〉 + 1
2η

2m>t0+s−1∇
2f(wt0+s−1)mt0+s−1] ≤

η2ch by the GrACE property. We have that for t0 ≤ t0 + s− 1

Et0 [η‖∇f(wt0+s−1)‖2] = Et0 [Et0+s−1[η‖∇f(wt0+s−1)‖2]]

(21)

≤ Et0 [Et0+s−1[f(wt0+s−1)− f(wt0+s)]] + η2ch +
ρ

6
η3c3m

= Et0 [f(wt0+s−1)− f(wt0+s)] + η2ch +
ρ

6
η3c3m. (22)

Summing the above inequality from s = 2, 3, . . . , t leads to

Et0 [

t−1∑
s=1

η‖∇f(wt0+s)‖2] ≤ Et0 [f(wt0+1)− f(wt0+t)] + η2(t− 1)ch +
ρ

6
η3(t− 1)c3m

= Et0 [f(wt0+1)− f(wt0) + f(wt0)− f(wt0+t)] + η2(t− 1)ch +
ρ

6
η3(t− 1)c3m

(a)

≤ Et0 [f(wt0+1)− f(wt0)] + Fthred + η2(t− 1)ch +
ρ

6
η3(t− 1)c3m,

(23)

where (a) is by the assumption (made for proving by contradiction) that Et0 [f(wt0)− f(wt0+s)] ≤
Fthred for any 0 ≤ s ≤ Tthred. By (21) with s = 1 and η = r, we have

Et0 [r‖∇f(wt0)‖2] ≤ Et0 [f(wt0)− f(wt0+1)] + r2ch +
ρ

6
r3c3m. (24)

By (23) and (24), we know that

Et0 [

t−1∑
s=1

η‖∇f(wt0+s)‖2] ≤ Et0 [r‖f(wt0)‖2] + Et0 [

t−1∑
s=1

η‖∇f(wt0+s)‖2]

≤ Fthred + r2ch +
ρ

6
r3c3m + η2tch +

ρ

6
η3tc3m

(a)

≤ Fthred + 2r2ch +
ρ

6
r3c3m +

ρ

6
r2ηc3m.

(b)

≤ Fthred + 2r2ch +
ρ

3
r3c3m, (25)

where (a) is by the constraint that η2t ≤ r2 for 0 ≤ t ≤ Tthred and (b) is by the constraint that r ≥ η.
By combining (25) and (18)

Et0 [‖wt0+t − wt0‖2] ≤ Et0 [8η2
t

(1− β)2

t−1∑
s=1

‖∇f(wt0+s)‖2] + 8η2
tσ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m

≤
8ηt
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+ 8η2
tσ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m.

(26)
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D PROOF OF LEMMA 2 AND LEMMA 3

Lemma 2 Denote t0 any time such that (t0 mod Tthred) = 0. Let us define a quadratic ap-
proximation at wt0 , Q(w) := f(wt0) + 〈w − wt0 ,∇f(wt0)〉 + 1

2 (w − wt0)>H(w − wt0), where
H := ∇2f(wt0). Also, define Gs := (I − η

∑s
k=1 β

s−kH) and

• qv,t−1 :=
(
Πt−1
j=1Gj

)(
− rmt0

)
.

• qm,t−1 := −
∑t−1
s=1

(
Πt−1
j=s+1Gj

)
βsmt0 .

• qq,t−1 := −
∑t−1
s=1

(
Πt−1
j=s+1Gj

)∑s
k=1 β

s−k(∇f(wt0+k)−∇Q(wt0+s)
)
.

• qw,t−1 := −
∑t−1
s=1

(
Πt−1
j=s+1Gj

)∑s
k=1 β

s−k∇f(wt0).

• qξ,t−1 := −
∑t−1
s=1

(
Πt−1
j=s+1Gj

)∑s
k=1 β

s−kξt0+k.

Then, wt0+t − wt0 = qv,t−1 + ηqm,t−1 + ηqq,t−1 + ηqw,t−1 + ηqξ,t−1.

Notations:
Denote t0 any time such that (t0 mod Tthred) = 0. Let us define a quadratic approximation at
wt0 ,

Q(w) := f(wt0) + 〈w − wt0 ,∇f(wt0)〉+
1

2
(w − wt0)>H(w − wt0), (27)

where H := ∇2f(wt0). Also, we denote

Gs := (I − η
s∑

k=1

βs−kH)

vm,s := βsmt0

vq,s :=

s∑
k=1

βs−k
(
∇f(wt0+k)−∇Q(wt0+s)

)
vw,s :=

s∑
k=1

βs−k∇f(wt0)

vξ,s :=

s∑
k=1

βs−kξt0+k

θs :=

s∑
k=1

βs−k.

(28)

Proof. First, we rewrite mt0+j for any j ≥ 1 as follows.

mt0+j = βjmt0 +

j∑
k=1

βj−kgt0+k

= βjmt0 +

j∑
k=1

βj−k
(
∇f(wt0+k) + ξt0+k

)
.

(29)
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We have that

wt0+t − wt0 = wt0+t−1 − wt0 − ηmt0+t−1

(a)
= wt0+t−1 − wt0 − η

(
βt−1mt0 +

t−1∑
k=1

βt−1−k
(
∇f(wt0+k) + ξt0+k

))
(b)
= wt0+t−1 − wt0 − η

t−1∑
k=1

βt−1−k∇Q(wt0+t−1)

− η
(
βt−1mt0 +

t−1∑
k=1

βt−1−k
(
∇f(wt0+k)−∇Q(wt0+t−1) + ξt0+k

))
(c)
= wt0+t−1 − wt0 − η

t−1∑
k=1

βt−1−k
(
H(wt0+t−1 − wt0) +∇f(wt0)

)
− η
(
βt−1mt0 +

t−1∑
k=1

βt−1−k
(
∇f(wt0+k)−∇Q(wt0+t−1) + ξt0+k

))
= (I − η

t−1∑
k=1

βt−1−kH)
(
wt0+t−1 − wt0

)
− η
(
βt−1mt0 +

t−1∑
k=1

βt−1−k
(
∇f(wt0+k)−∇Q(wt0+t−1) +∇f(wt0) + ξt0+k

))
,

(30)
where (a) is by using (29) with j = t− 1, (b) is by subtracting and adding back the same term, and

(c) is by ∇Q(wt0+t−1) = ∇f(wt0) +H(wt0+t−1 − wt0).

