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ABSTRACT

Recent work by Brock et al. (2018) suggests that Generative Adversarial Networks
(GANs) benefit disproportionately from large minibatch sizes. The batch sizes in
(Brock et al., 2018) are slow and expensive to emulate on conventional hardware.
Thus, it would be nice if there were some method by which we could generate
batches that were effectively big though small in practice. In this work, we pro-
pose such a method, inspired by the use of Coreset-selection in active learning.
When training a GAN, we draw a large batch of samples from the prior and then
compress that batch using Coreset-selection. To create effectively large batches of
real images, we create a cached dataset of Inception activations of each training
image, randomly project them down to a smaller dimension, and then use Coreset-
selection on those projected embeddings at training time. We conduct experiments
showing that this technique substantially reduces training time and memory usage
for modern GAN variants, that it reduces the fraction of dropped modes in a syn-
thetic dataset, and that it helps us use GANs to reach a new state of the art in
anomaly detection.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have become a popular research
topic. Arguably the most impressive results have been in image synthesis (Brock et al., 2018; Sal-
imans et al., 2018; Miyato et al., 2018; Zhang et al., 2018; 2017), but they have also been applied
fruitfully to text generation (Fedus et al., 2018; Guo et al., 2018), domain transfer learning (Zhu
et al., 2017; Zhang et al., 2017; Isola et al., 2017), and various other tasks (Xian et al., 2018; Ledig
et al., 2017; Zhu & Bento, 2017).

Recently, Brock et al. (2018) substantially improved the results of Zhang et al. (2018) by using very
large mini-batches during training. The effect of large mini-batches in the context of deep learning
is well-studied (Smith et al., 2017; Goyal et al., 2017; Keskar et al., 2016; Shallue et al., 2018) and
general consensus is that they can be helpful in many circumstances, but the results of Brock et al.
(2018) suggest that GANs benefit disproportionately from large batches. In fact, Table 1 of Brock
et al. (2018) shows that for the Frechet Inception Distance (FID) metric (Heusel et al., 2017) on the
ImageNet dataset, the scores can be improved from 18.65 to 12.39 simply by making the batch eight
times larger.

Unfortunately, increasing the batch size in this manner is not always possible since it increases the
computational resources required to train these models - beyond the reach of conventional hardware.
The experiments from the BigGAN paper require a full ‘TPU Pod’. The ‘unofficial’ open source
release of BigGAN achieves this by accumulating gradients across 8 different V100 GPUs and only
taking an optimizer step every 8 gradient accumulation steps. Future research on GANs would be
much easier if we could have the gains from large batches without these pain points. In this paper,
we take steps toward accomplishing that goal by proposing a technique that allows for mimicking
large batches without the computational costs of actually using larger batch-sizes.

We aim to maximally retain the information from a large batch when using a smaller batch. One
effective way to perform subsampling to form the smaller batch is by using Core-set selection (Agar-
wal et al., 2005). Our method samples large candidate batches and then selects smaller Core-sets
from them to be used in training. Intuitively, we want the small batches to have similar ‘coverage’
to the large batch, especially coverage of the many modes of the data distribution. This technique
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yields many of the benefits of having large batches with much less computational overhead. More-
over, it is generic, and so can be applied to nearly all GAN variants. We plan to release the code and
cached datasets to ensure reproducibility of our work.

Our contributions can be summarized as follows:

• We introduce a simple, computationally cheap method to increase the ‘effective batch size’
of GANs, which can be applied to any GAN variant.

• We conduct experiments on the CIFAR and LSUN datasets showing that our method can
substantially improve on the FID scores across different GAN architectures given a fixed
batch size.

• We use our method to improve the performance of the technique from Kumar et al. (2019)
on the task of anomaly detection.

2 BACKGROUND AND NOTATION

Generative Adversarial Networks A Generative Adversarial Network (or GAN) is a system of
two neural networks trained in an adversarial manner. The generator, G, takes as input samples
from a prior z ∼ p(z) and outputs the learned distribution, G(z). The discriminator, D, receives as
input both the training examples, X , and the synthesized samples, G(z), and outputs a distribution
D(.) over the possible sample source. The discriminator is then trained to maximize the following
objective:

LD = −Ex∼pdata [logD(x)]− Ez∼p(z)[log(1−D(G(z)))] (1)

while the generator is trained to minimize1:

LG = −Ez∼p(z)[logD(G(z))] (2)

Put simply, the generator is trained to trick the discriminator into believing that the generated sam-
ples G(z) actually come from the target distribution, p(x), while the discriminator is trained to be
able to distinguish the samples from each other.

