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ABSTRACT

We uncover a connection between two seemingly unrelated empirical phenomena:
mode connectivity and sparsity. On the one hand, there is growing catalog of situ-
ations where, across multiple runs, SGD learns weights that fall into minima that
are connected (mode connectivity). A striking example is described by Nagarajan
& Kolter (2019). They observe that test error on MNIST does not change along
the linear path connecting the end points of two independent SGD runs, starting
from the same random initialization. On the other hand, there is the lottery ticket
hypothesis of Frankle & Carbin (2019), where dense, randomly initialized net-
works have sparse subnetworks capable of training in isolation to full accuracy.
However, neither phenomenon scales beyond small vision networks.

We start by proposing a technique to find sparse subnetworks after initialization.
We observe that these subnetworks match the accuracy of the full network only
when two SGD runs for the same subnetwork are connected by linear paths with
the no change in test error. Our findings connect the existence of sparse subnet-
works that train to high accuracy with the dynamics of optimization via mode
connectivity. In doing so, we identify analogues of the phenomena uncovered
by Nagarajan & Kolter and Frankle & Carbin in ImageNet-scale architectures at
state-of-the-art sparsity levels.

1 INTRODUCTION

Our understanding of training large neural networks via stochastic gradient descent (SGD) is evolv-
ing rapidly, in large part due to work that uncovers fascinating empirical phenomena. One such set of
phenomena relate to mode connectivity: the observation that SGD solutions are connected through
paths of approximately equal loss (Draxler et al., 2018; Garipov et al., 2018; Kuditipudi et al., 2019;
Venturi et al., 2018; Liang et al., 2018; Nguyen et al., 2018; Nguyen, 2019). In recent work, Nagara-
jan & Kolter (2019) observe that, after training two fully connected networks on disjoint subsets of
MNIST from the same initialization, the final weights are connected by a linear path of constant test
error. This particularly striking example of mode connectivity—where SGD seems to find the same
local convex sublevel set—appears to not reliably replicate in larger networks (see Appendix C).

Another interesting set of phenomena relate to the Lottery Ticket Hypothesis (Frankle & Carbin,
2019). Using a technique based on iterative magnitude pruning (IMP), Frankle & Carbin find that
dense networks contain sparse subnetworks that can be trained in isolation from the original ini-
tialization to match the accuracy of the original dense network. At less extreme levels of sparsity,
reusing the initialized weights becomes less important (Liu et al., 2019; Lee et al., 2019). Several
experiments (Liu et al., 2019; Gale et al., 2019), including some in the original paper, show that the
“lottery ticket” phenomenon does not replicate in larger networks.

Although mode connectivity and lottery tickets are seemingly unrelated phenomena, we uncover
a relationship in this work. The starting point is an observation about the behavior of IMP subt-
networks of larger networks. While these subnetworks may fail to match the accuracy of the full
network when trained from their original initializations, we find that they often do when trained
from their weights rewound to some training iteration k > 0. We observe this behavior extremely
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Algorithm 1 Iterative Magnitude Pruning (IMP) with rewinding to iteration k and N iterations.
1: Randomly initialize a neural network f(x;m�W0) with initial trivial pruning mask m = 1|W0|.
2: Train the network for k iterations, producing network f(x;m�Wk).
3: for n ∈ {1, . . . , N} do
4: Train f(x;m�Wk) for T − k iterations, producing network f(x;m�WT ).
5: Prune the remaining entries with the lowest magnitudes from WT . Let m[i] = 0 if WT [i] is pruned.
6: Return f(x;m�Wk)

early in training (less than 5% of the way through, and sometimes 1% or less)1 on standard vision
networks for CIFAR10 and ImageNet at sparsity levels typically obtained by state-of-the-art pruning
algorithms (Gale et al., 2019; He et al., 2018).