To continue, by using the nations in (28), we can rewrite (30) as

wt0+t − wt0 = Gt−1
(
wt0+t−1 − wt0

)
− η
(
vm,t−1 + vq,t−1 + vw,t−1 + vξ,t−1

)
. (31)

Recursively expanding (31) leads to

wt0+t − wt0 = Gt−1
(
wt0+t−1 − wt0

)
− η
(
vm,t−1 + vq,t−1 + vw,t−1 + vξ,t−1

)
= Gt−1

(
Gt−2

(
wt0+t−2 − wt0

)
− η
(
vm,t−2 + vq,t−2 + vw,t−2 + vξ,t−2

))
− η
(
vm,t−1 + vq,t−1 + vw,t−1 + vξ,t−1

)
(a)
=
(
Πt−1
j=1Gj

)(
wt0+1 − wt0)− η

t−1∑
s=1

(
Πt−1
j=s+1Gj

)(
vm,s + vq,s + vw,s + vξ,s

)
,

(b)
=
(
Πt−1
j=1Gj

)(
− rmt0

)
− η

t−1∑
s=1

(
Πt−1
j=s+1Gj

)(
vm,s + vq,s + vw,s + vξ,s

)
,

(32)

where (a) we use the notation that Πt−1
j=sGj := Gs × Gs+1 × . . . . . . Gt−1 and the notation that

Πt−1
j=tGj = 1 and (b) is by the update rule. By using the definitions of {q?,t−1} in the lemma

statement, we complete the proof.

Lemma 3 Following the notations of Lemma 2, we have that

Et0 [‖wt0+t − wt0‖2] ≥ Et0 [‖qv,t−1‖2] + 2ηEt0 [〈qv,t−1, qm,t−1 + qq,t−1 + qw,t−1 + qξ,t−1〉] := Clower
(33)

Proof. Following the proof of Lemma 2, we have

wt0+t − wt0 = qv,t−1 + η
(
qm,t−1 + qq,t−1 + qw,t−1 + qξ,t−1

)
. (34)

18



Under review as a conference paper at ICLR 2020

Therefore, by using ‖a+ b‖2 ≥ ‖a‖2 + 2〈a, b〉,

Et0 [‖wt0+t − wt0‖2] ≥ Et0 [‖qv,t−1‖2] + 2ηEt0 [〈qv,t−1, qm,t−1 + qq,t−1 + qw,t−1 + qξ,t−1〉].
(35)
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E PROOF OF LEMMA 5

Lemma 5 Let Fthred = O(ε4) and η2Tthred ≤ r2. By following the conditions and notations in
Theorem 1, Lemma 1 and Lemma 2, we conclude that if SGD with momentum (Algorithm 2) has the
APCG property, then we have that Clower := Et0 [‖qv,Tthred−1‖2]+2ηEt0 [〈qv,Tthred−1, qm,Tthred−1 +
qq,Tthred−1 + qw,Tthred−1 + qξ,Tthred−1〉] > Cupper.

Table 3: Constraints and choices of the parameters.

Parameter Value Constraint origin constant

r δγε2cr (64), (65), (66)
cr ≤ c0

c3mρLσ
2ch

, c0 = 1
1152

c0
c3mρLσ

2c′(1−β)2ch
≤ cr

c0
c3mρL

2σ4(1−β)3ch
≤ cr

r ” r ≤
√

δFthred
8ch

from (89) ”

η δ2γ2ε5cη (64) cη ≤ c1
c5mρL

2σ2c′ch
, c1 = c0

24

η ” η ≤ r/
√
Tthred from (25),(39),(87),(89) ”

η ” η ≤ min{ (1−β)
L

, (1−β)
ε
} from (45), (78) 7 ”

Fthred δγ2ε4cF (65)
cF ≤ c2

c4mρ
2L2σ4ch

, c2 = c0
576

cF ≥ 8c20
c6mρ

2L2σ4ch

Fthred ” Fthred ≤ ε2r
4

from (88) ”

Tthred Tthred ≥ c(1−β)
ηε

log(Lcmσ
2ρc′ch

(1−β)δγε ) from (82)

W.l.o.g, we assume that cm, L, σ2, c′, ch, and ρ are not less than one and that ε ≤ 1.

E.1 SOME CONSTRAINTS ON β .

We require that parameter β is not too close to 1 so that the following holds,

• 1) L(1− β)3 > 1.
• 2) σ2(1− β)3 > 1.
• 3) c′(1− β)2 > 1.

• 4) η ≤ 1−β
L .

• 5) η ≤ 1−β
ε .

• 6) Tthred ≥ c(1−β)
ηε log(Lcmσ

2ρc′ch
(1−β)δγε ) ≥ 1 + 2β

1−β .

The constraints upper-bound the value of β. That is, β cannot be too close to 1.
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E.2 SOME LEMMAS

To prove Lemma 5, we need a series of lemmas with the choices of parameters on Table 3.