Inception Score and Frechet Inception Distance: We will refer frequently to the Frechet Incep-
tion Distance (FID) (Heusel et al., 2017), to measure the effectiveness of an image synthesis model.
To compute this distance, one assumes that we have a pre-trained Inception classifier. One fur-
ther assumes that the activations in the penultimate layer of this classifier come from a multivariate
Gaussian. If the activations on the real data are N(m,C) and the activations on the fake data are
N(mw, Cw), the FID is defined as:

‖m−mw‖22 +Tr
(
C + Cw − 2

(
CCw

)1/2)
(3)

Core-set selection: In computational geometry, a Core-set, Q, of a set P is a subset Q ⊂ P
that approximates the ‘shape’ of P (Agarwal et al., 2005). Core-sets are used to quickly generate
approximate solutions to problems whose full solution on the original set would be burdensome
to compute. Given such a problem2 , one computes Q, then quickly computes the solution to the
problem for Q and converts that into an approximate solution for the original set P . The general
Core-set selection problem can be formulated several ways, but here we use the the minimax facility
location formulation (Farahani & Hekmatfar, 2009):

min
Q:|Q|=k

max
xi∈P

min
xj∈Q

d(xi, xj) (4)

where k is the desired size of Q, and d(., .) is a metric on P . Intuitively, the formula above encodes
the following objective: Find some set, Q, of points of size k such that the maximum distance

1 This is the commonly used “Non-Saturating Cost”. There are many others, but for brevity and since our
technique we describe is agnostic to the loss function, we will omit them.

2 As an example, consider computing the diameter of a point-set (Agarwal et al., 2005)
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between a point in P and its nearest point in Q is minimized. Since finding the exact solution to the
minimax facility location problem is NP-Hard (Wolsey & Nemhauser, 2014), we will have to make
do with a greedy approximation, detailed in Section 3.3.

Algorithm 1 GreedyCoreset
Input: batch size (k), data points (x where |x| > k)
Output: subset of x of size k
s← {} . Initialize the sampled set
while |s| < k do . Iteratively add points to sampled set

p← argmaxxi /∈s minxj∈s d(xi, xj)
s← s ∪ {p}

end whilereturn s

3 USING CORE-SET SAMPLING FOR GANS (OR SMALL-GAN)

We aim to use Core-set sampling to increase the effective batch size during GAN training. This
involves replacing the basic sampling operation that is done implicitly when minibatches are cre-
ated. This implicit sampling operation happens in two places: First, when we create a minibatch
of samples drawn from the prior distribution p(z). Second, when we create a minibatch of samples
from the target distribution pdata(x) to update the parameters of the discriminator. The first of these
replacements is relatively simple, while the second presents challenges. In both cases, we have to
work around the fact that actually doing Core-set sampling is computationally hard.

3.1 SAMPLING FROM THE PRIOR

We need to sample from the prior when we update the discriminator and generator parameters. Our
Core-set sampling algorithm doesn’t take into account the geometry of the space we sample from,
so sampling from a complicated density might cause trouble. This problem is not intractable, but it’s
nicer not to have to deal with it, so in the absence of any evidence that the form of the prior matters
very much, we define the prior in our experiments to be the uniform distribution over a hypercube.
To add Core-set sampling to the prior distribution, we sample n points from the prior, where n is
greater than the desired batch size, k. We then perform Core-set selection on the large batch of size
n to create a batch of size k. The smaller batch is what’s actually used to perform an SGD step.

3.2 SAMPLING FROM THE TARGET DISTRIBUTION

Sampling from the target distribution is more challenging. The elements drawn from the distribution
are high dimensional images, so taking pairwise distances between them will tend to work poorly
due to concentration of distances (Donoho et al., 2000; Sinha et al., 2019), and the fact that euclidean
distances are semantically meaningless in image space (Girod, 1993; Eskicioglu & Fisher, 1995).

To avoid these issues, we instead pre-process our data set by computing the ‘Inception Embeddings’
of each image using a pre-trained classifier (Szegedy et al., 2017). This is commonly done in the
transfer-learning literature, where it is generally accepted that these embeddings have nontrivial
semantics (Yosinski et al., 2014). Since this pre-processing happens only once at the beginning of
training, it doesn’t affect the per-training-step performance. In practice this step can be performed
and the resultant embeddings can be saved since pdata(x) remains constant.