The relationship between mode connectivity and lottery tickets concerns the point during training
when IMP first starts to pick out subnetworks that train to full accuracy (matching subnetworks):
At the earliest rewinding iteration k0 that leads to a matching subnetwork, subnetworks produced
by IMP exhibit the same behavior observed by Nagarajan & Kolter (2019): if we train these sub-
networks from iteration k0 to completion on different data orders, we find that linear interpolations
between the end points have the same test error. In contrast, interpolation leads to excess test error
for IMP subnetworks and randomly pruned subnetworks that train to lower accuracy. In short, in
this sparse regime, a subnetwork is matching if and only if it is stable. Our observations identify
an analogue of the mode connectivity behavior found by Nagarajan & Kolter (2019), but for large
networks for ImageNet, and connect this behavior to lottery ticket phenomena.

We call this particular form of mode connectivity stability: a subnetwork at iteration k is stable if
it is possible to linearly interpolate between two duplicates trained on different data orders with no
increase in test error. Remarkably, stability alone explains the known successes and failures of the
lottery ticket hypothesis: IMP subnetworks at initialization are matching subnetworks only when
they are stable, and hyperparameter changes that Frankle & Carbin make to find matching subnet-
works at initialization in more challenging settings also lead to stability (Section 3). Rewinding IMP
to an iteration just after initialization makes it possible to find stable, matching subnetworks in cases
that Frankle & Carbin found impossible (Section 4) and on ImageNet-scale problems (Section 5).
We close with a discussion of the implications of these observations for other research (Section 6).

Contributions.
• We extend iterative magnitude pruning (IMP) to rewind weights to an arbitrary iteration k ≥ 0.
• We observe that, for a suitable choice of rewinding iteration, IMP identifies (matching subnet-

works): sparse subnetworks that train to full accuracy. In the networks we study, this iteration is
always early in training, but often after initialization for larger networks.

• We introduce the notion of a stable subnetworks: those where SGD reliably finds the same local
convex sublevel set during training, despite the stochasticity in the minibatch data order.

• Focusing on cases where some rewinding iteration exists that leads to a matching subnetwork, we
find that sparse subnetworks become matching at the iteration where they become stable.

• We use these ideas to find sparse matching subnetworks of networks for CIFAR10 and ImageNet.

2 PRELIMINARIES AND METHODOLOGY

Throughout this paper, we investigate sparse subnetworks of dense neural networks. Formally, a
subnetwork is a tuple (W,m) of weights W ∈ RD and a mask m ∈ {0, 1}D. We write m �W
to denote the element-wise product of a mask with weights. We capture the effect of training with
stochastic gradient descent (or some variant) by a function As→t : RD × U → RD, which maps
weights Ws at iteration s and data order randomness u ∼ U to updated weights Wt at iteration t for
s, t ∈ {1, .., T} and s < t. Let E(W,m) denote the error of subnetwork (W,m). In practice, we use
a held-out test set to estimate this quantity.

1Naively, one would assume that rewinding to a point late in training, after optimization is nearly complete,
would lead to this behavior. However, pruning at this point reliably leads to a drop in performance that requires
many epochs of fine-tuning to recover.
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Network Dataset Params Train For Batch Accuracy Opt Rate Schedule Warmup Density

Lenet MNIST 266K 50K Iters 60 98.1± 0.2% adam 12e-4 constant 0 2.8%

Resnet-20 (standard) 91.0± 0.3% mom. 0.1 10x drop at
20K, 25K

0
16.7%Resnet-20 (low) CIFAR10 274K 30K Iters 128 89.1± 0.2% mom. 0.01 0

Resnet-20 (warmup) 90.1± 0.2% mom. 0.03 20K

VGG-19 (standard) 91.4± 0.3% mom. 0.1 10x drop at
56K, 84K

0
2.2%VGG-19 (low) CIFAR10 20.0M 112K Iters 64 91.8± 0.2% mom. 0.01 0

VGG-19 (warmup) 92.6± 0.1% mom. 0.1 10K

Resnet-50 ImageNet 25.5M 90 Eps 1024 76.1± 0.1% mom. 0.4 10x drop at 30,60,80 5 Eps 30%
Inception-v3 ImageNet 27.1M 171 Eps 1024 78.1± 0.1% mom. 0.03 linear decay to 0.005 0 30%