Upper bounding Et0 [‖qq,t−1‖]:

Lemma 9. Following the conditions in Lemma 1 and Lemma 2, we have

Et0 [‖qq,t−1‖] ≤
(
Πt−1
j=1(1 + ηθjλ)

) βLcm
ε(1− β)2

+

(
Πt−1
j=1(1 + ηθjλ)

)
1− β

ρ

ηε2
8
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+

(
Πt−1
j=1(1 + ηθjλ)

)
1− β

ρ
(
8 r2σ2

(1−β)2 + 4η2
(

β
1−β

)2
c2m + 2r2c2m

)
2ηε

.

(36)

Proof.

Et0 [‖qq,t−1‖] = Et0 [‖ −
t−1∑
s=1

(
Πt−1
j=s+1Gj

) s∑
k=1

βs−k
(
∇f(wt0+k)−∇Q(wt0+s)

)
‖]

(a)

≤ Et0 [

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

) s∑
k=1

βs−k
(
∇f(wt0+k)−∇Q(wt0+s)

)
‖]

(b)

≤ Et0 [

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2‖

s∑
k=1

βs−k
(
∇f(wt0+k)−∇Q(wt0+s)

)
‖]

(c)

≤ Et0 [

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−k‖
(
∇f(wt0+k)−∇Q(wt0+s)

)
‖]

(d)

≤ Et0 [

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−k
(
‖∇f(wt0+k)−∇f(wt0+s)‖+ ‖∇f(wt0+s)−∇Q(wt0+s)‖

)
]

(37)
where (a), (c), (d) is by triangle inequality, (b) is by the fact that ‖Ax‖2 ≤ ‖A‖2‖x‖2 for any matrix
A and vector x. Now that we have an upper bound of ‖∇f(wt0+k)−∇f(wt0+s)‖,

‖∇f(wt0+k)−∇f(wt0+s)‖
(a)

≤ L‖wt0+k − wt0+s‖
(b)

≤ Lη(s− k)cm.
(38)

where (a) is by the assumption of L-Lipschitz gradient and (b) is by applying the triangle inequality
(s − k) times and that ‖wt − wt−1‖ ≤ η‖mt−1‖ ≤ ηcm, for any t. We can also derive an upper
bound of Et0 [‖∇f(wt0+s)−∇Q(wt0+s)‖],

Et0 [‖∇f(wt0+s)−∇Q(wt0+s)‖]
(a)

≤ Et0 [
ρ

2
‖wt0+s − wt0‖2]

(b)

≤ ρ

2

(8ηs
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+ 8
r2σ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m.

)
(39)

Above, (a) is by the fact that if a function f(·) has ρ Lipschitz Hessian, then

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖ ≤ ρ

2
‖y − x‖2 (40)

(c.f. Lemma 1.2.4 in (Nesterov (2013))) and using the definition that

Q(w) := f(wt0) + 〈w − wt0 ,∇f(wt0)〉+
1

2
(w − wt0)>H(w − wt0),
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(b) is by Lemma 1 and η2t ≤ r2 for 0 ≤ t ≤ Tthred

Et0 [‖wt0+t − wt0‖2] ≤
8ηt
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+ 8η2
tσ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m

≤
8ηt
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+ 8
r2σ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m.

(41)
Combing (37), (38), (39), we have that

Et0 [‖qq,t−1‖]
(37)

≤ Et0 [

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−k
(
‖∇f(wt0+k)−∇f(wt0+s)‖+ ‖∇f(wt0+s)−∇Q(wt0+s)‖

)
]

(38),(39)

≤
t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−kLη(s− k)cm

+

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−k
ρ

2

(8ηs
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+ 8
r2σ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m

)
:=

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−kLη(s− k)cm +

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−k
ρ

2
(νs + ν),

(42)
where on the last line we use the notation that

νs :=
8ηs
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

ν := 8
r2σ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m.

(43)

To continue, let us analyze ‖
(
Πt−1
j=s+1Gj

)
‖2 first.

‖
(
Πt−1
j=s+1Gj

)
‖2 = ‖Πt−1

j=s+1(I − η
j∑

k=1

βj−kH)‖2

(a)

≤ Πt−1
j=s+1(1 + ηθjλ) =

Πt−1
j=1(1 + ηθjλ)

Πs
j=1(1 + ηθjλ)

(b)

≤
Πt−1
j=1(1 + ηθjλ)

(1 + ηε)s
. (44)

Above, we use the notation that θj :=
∑j
k=1 β

j−k. For (a), it is due to that λ := −λmin(H),
λmax(H) ≤ L, and the choice of η so that 1 ≥ ηL

1−β , or equivalently,

η ≤ 1− β
L

. (45)

For (b), it is due to that θj ≥ 1 for any j and λ ≥ ε. Therefore, we can upper-bound the first term on
r.h.s of (42) as

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−kLη(s− k)cm =

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s−1∑
k=1

βkkLηcm

(a)

≤
t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

β

(1− β)2
Lηcm

(b)

≤
(
Πt−1
j=1(1 + ηθjλ)

) βLηcm
(1− β)2

t−1∑
s=1

1

(1 + ηε)s

(c)

≤
(
Πt−1
j=1(1 + ηθjλ)

) βLηcm
(1− β)2

1

ηε
=
(
Πt−1
j=1(1 + ηθjλ)

) βLcm
ε(1− β)2

, (46)
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where (a) is by that fact that
∑∞
k=1 β

kk ≤ β
(1−β)2 for any 0 ≤ β < 1, (b) is by us-

ing (44), and (c) is by using that
∑∞
s=1( 1

1+ηε )
s ≤ 1

ηε . Now let us switch to bound∑t−1
s=1 ‖

(
Πt−1
j=s+1Gj

)
‖2
∑s
k=1 β

s−k ρ
2 (νs + ν) on (42). We have that

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−k
ρ

2
(νs + ν)

(a)

≤ 1

1− β

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2
ρ

2
(νs + ν)

(b)

≤
(
Πt−1
j=1(1 + ηθjλ)

)
1− β

t−1∑
s=1

1

(1 + ηε)s
ρ

2
νs +

(
Πt−1
j=1(1 + ηθjλ)