In order to further reduce the time taken by the Core-set selection procedure, and inspired by the
Johnson-Lindenstrauss Lemma (Dasgupta & Gupta, 2003), we can take random low dimensional
projections of the Inception Embeddings, while preserving distances. These two techniques together
give us low dimensional representations of the training set images in which pairwise Euclidean
distances have meaningful semantics. We can then use Core-set sampling on those representations
to select images at training time, analogous to how we select images from the prior.
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3.3 GREEDY CORE-SET SELECTION

In the above sections, we have invoked Core-set selection while glossing over the detail that exactly
solving the k-center problem is NP-hard. This is important, because we propose to use Core-set
selection at every training step3. Fortunately, we can make do with an approximate solution which
is more computationally efficient using a greedy algorithm. Toward that end, we use the greedy
k-center algorithm similar to Sener & Savarese (2017) which is summarized in Alg. 1.

3.4 PUTTING IT ALL TOGETHER

Our full proposed algorithm for GAN training is presented in Alg. 2. More implementation details
and design choices are presented in Section 4. Our technique is agnostic to the underlying GAN
framework and therefore can replace random sampling of mini-batches for all GAN variants. We
choose to experiment with a few different recently proposed GAN models. Our method can also be
employed alongside any other optimization scheme used to further reduce the variance in GANs.

Algorithm 2 Small-GAN
Input: target batch size (k), starting batch size (n > k), Inception embeddings (φI )
Output: a trained GAN

Initialize networks G and D
for step = 1 to ... do

z ∼ p(z) . Sample n points from the prior
x ∼ p(x) . Sample n points from the data distribution
φ(x)← φI(x) . Get cached embeddings for x
ẑ ← GreedyCoreset(z) . Get Core-set of z
φ̂(x)← GreedyCoreset(φ(x)) . Get Core-set of embeddings
x̂← φ−1I (φ̂(x)) . Get x corresponding to sampled embeddings
Update GAN parameters as usual

end for

4 EXPERIMENTS

In this section we look at the performance of our proposed sampling method on various tasks: In the
first experiment, we train a GAN on a Gaussian mixture dataset with a large number of modes and
confirm our method substantially mitigates ‘mode-dropping’. In the second, we apply our technique
to GAN-based anomaly detection (Kumar et al., 2019) and significantly improve on prior results.
Finally, we test our method on standard image synthesis benchmarks and confirm that our technique
seriously reduces the need for large mini-batches in GAN training. The variety of settings in these
experiments testifies to the generality of our proposed technique.

4.1 IMPLEMENTATION DETAILS

For our Core-set algorithm, the distance function, d(·, ·) s the `2-norm for both the prior and target
distributions. The hyper-parameters used in each experiment are the same as originally proposed in
the paper introducing that experiment, unless stated otherwise. For over-sampling, we use a factor
of 4 for the prior p(z) and a factor of 8 for the target, p(x), unless otherwise stated. We investigate
the effects of different over-sampling factors in the ablation study in Section 4.6.

4.2 MIXTURE OF GAUSSIANS

We first investigate the problem of mode dropping (Arora et al., 2018) in GANs, where the GAN
generator is unable to recover some modes from the target data set. We investigate the performance
of training a GAN to recover a different number of modes of 2D isotropic Gaussian distributions,

3 Though the Core-set sampling does happens on CPU and so could be done in parallel to the GPU opera-
tions used to train the model, as long as the Core-set sampling time doesn’t exceed the time of a forward and
backward pass – which it doesn’t.

4



Under review as a conference paper at ICLR 2020

Number of % of Recovered % of Recovered % of High-Quality % of High-Quality
Modes Modes (GAN) Modes (Ours) Samples (GAN) Samples (Ours)

25 100 100 95.76 98.9
36 100 100 92.73 95.34
49 98.12 99.85 84.28 88.1
64 96.13 99.01 68.81 82.11
81 92.59 98.84 49.74 71.75

100 90.67 97.33 23.31 49.87

Table 1: Experiments with large number of modes

Held-out Digit Bi-GAN MEG Core-set+MEG
1 0.287 0.281 0.351
4 0.443 0.401 0.501
5 0.514 0.402 0.518
7 0.347 0.29 0.387
9 0.307 0.342 0.39