Table 1: Networks and hyperparameters for our experiments. Accuracies are the averages and stan-
dard deviations across three initializations and three data orders (18 runs total). Hyperparameters
for Resnet-20 (standard) are from He et al. (2016) via Frankle & Carbin (2019). Hyperparameters
for VGG-19 (standard) are from Liu et al. (2019). Hyperparameters for low and warmup variants
and Lenet are from Frankle & Carbin (2019). Hyperparameters for ImageNet networks are from
Google’s reference TPU library (Google, 2018). MNIST and CIFAR10 networks are identical to
those used in Frankle & Carbin (2019).

Iterative magnitude pruning. To find sparse networks early in training, we build off of a proce-
dure proposed by Frankle & Carbin (2019), which we term Iterative Magnitude Pruning (IMP). As
outlined in Algorithm 1 with k = 0, IMP trains a network to completion, prunes weights with the
lowest magnitudes globally, and rewinds the remaining weights back to their initial values. Doing so
produces a subnetwork of the original network. We say that a subnetwork is matching when training
that network to completion leads to accuracy that matches that of the trained, unpruned network.
When IMP picks out a subnetwork that is matching, we deem IMP to have succeeded. We run IMP
iteratively, training, pruning 20% of weights (Han et al., 2015; Frankle & Carbin, 2019), rewinding,
and repeating until we reach a target sparsity.

In Sections 4 and 5, we search for matching subnetworks after initialization. To do so, we generalize
IMP to rewind the weights to some rewinding iteration k rather than just to iteration 0. Algorithm 1
describes this generalization. When training a subnetwork from iteration k, we set the learning rate
schedule to iteration k and complete the training process normally from that point.

Stability. We measure the stability of a subnetwork by first training two duplicates of the subnetwork
in an identical fashion but for different minibatch data orders. Subsequently, we look at weights
obtained by linearly interpolating between the two trained networks and measure the increase in
worst-case increase in test error over all interpolations. (We approximate the supremum over a grid
of 50 points.) We say the subnetwork is ε-stable if the maximum increase in test error is ε. If test
error does not increase as we linearly interpolate, then this provides evidence that the duplicates may
occupy the same local (convex) sublevel set (local optimum) and we call the subnetwork stable. If
test error increases, then we can come to no conclusion about whether the duplicates occupy the
same local optimum.

We can view the computation outlined above as a statistical estimate of the following notion of
stability: Consider a subnetwork (Wt,m) and let (Wu

T ,m) = At→T (m � Wt, u) be the sub-
network trained to completion for some random data order. Then Ē = Eu∼U [E(Wu

T ,m)] is
the expected error of the final weights, averaging over the data order. We are then estimating
Eu,u′∼U [supa∈[0,1] E(aWu

T + (1−a)Wu′

T ,m)−Ē ] and so we say a subnetwork (Wt,m) is ε-stable
if this quantity is bounded above by ε. A stable network is one that is 0-stable.

Networks and datasets. We study image classification networks on MNIST, CIFAR10, and Ima-
geNet as specified in Table 1. All hyperparameters listed are the standard values for these networks
from reference implementations or prior work as cited in Table 1. The warmup and low variants of
Resnet-202 and VGG-19 use the learning rate schedules chosen in Frankle & Carbin (2019) to make
it possible for IMP to find matching subnetworks at iteration 0.