)
1− β

t−1∑
s=1

1

(1 + ηε)s
ρ

2
ν

(c)

≤
(
Πt−1
j=1(1 + ηθjλ)

)
1− β

t−1∑
s=1

1

(1 + ηε)s
ρ

2
νs +

(
Πt−1
j=1(1 + ηθjλ)

)
1− β

ρν

2ηε

=

(
Πt−1
j=1(1 + ηθjλ)

)
1− β

t−1∑
s=1

1

(1 + ηε)s
ρ

2
νs +

(
Πt−1
j=1(1 + ηθjλ)

)
1− β

ρ
(
8 r2σ2

(1−β)2 + 4η2
(

β
1−β

)2
c2m + 2r2c2m

)
2ηε

(d)

≤
(
Πt−1
j=1(1 + ηθjλ)

)
1− β

ρ

(ηε)2
8η
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+

(
Πt−1
j=1(1 + ηθjλ)

)
1− β

ρ
(
8 r2σ2

(1−β)2 + 4η2
(

β
1−β

)2
c2m + 2r2c2m

)
2ηε

(47)
where (a) is by the fact that

∑s
k=1 β

s−k ≤ 1/(1 − β), (b) is by (44), (c) is by using that∑∞
s=1( 1

1+ηε )
s ≤ 1

ηε , (d) is by
∑∞
k=1 z

kk ≤ z
(1−z)2 for any |z| ≤ 1 and substituting z = 1

1+ηε ,

which leads to
∑∞
k=1 z

kk ≤ z
(1−z)2 = 1/(1+ηε)

(1−1/(1+ηε))2 = 1+ηε
(ηε)2 ≤

2
(ηε)2 in which the last inequality is

by chosen the step size η so that ηε ≤ 1.

By combining (42), (46), and (47), we have that

Et0 [‖qq,t−1‖
(42)

≤
t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−kLη(s− k)cm +

t−1∑
s=1

‖
(
Πt−1
j=s+1Gj

)
‖2

s∑
k=1

βs−k
ρ

2
(νs + ν)

(46),(47)

≤
(
Πt−1
j=1(1 + ηθjλ)

) βLcm
ε(1− β)2

+

(
Πt−1
j=1(1 + ηθjλ)

)
1− β

ρ

ηε2
8
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+

(
Πt−1
j=1(1 + ηθjλ)

)
1− β

ρ
(
8 r2σ2

(1−β)2 + 4η2
(

β
1−β

)2
c2m + 2r2c2m

)
2ηε

,

(48)
which completes the proof.

23



Under review as a conference paper at ICLR 2020

Upper bounding ‖qv,t−1‖:
Lemma 10. Following the conditions in Lemma 1 and Lemma 2, we have

‖qv,t−1‖ ≤
(
Πt−1
j=1(1 + ηθjλ)

)
rcm. (49)

Proof.

‖qv,t−1‖ ≤ ‖
(
Πt−1
j=1Gj

)(
− rmt0

)
‖ ≤ ‖

(
Πt−1
j=1Gj

)
‖2‖ − rmt0‖ ≤

(
Πt−1
j=1(1 + ηθjλ)

)
rcm,

(50)
where the last inequality is because η is chosen so that 1 ≥ ηL

1−β and the fact that λmax(H) ≤ L.

Lower bounding Et0 [2η〈qv,t−1, qq,t−1〉]:
Lemma 11. Following the conditions in Lemma 1 and Lemma 2, we have

Et0 [2η〈qv,t−1, qq,t−1〉]

≥ −2η
(
Πt−1
j=1(1 + ηθjλ)

)2
rcm×[ βLcm

ε(1− β)2
+

ρ

ηε2
8
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)3

+
ρ
(
8 r2σ2

(1−β)2 + 4η2
(

β
1−β

)2
c2m + 2r2c2m

)
2ηε(1− β)

].

(51)

Proof. By the results of Lemma 9 and Lemma 10

Et0 [2η〈qv,t−1, qq,t−1〉] ≥ −Et0 [2η‖qv,t−1‖‖qq,t−1‖]
Lemma 10
≥ −Et0 [2η

(
Πt−1
j=1(1 + ηθjλ)

)
rcm‖qq,t−1‖]

Lemma 9
≥ −2η

(
Πt−1
j=1(1 + ηθjλ)

)2
rcm×[ βLcm

ε(1− β)2
+

ρ

ηε2
8
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)3

+
ρ
(
8 r2σ2

(1−β)2 + 4η2
(

β
1−β

)2
c2m + 2r2c2m

)
2ηε(1− β)

].

(52)
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Lower bounding Et0 [2η〈qv,t−1, qξ,t−1〉]:
Lemma 12. Following the conditions in Lemma 1 and Lemma 2, we have

Et0 [2η〈qv,t−1, qξ,t−1〉] = 0. (53)

Proof.

Et0 [2η〈qv,t−1, qξ,t−1〉] = Et0 [2η〈qv,t−1,−
t−1∑
s=1

(
Πt−1
j=s+1Gj

) s∑
k=1

βs−kξt0+k〉]

(a)
= Et0 [2η〈qv,t−1,

s∑
k=1

αkξt0+k〉]

(b)
= Et0 [2η

s∑
k=1

Et0+k−1[〈qv,t−1, αkξt0+k〉]]

(c)
= Et0 [2η

s∑
k=1

〈qv,t−1,Et0+k−1[αkξt0+k]〉]

= Et0 [2η

s∑
k=1

αk〈qv,t−1,Et0+k−1[ξt0+k]〉]

(d)
= 0,

(54)

where (a) holds for some coefficients αk, (b) is by the tower rule, (c) is because qv,t−1 is measureable
with t0, and (d) is by the zero mean assumption of ξ’s.