Table 2: Experiments with Anomaly Detection on MNIST dataset. The Held-out digit represents
the digit that was held out of the training set during training and treated as the anomaly class. The
numbers reported is the area under the precision-recall curve.

with a standard deviation of 0.05. We use a similar experimental setup as Azadi et al. (2018), where
our generator and discriminator are parameterized using 4 ReLU-fully connected networks, and
use the standard GAN loss in Eq. 1 and 2. To evaluate the performance of the models, we generate
10, 000 samples and assign them to their closest mode. Similar to Azadi et al. (2018), the metrics we
use to evaluate performance are: i) ‘high quality’ samples are samples within 4 standard deviations
of the assigned mode and ii) a ‘recovered mode’ is a mode with at least one assigned sample.

Our results are present in table 1, where we experiment with an increasing number of modes. We
see that as the number of modes increase, a normal GAN suffers with increasing mode dropping and
lower sample quality compared to Core-set selection. Both observations suggest that using Core-set
selection helps to reduce mode-dropping, while generating better samples. Even when using Core-
sets for a fewer number of modes, the sampling method is able to outperform a vanilla GAN which
suggests that Core-set can outperform random sampling on simple and difficult target distributions.
Better sample generation and reduced mode dropping demonstrates the effectiveness of Core-set
sampling in maximizing the effectiveness of each batch of data.

4.3 ANOMALY DETECTION

Kumar et al. (2019) proposed using Maximum Entropy generators (MEG) as a generative model
which uses an energy function and maximizes the generator’s output entropy. They tested their
method on various tasks, including anomaly detection for which they reported results that were
comparable to the state of the art using GANs (Zenati et al., 2018). Anomaly detection is an im-
portant problem in machine learning (Kwon et al., 2017). In anomaly detection, one aims to find
samples that are ‘anomalies’ compared to the training set. Kumar et al. (2019) proposed to use
energy estimates from MEG to perform anomaly detection. We guessed that their model could be
improved using Core-set selection: Core-set selection allows for better energy estimates made by
the generator, since more modes of data will be sampled at each iteration and the model will get to
see a distribution that is closer to the true distribution.

We follow their experimental setup by training the generative model with all samples from a chosen
MNIST digit left-out during training. Those samples then serve as the ‘anomaly class’ during eval-
uation. We report the area under the precision-recall curve and average the score over the last 10
epochs. The results are reported in Table 2 and clearly suggest that MEG greatly benefits from Core-
set selection as their method is able to outperform their benchmark. By performing experiments on
anomaly detection, we aim to show the generality of the algorithm proposed and not to suggest
that MEG is superior to BiGANs on the task. We note that similar improvements may also be ex-
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Small-GAN Small-GAN Small-GAN
GAN (batch- (batch-size GAN (batch- (batch-size GAN (batch- (batch-size
size = 128) = 128) size = 256) = 256) size = 512) = 512)
18.75 ± 0.2 16.73 ± 0.1 17.9 ± 0.1 16.22 ± 0.3 15.68 ± 0.2 15.08 ± 0.1

Table 3: FID scores for CIFAR using SN-GAN as the batch-size is exponentially increased. The
FID score is calculated using 50, 000 generated samples from the generator.

Small-GAN (batch- GAN (batch- GAN (batch- GAN (batch-
size = 64) size = 64) size = 128) size = 256)

13.08 14.82 13.02 12.63

Table 4: FID scores for LSUN using SAGAN as the batch-size is exponentially increased. The FID
score is calculated using 50, 000 generated samples from the generator. All experiments were run
on the ‘outdoor church’ subset of the dataset.

pected if Core-set selection is performed with BiGANs. We chose to experiment with MEG since
the applicability of our technique outside of generative modeling speaks to its general usefulness.

4.4 IMAGE SYNTHESIS

We also conduct experiments on standard image synthesis benchmarks. To further show the gener-
ality of our method, we experiment with two different GAN architectures and two image datasets.
We use Spectral Normalization-GAN (Miyato et al., 2018) and Self Attention-GAN (Zhang et al.,
2018) on the CIFAR (Krizhevsky et al., 2009) and LSUN (Yu et al., 2015) datasets, respectively. For
the LSUN dataset, which consists of 10 different categories, we train the model using the ‘outdoor
church’ subset of the data.