2Frankle & Carbin (2019) mistakenly refer to Resnet-20 for CIFAR10 as “Resnet-18,” which is a separate
network architecture designed for ImageNet.
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Figure 1: The accuracy of subnetworks of Lenet (left), VGG-19 (middle), and Resnet-20 (right)
found using IMP (k=0) and when randomly reinitialized and randomly pruned. Standard, Warmup,
and Low hyperparameters are in Table 1. Error bars are the min/max across five runs.
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Figure 2: The test error when interpolating at 50 points between IMP subnetworks (blue) and random
subnetworks (orange) trained on different data orders. Error bars are the standard deviation across 18
combinations of networks (three data orders and three initializations per network). The subnetworks
are pruned to the sparsity levels in Table 1.

Sparsity levels. We study the relationship between the stability and accuracy of sparse subnetworks.
We only consider subnetworks within a restricted sparsity range: in particular, we focus on sparsity
levels for which we have evidence that there exists a matching subnetwork at some rewinding itera-
tion k ≥ 0. Furthermore, we focus our attention to the lowest few sparsity levels at which IMP can
find a matching subnetwork for some rewinding iteration. These sparsity levels are noted in Table 1.

3 MATCHING SUBNETWORKS AT INITIALIZATION ARE STABLE

In this section, we investigate subnetworks found by IMP at initialization in order to compare sce-
narios where IMP succeeds and fails at finding matching subnetworks. For the sparsity levels we
consider, we find matching subnetworks if and only if they are stable.

IMP at initialization. On Lenet for MNIST, IMP finds matching subnetworks at initialization
(Figure 1 left, blue) when at least 2.8% of weights remain. The original initialization and structure
are necessary to produce this behavior: reinitializing the subnetwork (orange) or randomly pruning3

(gray) reduce subnetwork accuracy at this sparsity level and only result in matching subnetworks
when at least 20.1% of weights remain.

However, IMP does not find matching subnetworks on VGG-19 and Resnet-20 at initialization at
even moderate levels of sparsity (Figure 1 top middle and right, blue). The original initialization is

3We generate a random mask with the same layer-wise proportions as the corresponding IMP subnetwork.
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Network Stability (ε) Accuracy
IMP Random IMP Random Full - IMP Matching?

Lenet 0.1± 0.0 2.4± 0.5 97.9± 0.2 96.3± 0.2 0.3± 0.3 Y

Resnet-20 (standard) 78.1± 0.9 77.4± 1.3 87.7± 0.4 87.7± 0.3 3.2± 0.3 N
Resnet-20 (low) 0.1± 0.1 72.5± 1.3 89.1± 0.2 86.0± 0.3 -0.1± 0.4 Y
Resnet-20 (warmup) 0.1± 0.1 56.8± 20.2 90.2± 0.3 86.8± 0.2 0.1± 0.4 Y

VGG-19 (standard) 80.0± 0.3 80.2± 0.3 90.0± 0.2 90.2± 0.2 1.4± 0.4 N
VGG-19 (low) 0.2± 0.2 77.9± 0.3 91.0± 0.2 88.0± 0.2 0.8± 0.2 N
VGG-19 (warmup) 0.1± 0.1 80.2± 0.3 92.4± 0.2 90.3± 0.1 0.1± 0.2 Y

Table 2: The minimum ε for stability and the accuracy of subnetworks obtained by IMP and by
randomly pruning. Errors are the standard deviation across three initializations and data orders,
meaning we considered three networks for accuracy and 18 combinations of networks for stability.

inconsequential, and the networks can be reinitialized or randomly pruned without affecting accu-
racy. Only by changing the learning schedule do Frankle & Carbin (2019) find matching subnet-
works (Figure 1 bottom), lowering the learning rate (light blue) or adding warmup (light orange).

Stability at initialization. To compute stability, we train two duplicates of a subnetwork with
different data orders and linearly interpolate between the trained weights (Section 2). The blue lines
in Figure 2 plot the test error when linearly interpolating between duplicates of the IMP subnetworks.
Nagarajan & Kolter (2019) study this phenomenon on a Lenet-like network for MNIST, and we also
confirm their result on sparse IMP subnetworks: it is possible to linearly interpolate between minima
with no increase in test error.