Lower bounding Et0 [2η〈qv,t−1, qm,t−1〉]:
Lemma 13. Following the conditions in Lemma 1 and Lemma 2, we have

Et0 [2η〈qv,t−1, qm,t−1〉] ≥ 0. (55)

Proof.
Et0 [2η〈qv,t−1, qm,t−1〉]

= 2ηrEt0 [〈
(
Πt−1
j=1Gj

)
mt0 ,

t−1∑
s=1

(
Πt−1
j=s+1Gj

)
βsmt0〉]

(a)
= 2ηrEt0 [〈mt0 , Bmt0〉]

(b)

≥ 0,

(56)

where (a) is by defining the matrix B :=
(
Πt−1
j=1Gj

)>(∑t−1
s=1

(
Πt−1
j=s+1Gj

)
βs
)
. For (b), notice that

the matrix B is symmetric positive semidefinite. To see that the matrix B is symmetric positive
semidefinite, observe that each Gj := (I − η

∑j
k=1 β

j−kH) can be written in the form of Gj =
UDjU

> for some orthonormal matrix U and a diagonal matrix Dj . Therefore, the matrix product(
Πt−1
j=1Gj

)>(
Πt−1
j=s+1Gj

)
= U(Πt−1

j=1Dj)(Π
t−1
j=s+1Dj)U

> is symmetric positive semidefinite as long
as each Gj is. So, (b) is by the property of a matrix being symmetric positive semidefinite.
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Lower bounding 2ηEt0 [〈qv,t−1, qw,t−1〉]:
Lemma 14. Following the conditions in Lemma 1 and Lemma 2, if SGD with momentum has
the APCG property, then

2ηEt0 [〈qv,t−1, qw,t−1〉] ≥ −
2ηrc′

(1− β)
(Πt−1

j=1(1 + ηθjλ))2ε. (57)

Proof. Define Ds := Πt−1
j=1GjΠ

t−1
j=s+1Gj .

2ηEt0 [〈qv,t−1, qw,t−1〉] = 2ηEt0 [〈
(
Πt−1
j=1Gj

)(
rmt0

)
,

t−1∑
s=1

(
Πt−1
j=s+1Gj

) s∑
k=1

βs−k∇f(wt0)〉]

= 2ηEt0 [〈rmt0 ,

t−1∑
s=1

(
Πt−1
j=1GjΠ

t−1
j=s+1Gj

) s∑
k=1

βs−k∇f(wt0)〉]

= 2ηr

t−1∑
s=1

s∑
k=1

βs−kEt0 [〈mt0 , Ds∇f(wt0)〉]

(a)

≥ −2η2rc′
t−1∑
s=1

s∑
k=1

βs−k‖Ds‖2‖∇f(wt0)‖2

≥ −2η2rc′

1− β

t−1∑
s=1

‖Ds‖2‖∇f(wt0)‖2, (58)

where (a) is by the APCG property. We also have that
‖Ds‖2 = ‖Πt−1

j=1GjΠ
t−1
j=s+1Gj‖2 ≤ ‖Π

t−1
j=1Gj‖2‖Π

t−1
j=s+1Gj‖2

(a)

≤ ‖Πt−1
j=1Gj‖2

Πt−1
j=1(1 + ηθjλ)

(1 + ηε)s

(b)

≤
(
Πt−1
j=1(1 + ηθjλ)

)2
(1 + ηε)s

(59)

where (a) and (b) is by (44). Substituting the result back to (58), we get

2ηEt0 [〈qv,t−1, qw,t−1〉] ≥ −
2η2rc′

1− β

t−1∑
s=1

‖Ds‖2‖∇f(wt0)‖2

≥ −2η2rc′

1− β

t−1∑
s=1

(
Πt−1
j=1(1 + ηθjλ)

)2
(1 + ηε)s

‖∇f(wt0)‖2 ≥ − 2η2rc′

(1− β)ηε

(
Πt−1
j=1(1 + ηθjλ)

)2‖∇f(wt0)‖2

(60)
Using the fact that ‖∇f(wt0)‖ ≤ ε completes the proof.

E.3 PROOF OF LEMMA 5

Recall that the strategy is proving by contradiction. Assume that the function value does not decrease
at least Fthred in Tthred iterations on expectation. Then, we can get an upper bound of the expected
distance Et0 [‖wt0+Tthred − wt0‖2] ≤ Cupper but, by leveraging the negative curvature, we can also
show a lower bound of the form Et0 [‖wt0+Tthred − wt0‖2] ≥ Clower. The strategy is showing that
the lower bound is larger than the upper bound, which leads to the contradiction and concludes
that the function value must decrease at least Fthred in Tthred iterations on expectation. To get the
contradiction, according to Lemma 1 and Lemma 3, we need to show that
Et0 [‖qv,Tthred−1‖2] + 2ηEt0 [〈qv,Tthred−1, qm,Tthred−1 + qq,Tthred−1 + qw,Tthred−1 + qξ,Tthred−1〉] > Cupper.

(61)
Yet, by Lemma 13 and Lemma 12, we have that ηEt0 [〈qv,Tthred−1, qm,Tthred−1〉] ≥ 0 and
ηEt0 [〈qv,Tthred−1, qξ,Tthred−1〉] = 0. So, it suffices to prove that

Et0 [‖qv,Tthred−1‖2] + 2ηEt0 [〈qv,Tthred−1, qq,Tthred−1 + qw,Tthred−1〉] > Cupper, (62)
and it suffices to show that
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• 1
4Et0 [‖qv,Tthred−1‖2] + 2ηEt0 [〈qv,Tthred−1, qq,Tthred−1〉] ≥ 0.

• 1
4Et0 [‖qv,Tthred−1‖2] + 2ηEt0 [〈qv,Tthred−1, qw,Tthred−1〉] ≥ 0.

• 1
4Et0 [‖qv,Tthred−1‖2] ≥ Cupper.