For evaluation, we measured the FID scores (Heusel et al., 2017) of 50, 000 generated samples from
the trained models4. We compare the performance using SN-GANs with and without Core-set selec-
tion across exponentially increasing batch sizes. We observe a similar effect to Brock et al. (2018):
just by increasing the mini-batch size by a factor of 4, from 128 to 512, we are able to improve
the FID scores from 18.75 to 15.68 for SN-GANs. This further demonstrates the importance of
large mini-batches for GAN training. Adding Core-set selection significantly improves the perfor-
mance of the underlying GAN for all batch-sizes. For a batch size of 128, our model using Core-set
sampling significantly outperforms the normal SN-GAN trained with a batch size of 256, and is
comparable to an SN-GAN trained with a batch size of 512. The results suggest that the models
perform significantly better for any given batch size when Coreset-sampling is used.

However, Core-set sampling does become less helpful as the underlying batch size increases: for
SN-GAN, the performance improvement at a batch size of 128 is much larger than the improvement
at a batch size of 512. This supports the hypothesis that Core-set selection works by approximating
the coverage of a larger batch; a larger batch can already recover more modes of the data - so under
this hypothesis, we would expect Core-set selection to help less.

We see similar results when experimenting with Self Attention GANs (SAGAN) (Zhang et al., 2018)
on the LSUN dataset (Yu et al., 2015). Compared to our results with SN-GAN, increasing the batch
size results in a smaller difference in the performance for the SAGAN model, but we still see the
FID improve from 14.82 to 12.63 as the batch-size is increased by a factor of 4. Using Core-set
sampling with a batch size of 64, we are able to achieve a comparable score to when the model is
trained with a batch size of 128. We believe that one reason for a comparably smaller advantage
of using Core-set sampling on LSUN is the nature of the data itself: using the ‘outdoor church’
subset of LSUN reduces the total number of modes possible in the target distribution, since images
of churches have fewer differences than the images in CIFAR-10 data set. We see similar effects in
the mixture of Gaussians experiment (See 4.2) where the relative difference between a GAN trained
with and without Core-set sampling increases as the number of modes are increased.

4Note that we measure the performance of all the models using the PyTorch version of FID scores, and not
the official Tensorflow one. We ran all our experiments with the same code for accurate comparison.
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Small-GAN (batch SN-GAN (batch SN-GAN (batch SN-GAN (batch
size = 128) size = 128) size = 256) size = 512)

14.51 13.31 26.46 51.64

Table 5: Timing to perform 50 gradient updates for SN-GAN with and without Core-sets. The time
is measured in seconds. All the experiments were performed on a single NVIDIA Titan-XP GPU.
The sampling factor was 4 for the prior and 8 for the target distribution.

Small-GAN A B C D E
16.73 18.75 18.09 17.03 17.88 17.45

Table 6: FID scores for CIFAR using SN-GAN. The experiment list is: A = Training an SN-GAN, B
= Core-set selection directly on the images, C = Core-set applied directly on Inception embeddings
without a random projection, D = Core-set applied only on the prior distribution, E = Core-set
applied only on target distribution.

4.5 TIMING ANALYSIS

Since random sampling can be done very quickly, it is important to investigate the amount of time
it takes to train GANs with and without Core-set sampling. We measured the time for SN-GAN to
do 50 gradient steps on the CIFAR dataset with various mini-batch sizes: the results are in Table 5.
On average, for each gradient step, the time added by performing Core-Set sampling is only 0.024
seconds.

4.6 ABLATION STUDY

We conduct an ablation study to investigate the reasons for the effectiveness of Core-set selection.
We also investigate the effect of different sampling factors and other hyper-parameters. We run all
ablation experiments on the task of image synthesis using SN-GAN (Miyato et al., 2018) with the
CIFAR-10 dataset (Krizhevsky et al., 2009). We use the same hyperparameters as in our main image
synthesis experiments and a batch size of 128, unless otherwise stated.

Examination of Main Hyper-Parameters: We examine i) the importance of the chosen target
distribution for Core-set selection and ii) the importance of performing Core-set on that target dis-
tribution. The FID scores are reported in Table 6.

The importance of the target distribution is clear, since performing Core-set selection directly on
the images (experiment B) performs similar to random-sampling. Experiment C supports our hy-
pothesis that performing a random projection on the Inception embeddings can preserve semantic
information while reducing the dimensionality of the features. This increases the effectiveness of
Core-set sampling and reduces sampling time.

Our ablation study also shows the importance of performing Core-set selection on both the prior and
target distribution. The FID scores of the models are considerably lower when Core-set sampling is
used on either distribution alone.