We observe this behavior on several other networks on CIFAR. Namely, whenever IMP finds a
matching4 subnetwork, test error does not increase when linearly interpolating between duplicates,
meaning the subnetwork is stable. This result extends Nagarajan & Kolter’s observation about lin-
ear interpolation beyond MNIST to matching subnetworks found by IMP at initialization on our
CIFAR10 networks.5

In contrast, when IMP does not find a matching subnetwork, test error increases when interpolat-
ing, meaning the subnetworks are not linearly connected within an optimum and are not stable.
As a baseline, we also consider randomly pruned networks (orange line). These subnetworks are
only matching at moderate levels of sparsity (Figure 1); correspondingly, at the sparsity levels we
consider, we cannot interpolate between duplicates without increases in test error.

Table 2 reports the level of stability from the curves in Figure 2.6 In cases where we find matching
subnetworks, we also find that ε ≈ 0, meaning the subnetworks are stable; in cases where we
do not find matching subnetworks, we find ε > 0, meaning the subnetworks are unstable.7 As
additional evidence for a relationship between stability and matching subnetworks, the interventions
that Frankle & Carbin took to improve the accuracy of IMP subnetworks (warmup and/or low) also
result in stability when subnetworks would otherwise be unstable.

4A subnetwork is considered matching when the mean difference in accuracy from the full network is
smaller than the standard deviation.

5In Appendix C, we find that, aside from Lenet, the corresponding full networks are not stable at initializa-
tion, despite the fact that the IMP subnetworks are stable.

6Concretely, the value is the maximum point on the curve (i.e., maximum risk along the linear interpolation),
minus the mean of the endpoints, averaged across trials.

7Following Frankle & Carbin’s iterative pruning strategy prescribes a fixed set of sparsity levels (Section 2)
and for the sparsity levels we studied on VGG (low), the IMP subnetwork is stable but does not quite qualify as
matching. In Section 4, we find that VGG-19 (low) requires just ten iterations of training to become matching,
meaning that, at initialization, it is on the cusp of matching. At initialization, IMP finds subnetworks of VGG-
19 (low) that reach higher much accuracy than the random baselines at extreme levels of sparsity, however,
accuracy does not reach that of the full network.
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Figure 3: The effect of the rewinding iteration (x-axis) on stability (top row) and test error (bottom
row) for the MNIST and CIFAR10 networks in Table 1. Error bars are the standard deviations
across three initializations (and three data orders for the top row). Dashed black lines are the mean
and standard deviation of test error of the full network from Figure 1.

4 STABILITY AND ACCURACY RAPIDLY IMPROVE AFTER INITIALIZATION

In this section, we study stability and accuracy when rewinding IMP subnetworks to iterations after
initialization. For networks that were not already stable at initialization, stability and accuracy
improve rapidly as we rewind to later iterations, culminating in stable, matching subnetworks.

Stability after initialization. To test whether subnetworks become stable later in training, we use
IMP and random pruning to generate subnetworks at various rewinding iterations k after initializa-
tion. We train these subnetworks from iteration k to completion according to the learning schedule.
The upper plot in Figure 3 shows stability for IMP subnetworks (blue) and randomly pruned subnet-
works (orange) across rewinding iterations.

For Resnet-20 (standard) and VGG-19 (standard), stability of IMP subnetworks improves as the
rewinding iteration increases. This change takes place early on, culminating with stable subnetworks
at iteration 100 (epoch 0.14) for VGG-19 and iteration 500 (epoch 1.4) for Resnet-20. After this
point, stability improvements largely saturate. In cases where IMP finds a matching subnetwork at
iteration 0 (Lenet, Resnet-20 Warmup, Resnet-20 Low, and VGG-19 Warmup), IMP subnetworks
are already stable and remain so at all rewinding iterations.