E.3.1 PROVING THAT 1
4Et0 [‖qv,Tthred−1‖2] + 2ηEt0 [〈qv,Tthred−1, qq,Tthred−1〉] ≥ 0:

By Lemma 4 and Lemma 11, we have that

1

4
Et0 [‖qv,Tthred−1‖2] + Et0 [2η〈qv,Tthred−1, qq,Tthred−1〉]

≥ 1

4

(
ΠTthred−1j=1 (1 + ηθjλ)

)2
r2γ − 2η

(
ΠTthred−1j=1 (1 + ηθjλ)

)2
rcm

×
[ βLcm
ε(1− β)2

+
ρ

ηε2
8
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)3

+
ρ
(
8 r2σ2

(1−β)2 + 4η2
(

β
1−β

)2
c2m + 2r2c2m

)
2ηε(1− β)

].

(63)

To show that the above is nonnegative, it suffices to show that

r2γ ≥ 24ηrβLc2m
ε(1− β)2

, (64)

and

r2γ ≥ 24ηrcmρ

(1− β)ηε2
8
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

, (65)

and

r2γ ≥ 24ηrcm
1− β

ρ
(
8 r2σ2

(1−β)2 + 4η2
(

β
1−β

)2
c2m + 2r2c2m

)
2ηε

. (66)

Now w.l.o.g, we assume that cm, L, σ2, c′, and ρ are not less than one and that ε ≤ 1. By using the
values of parameters on Table 3, we have the following results; a sufficient condition of (64) is that

cr
cη
≥ 24Lc2mε

2

(1− β)2
. (67)

A sufficient condition of (65) is that

cr
cF
≥ 576cmρ

(1− β)3
, (68)

and
1 ≥ 1152cmρchcr

(1− β)3
, (69)

and

1 ≥ 192c4mρ
2c2r

(1− β)3
. (70)

A sufficient condition of (66) is that

1 ≥ 96cmρ(σ2 + 3c2m)crε

(1− β)3
, (71)

and a sufficient condition for the above (71), by the assumption that both σ2 ≥ 1 and cm ≥ 1, is

1 ≥ 576c3mρσ
2crε

(1− β)3
. (72)

Now let us verify if (67), (68), (69), (70), (72) are satisfied. For (67), using the constraint of
cη on Table 3, we have that 1

cη
≥ c5mρL

2σ2c′ch
c1

. Using this inequality, it suffices to let cr ≥
c0ε

2

c3mρLσ
2c′ch(1−β)2 for getting (67), which holds by using the constraint that c′(1 − β)2 > 1 and
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ε ≤ 1. For (68), using the constraint of cF on Table 3, we have that 1
cF
≥ c4mρ

2L2σ4ch
c2

. Using
this inequality, it suffices to let cr ≥ c0

c3mρL
2σ4(1−β)3 , which holds by using the constraint that

σ2(1− β)3 > 1. For (69), it needs (1−β)3
1152cmρch

≥ c0
c3mρLσ

2ch
≥ cr, which hold by using the constraint

that σ2(1− β)3 > 1. For (70), it suffices to let (1−β)2
14c2mρ

≥ c0
c3mρLσ

2ch
≥ cr which holds by using the

constraint that σ2(1− β)3 > 1. For (72), it suffices to let (1−β)3
576c3mρσ

2ε ≥
c0

c3mρLσ
2ch
≥ cr, which holds

by using the constraint that L(1− β)3 > 1 and ε ≤ 1. Therefore, by choosing the parameter values
as Table 3, we can guarantee that 1

4Et0 [‖qv,Tthred−1‖2] + 2ηEt0 [〈qv,Tthred−1, qq,Tthred−1〉] ≥ 0.

E.3.2 PROVING THAT 1
4Et0 [‖qv,Tthred−1‖2] + 2ηEt0 [〈qv,Tthred−1, qw,Tthred−1〉] ≥ 0:

By Lemma 4 and Lemma 14, we have that

1

4
Et0 [‖qv,Tthred−1‖2] + 2ηEt0 [〈qv,Tthred−1, qw,Tthred−1〉]

≥ 1

4

(
ΠTthred−1j=1 (1 + ηθjλ)

)2
r2γ − 2ηrc′

(1− β)
(ΠTthred−1j=1 (1 + ηθjλ))2ε.

(73)

To show that the above is nonnegative, it suffices to show that

r2γ ≥ 8ηrc′ε

(1− β)
. (74)

A sufficient condition is cr
cη
≥ 8ε4c′

1−β . Using the constraint of cη on Table 3, we have that 1
cη
≥

c5mρL
2σ2c′ch
c1

. So, it suffices to let cr ≥ c0ε
4

3c5mρL
2σ2ch(1−β) , which holds by using the constraint that

L(1− β)3 > 1 (so that L(1− β) > 1) and ε ≤ 1.

E.3.3 PROVING THAT 1
4Et0 [‖qv,Tthred−1‖2] ≥ Cupper :

From Lemma 4 and Lemma 1, we need to show that

1

4

(
ΠTthred−1j=1 (1 + ηθjλ)

)2
r2γ

≥
8ηt
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+ 8
r2σ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m. (75)

We know that 1
4

(
ΠTthred−1j=1 (1 + ηθjλ)

)2
r2γ ≥ 1

4

(
ΠTthred−1j=1 (1 + ηθjε)

)2
r2γ. It suffices to show

that
1

4

(
ΠTthred−1j=1 (1 + ηθjε)

)2
r2γ

≥
8ηt
(
Fthred + 2r2ch + ρ

3r
3c3m

)
(1− β)2

+ 8
r2σ2

(1− β)2
+ 4η2

( β

1− β
)2
c2m + 2r2c2m. (76)