Examination of Sampling Factors: Another important hyper-parameter for training GANs using
Core-set selection is the sampling factor. In Table 7 we varied the factors by which both the prior
and the target distributions were over-sampled. We see that using 4 for the sampling factor for the
prior and 8 for the sampling factor for the target distribution results in the best performance.

5 RELATED WORK

5.1 VARIANCE REDUCTION IN GANS

Researchers have proposed reducing variance in GAN training from an optimization perspective, by
directly changing the way each of the networks are optimized. Some have proposed applying the
extragradient method (Chavdarova et al., 2019), and others have proposed casting the minimax two-
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A B C D E F G H I
18.01 17.8 17.59 17.12 16.83 16.73 16.9 17.95 20.79

Table 7: FID scores for CIFAR using SN-GAN. Each of the experiment shows a different pair of
over-sampling factors for the prior and target distributions. The factors are listed as: sampling factor
for prior distribution × sampling factor for target distribution. A = 2× 2; B = 2× 4; C = 4× 2; D =
4× 4; E = 8× 4; F = 4× 8; G = 8× 8; H = 16× 16; I = 32× 32

player game as a variational-inequality problem (Gidel et al., 2018). Brock et al. (2018) recently
proposed to reduce variance directly by using large mini-batch sizes.

5.2 STABILITY IN GAN TRAINING

Stabilizing GANs has been extensively studied theoretically. Researchers have worked on improving
the dynamics of the two player minimax game in a variety of ways (Nagarajan & Kolter, 2017;
Mescheder et al., 2018; Mescheder, 2018; Li et al., 2017b; Arora et al., 2017). Training instability
has been linked to the architectural properties of GANs: specially to the discriminator (Miyato et al.,
2018). Proposed architectural stabilization techniques include using Convolutional Neural Networks
(CNNs) (Radford et al., 2015), using very large batch sizes (Brock et al., 2018), using an ensemble of
the discriminators (Durugkar et al., 2016), using spectral normalization for the discriminator (Miyato
et al., 2018), adding self-attention layers for the generator and discriminator networks (Vaswani
et al., 2017; Zhang et al., 2018) and using iterative updates to a global generator and discriminator
using an ensemble of paired generators and discriminators (Chavdarova & Fleuret, 2018). Different
objectives have also been proposed to stabilize GAN training (Arjovsky et al., 2017; Gulrajani et al.,
2017; Li et al., 2017a; Mao et al., 2017; Mroueh & Sercu, 2017; Bellemare et al., 2017).

5.3 CORE-SET SELECTION

Core-set sampling has been widely studied from an algorithmic perspective in attempts to find bet-
ter approximate solutions to the original NP-Hard problem (Agarwal et al., 2005; Clarkson, 2010;
Pratap & Sen, 2018). The optimality of the sub-sampled solutions have also been studied theo-
retically (Barahona & Chudak, 2005; Goldman, 1971). See Phillips (2016) for a recent survey on
Core-set selection algorithms. Core-sets have been applied to many machine learning problems such
as k-means and approximate clustering (Har-Peled & Mazumdar, 2004; Har-Peled & Kushal, 2007;
Bādoiu et al., 2002)), active learning for SVMs (Tsang et al., 2005; 2007), unsupervised subset se-
lection for hidden Markov models (Wei et al., 2013) scalable Bayesian inference, (Huggins et al.,
2016) and mixture models (Feldman et al., 2011). We are not aware of Core-set selection being
applied to GANs.

5.4 CORE-SET SELECTION IN DEEP LEARNING

Core-set selection is largely underexplored in the Deep Learning literature, but interest has recently
increased. Sener & Savarese (2017) proposed to use Core-set sampling as a batch-mode active
learning sampler for CNNs. Their method used the embeddings of a trained network to sample
from. Mussay et al. (2019) proposed using Core-set selection on the activations of a neural network
for network compression. Core-set selection has also been used in continual learning to sample
points for episodic memory (Nguyen et al., 2017).

6 CONCLUSION

In this work we present a general way to mimic using a large batch-size in GANs while minimizing
computational overhead. This technique uses Core-set selection and improves performance in a
wide variety of contexts. This work also suggets further research: a similar method could be applied
to other learning tasks where large mini-batches may be useful.
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Francisco Barahona and FabiáN A Chudak. Near-optimal solutions to large-scale facility location
problems. Discrete Optimization, 2(1):35–50, 2005.

Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan,
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