Randomly pruned subnetworks are unstable over the range of rewinding iterations we consider,
although they become somewhat more stable with later rewinding for Lenet and Resnet-20. One
possible explanation for why the test error of these random subnetworks is high for later rewinding
iterations despite a slight improvement in stability is the following: by the time these improvements
manifest, Lenet has already converged and Resnet-20 is 20% of the way through training, sufficiently
late that the subnetworks may not have enough time to venture as far from their weights at iteration
k (see L2 distance measurements in Appendix A.3).
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Figure 4: The accuracy of subnetworks of VGG-19 Standard (left) and Resnet-20 Standard (right)
found using IMP with resetting, rewinding (iterations 100 and 500 for VGG-19 and Resnet-20), and
when randomly reinitialized. Error bars are the min/max across five runs.
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Figure 5: The effect of the rewinding epoch (x-axis) on stability (left) and accuracy (right) for IMP
subnetworks of networks and datasets in Table 1 trained on ImageNet. Sparsity levels are in Table 1.
Subnetworks were obtained via one-shot pruning. Error bars are the standard deviation across three
comparisons (three initializations and two data orders per initialization).

These results are another extension of the phenomenon originally observed by Nagarajan & Kolter
(2019) on Lenet. For all of the networks we study, there are constant-error linear paths connecting
the optima of IMP subnetworks at sufficiently late rewinding iterations. In Appendix C, we find
such linear paths when rewinding the full, unpruned networks as well, suggesting that instability
during the early part of training may be an intrinsic property of SGD on these networks.

Accuracy after initialization. In Section 3, we found that stability and accuracy improve together:
interventions intended to improve accuracy (namely, a lower learning rate and warmup) also improve
stability. Here, we find that the same relationship holds: the rewinding that makes subnetworks
stable (Figure 3 top) also improves accuracy (Figure 3 bottom).

For Resnet-20 (standard) and VGG-19 (standard), error decreases as stability improves, and im-
provements in error saturate when IMP subnetworks become stable. Although rewinding to itera-
tion 0 does not produce matching subnetworks, rewinding slightly later (iteration 500 out of 30K for
Resnet-20 and 100 out of 112K for VGG-19) does. For other networks, which are stable at rewinding
iteration 0 and remain so at other rewinding iterations, accuracy remains consistent. For VGG-19
low and warmup, random subnetwork accuracy also increases slightly at the latest rewinding points.

Discussion. At the sparsity levels we consider, we continue to see that subnetworks are matching
if and only if they are stable. In those cases for which IMP does not find matching subnetworks at
initialization, it finds them when rewinding a small way into training. Rewinding has limited effect
on the stability and accuracy of randomly pruned subnetworks until the latest rewinding points.

Rewinding improves the accuracy of IMP subnetworks at all sparsity levels. Figure 4 plots the accu-
racy of Resnet-20 and VGG-19 across sparsity levels when IMP rewinds to iterations 100 (VGG-19)
and 500 (Resnet-20). At extreme levels of sparsity, these subnetworks substantially outperform
subnetworks that are randomly reinitialized or rewound to initialization.

5 STABILITY AND ACCURACY OF NETWORKS ON IMAGENET

In this section, we find the same relationship between stability and accuracy on deeper networks
for ImageNet (Russakovsky et al., 2015) (see Table 1). Although IMP with k = 0 does not pro-
duce matching subnetworks, rewinding 6.6% and 3.5% into training yields subnetworks that are
80% and 76% smaller than the Resnet-50 (He et al., 2016) and Inception-v3 (Szegedy et al., 2016)
architectures, respectively, that can complete training to full accuracy.
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Figure 6: The accuracy of subnetworks of Resnet-50 and Inception-v3 using IMP with rewinding
to epochs 0 and 6 and when randomly reinitialized. Left plots: one-shot pruning. Right plots:
iteratively pruning 20% and 30% of weights per iteration for Resnet-50 and Inception-v3. Error
bars are the min/max across three runs.