Note that the left hand side is exponentially growing in Tthred. We can choose the number of
iterations Tthred large enough to get the desired result. Specifically, we claim that Tthred ≥
c(1−β)
ηε log(Lcmσ

2ρc′ch
(1−β)δγε ) for some constant c > 0. To see this, let us first apply log on both sides of

(76),

2
( Tthred−1∑

j=1

log(1 + ηθjε)
)

+ log(r2γ) ≥ log(8aTthred + 8b) (77)

where we denote a :=
4η
(
Fthred+2r2ch+

ρ
3 r

3c3m

)
(1−β)2 and b := 4 r2σ2

(1−β)2 + 2η2
(

β
1−β

)2
c2m + r2c2m. To

proceed, we are going to use the inequality log(1 + x) ≥ x
2 , for x ∈ [0,∼ 2.51]. We have that

1 ≥ ηε

(1− β)
(78)
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as guaranteed by the constraint of η. So,

2
( Tthred−1∑

j=1

log(1 + ηθjε)
) (a)

≥
Tthred−1∑
j=1

ηθjε =

Tthred−1∑
j=1

j−1∑
k=0

βkηε

=

Tthred−1∑
j=1

1− βj

1− β
ηε ≥ 1

1− β
(Tthred − 1− β

1− β
)ηε.

(b)

≥ Tthred − 1

2(1− β)
ηε, (79)

where (a) is by using the inequality log(1 + x) ≥ x
2 with x = ηθjε ≤ 1 and (b) is by making

Tthred−1
2(1−β) ≥

β
(1−β)2 , which is equivalent to the condition that

Tthred ≥ 1 +
2β

1− β
(80)

Now let us substitute the result of (79) back to (77). We have that

Tthred ≥ 1 +
2(1− β)

ηε
log(

8aTthred + 8b

γr2
), (81)

which is what we need to show. By choosing Tthred large enough,

Tthred ≥
c(1− β)

ηε
log(

Lcmσ
2ρc′ch

(1− β)δγε
) = O((1− β) log(

1

(1− β)ε
)ε−6) (82)

for some constant c > 0, we can guarantee that the above inequality (81) holds.

F PROOF OF LEMMA 15

Lemma 15 (Daneshmand et al. (2018)) Let us define the event Υk := {‖∇f(wkTthred)‖ ≥
ε or λmin(∇2f(wkTthred)) ≤ −ε}. The complement is Υc

k := {‖∇f(wkTthred)‖ ≤
ε and λmin(∇2f(wkTthred)) ≥ −ε}, which suggests that wkTthred is an (ε, ε)-second order sta-
tionary points. Suppose that

E[f(w(k+1)Tthred)− f(wkTthred)|Υk] ≤ −∆

E[f(w(k+1)Tthred)− f(wkTthred)|Υc
k] ≤ δ∆

2
.

(83)

Set T = 2Tthred
(
f(w0) − minw f(w)

)
/(δ∆). We return w uniformly randomly from

w0, wTthred , w2Tthred , . . . , wkTthred , . . . , wKTthred , where K := bT/Tthredc. Then, with probability
at least 1− δ, we will have chosen a wk where Υk did not occur.

Proof. Let Pk be the probability that Υk occurs.
E[f(w(k+1)Tthred)− f(wkTthred)]

= E[f(w(k+1)Tthred)− f(wkTthred)|Υk]Pk + E[f(w(k+1)Tthred)− f(wkTthred)|Υc
k](1− Pk)

≤ −∆Pk + δ∆/2(1− Pk)

= δ∆/2− (1 + δ/2)∆Pk

≤ δ∆/2−∆Pk.
(84)

Summing over all K, we have

1

K + 1

K∑
k=0

E[f(w(k+1)Tthred)− f(wkTthred)] ≤ ∆
1

K + 1

K∑
k=0

(δ/2− Pk)

⇒ 1

K + 1

K∑
k=0

Pk ≤ δ/2 +
f(w0)−minw f(w)

(K + 1)∆
≤ δ

⇒ 1

K + 1

K∑
k=0

(1− Pk) ≥ 1− δ.

(85)
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G PROOF OF THEOREM 1

Theorem 1 Assume that the stochastic momentum satisfies CNC. Set 8 r = O(ε2), η = O(ε5), and
Tthred = O((1 − β) log( 1

(1−β)ε )ε
−6). If SGD with momentum (Algorithm 2) has APAG property

when gradient is large (‖∇f(w)‖ ≥ ε), APCGTthred property when it enters a region of saddle
points that exhibits a negative curvature (‖∇f(w)‖ ≤ ε and λmin(∇2f(w)) ≤ −ε) , and GrACE
property throughout the iterations, then it reaches an (ε, ε) second order stationary point in T =

O((1− β) log(Lcmσ
2ρc′ch

(1−β)δγε )ε−10) iterations with high probability 1− δ.

G.1 PROOF SKETCH OF THEOREM 1

In this subsection, we provide a sketch of the proof of Theorem 1. The complete proof is available in
Appendix G. Our proof uses a lemma in (Daneshmand et al. (2018)), which is Lemma 15 below. The
lemma guarantees that uniformly sampling a w from {wkTthred}, k = 0, 1, 2, . . . , bT/Tthredc gives
an (ε, ε)-second order stationary point with high probability. We replicate the proof of Lemma 15 in
Appendix F.

Lemma 15. (Daneshmand et al. (2018)) Let us define the event Υk := {‖∇f(wkTthred)‖ ≥
ε or λmin(∇2f(wkTthred)) ≤ −ε}. The complement is Υc

k := {‖∇f(wkTthred)‖ ≤
ε and λmin(∇2f(wkTthred)) ≥ −ε}, which suggests that wkTthred is an (ε, ε)-second order sta-
tionary points. Suppose that

E[f(w(k+1)Tthred)− f(wkTthred)|Υk] ≤ −∆ & E[f(w(k+1)Tthred)− f(wkTthred)|Υc
k] ≤ δ∆

2
.

(86)
Set T = 2Tthred

(
f(w0) − minw f(w)

)
/(δ∆) 9. We return w uniformly randomly from

w0, wTthred , w2Tthred , . . . , wkTthred , . . . , wKTthred , where K := bT/Tthredc. Then, with probability
at least 1− δ, we will have chosen a wk where Υk did not occur.

To use the result of Lemma 15, we need to let the conditions in (86) be satisfied. We can bound
E[f(w(k+1)Tthred)− f(wkTthred)|Υk] ≤ −Fthred, based on the analysis of the large gradient norm
regime (Lemma 7) and the analysis for the scenario when the update is with small gradient norm but a
large negative curvature is available (Subsection 3.2.1). For the other condition, E[f(w(k+1)Tthred)−
f(wkTthred)|Υc

k] ≤ δFthred2 , it requires that the expected amortized increase of function value due
to taking the large step size r is limited (i.e. bounded by δFthred2 ) when wkTthred is a second order
stationary point. By having the conditions satisfied, we can apply Lemma 15 and finish the proof of
the theorem.

G.2 FULL PROOF OF THEOREM 1

Proof. Our proof is based on Lemma 15. So, let us consider the events in Lemma 15,
Υk := {‖∇f(wkTthred)‖ ≥ ε or λmin(∇2f(wkTthred)) ≤ −ε}. We first show that
E[f(w(k+1)Tthred)− f(wkTthred)|Υk] ≤ Fthred.

When ‖∇f(wkTthred)‖ ≥ ε:

8See Table 3 for precise expressions.
9One can use any upper bound of f(w0)−minw f(w) as f(w0)−minw f(w) in the expression of T .
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Consider that Υk is the case that ‖∇f(wkTthred)‖ ≥ ε. Denote t0 := kTthred in the following. We
have that

Et0 [f(wt0+Tthred)− f(wt0)] =

Tthred−1∑
t=0

Et0 [E[f(wt0+t+1)− f(wt0+t)|w0:t0+t]]

= Et0 [f(wt0+1)− f(wt0)] +

Tthred−1∑
t=1

Et0 [E[f(wt0+t+1)− f(wt0+t)|w0:t0+t]]

(a)

≤ −r
2
‖∇f(wt0)‖2 +

Lr2c2m
2

+

Tthred−1∑
t=1

Et0 [E[f(wt0+t+1)− f(wt0+t)|w0:t0+t]]

(b)

≤ −r
2
‖∇f(wt0)‖2 +

Lr2c2m
2

+

Tthred−1∑
t=1

(
η2ch +

ρ

6
η3c3m

)
(c)

≤ −r
2
‖∇f(wt0)‖2 +

Lr2c2m
2

+ r2ch +
ρ

6
r3c3m

(d)

≤ −r
2
‖∇f(wt0)‖2 + Lr2c2m + r2ch

(e)

≤ −r
2
ε2 + Lr2c2m + r2ch

(f)

≤ −r
4
ε2

(g)

≤ −Fthred,

(87)

where (a) is by using Lemma 6 with step size r, (b) is by using Lemma 8, (c) is due to the constraint
that η2Tthred ≤ r2, (d) is by the choice of r, (e) is by ‖∇f(wt)‖ ≥ ε, (f) is by the choice of r so
that r ≤ ε2

4(Lc2m+ch)
, and (g) is by

r

4
ε2 ≥ Fthred. (88)

When ‖∇f(wkTthred)‖ ≤ ε and λmin(∇2f(wkTthred)) ≤ −ε:
The scenario that Υk is the case that ‖∇f(wkTthred)‖ ≤ ε and λmin(∇2f(wkTthred)) ≤ −ε has been
analyzed in Appendix E, which guarantees that E[f(wt0+Tthred) − f(wt0)] ≤ −Fthred under the
setting.

When ‖∇f(wkTthred)‖ ≤ ε and λmin(∇2f(wkTthred)) ≥ −ε:

Now let us switch to show that E[f(w(k+1)Tthred) − f(wkTthred)|Υc
k] ≤ δFthred2 . Recall that Υc

k

means that ‖∇f(wkTthred)‖ ≤ ε and λmin(∇2f(wkTthred)) ≥ −ε. Denote t0 := kTthred in the
following. We have that

Et0 [f(wt0+Tthred)− f(wt0)] =

Tthred−1∑
t=0

Et0 [E[f(wt0+t+1)− f(wt0+t)|w0:t0+t]]

= Et0 [f(wt0+1)− f(wt0)] +

Tthred−1∑
t=1

Et0 [E[f(wt0+t+1)− f(wt0+t)|w0:t0+t]]

(a)

≤ r2ch +
ρ

6
r3c3m +

Tthred−1∑
t=1

Et0 [E[f(wt0+t+1)− f(wt0+t)|w0:t0+t]]

(b)

≤ r2ch +
ρ

6
r3c3m +

Tthred−1∑
t=1

(
η2ch +

ρ

6
η3c3m

)
(c)

≤ 2r2ch +
ρ

3
r3c3m ≤ 4r2ch

(d)

≤ δFthred
2

. (89)

where (a) is by using Lemma 8 with step size r, (b) is by using Lemma 8 with step step size η, (c) is
by setting η2Tthred ≤ r2 and η ≤ r, (d) is by the choice of r so that 8r2ch ≤ δFthred.
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Now we are ready to use Lemma 15, since both the conditions are satisfied. According to
the lemma and the choices of parameters value on Table 3, we can set T = 2Tthred

(
f(w0) −

minw f(w)
)
/(δFthred) = O((1− β) log(Lcmσ

2ρc′ch
(1−β)δγε )ε−10), which will return a w that is an (ε, ε)

second order stationary point. Thus, we have completed the proof.
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