Figure 5 shows the effect of the rewinding epoch on the stability and accuracy at sparsity levels in
Table 1. The trends mirror those of Resnet-20 and VGG-19. When rewinding to initialization, IMP
subnetworks perform no better than random subnetworks in terms of both stability and accuracy. As
the rewinding iteration increases, IMP subnetwork stability improves until the subnetworks become
stable at epoch 4 (out of 90) for Resnet-50 and epoch 6 (out of 171) for Inception-v3. Test error
improves alongside stability, reaching the level of the original network at the same point in training.

Figure 6 shows IMP with rewinding across all levels of sparsity. The left plots shows the result
of one-shot pruning (pruning all at once to the desired sparsity after training) when rewinding to
epoch 6 (just after the aforementioned thresholds) Both networks match the accuracy of the original
network when 70% of weights are pruned. The right plots shows iterative pruning. Rewinding
Resnet-50 and Inception-v3 to epoch 6 makes it possible to find subnetworks that train to match
the original accuracy when 80% and 76% of weights are pruned, matching state-of-the-art sparsity
levels (Gale et al., 2019; He et al., 2018) while imposing the sparsity just a few epochs into training.
Under any amount of pruning, subnetworks that are rewound to iteration 0 or randomly reinitialized
have lower accuracy than the full network.

6 DISCUSSION AND IMPLICATIONS

Interpolation between trained networks. Earlier work has contributed to a catalog of scenarios
where neural network minima are connected by “simple” (if non-linear) paths of low empirical risk
(Draxler et al., 2018; Garipov et al., 2018; Kuditipudi et al., 2019; Venturi et al., 2018; Liang et al.,
2018; Nguyen et al., 2018; Nguyen, 2019). A related phenomena is that averaging the states of a
model trained with a cyclic learning rate leads to better generalization Izmailov et al. (2018). An-
other related phenomenon was uncovered by Evci et al. (2019): they show that linear paths between
a subnetwork’s mode (WT ,m) and its random reinitialization exhibit monotonically decreasing em-
pirical risk, where the subnetwork is obtained via one iteration of IMP. Despite the existence of this
linear path, SGD does not seem to follow it.

We extend the technique of Nagarajan & Kolter (2019), who study interpolation of networks trained
from the same initialization on disjoint subsets of MNIST. We consider more challenging tasks,
sparse subnetworks, and later rewinding points; we also use the full dataset with different data or-
ders. Our findings shed light on the optimization dynamics of sparse (and dense—Appendix C)
neural networks under SGD noise. Despite the small number of parameters in matching subnet-
works, we find that modes are connected via linear paths. This is surprising, as most of the previous
theoretical work on mode connectivity relies on high parameter count or insensitivity to dropout
noise (Venturi et al., 2018; Liang et al., 2018; Nguyen et al., 2018; Nguyen, 2019; Kuditipudi et al.,
2019). Studying non-linear paths (Draxler et al., 2018; Evci et al., 2019) may reveal other relation-
ships, e.g., between the minima of full networks and subnetworks.

The “lottery ticket hypothesis.” The lottery ticket hypothesis (Frankle & Carbin, 2019) conjectures
that any “randomly initialized, dense neural network contains a subnetwork that—when trained in
isolation—matches the accuracy of the original network.” The authors find support for this hypoth-
esis in small vision networks using IMP to identify the subnetworks. As follow-up studies show
(Liu et al., 2019; Gale et al., 2019), IMP does not uncover such subnetworks on deeper networks
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for CIFAR10 and ImageNet. We replicate these findings, and, using the notion of stability, provide
an alternative perspective: at high levels of sparsity, a subnetwork is matching if it is stable. For
the networks studied by Frankle & Carbin (2019), the subnetworks picked out by IMP are stable
at initialization. For those counterexamples raised by subsequent studies, the subnetworks picked
out by IMP are not stable at initialization. In our study, we find that the point where stability arises
occurs later as networks become larger.

The relationship between stability and accuracy. The connection between stability and matching
subnetworks suggests that the accuracy of matching subnetworks relates to the dynamics of opti-
mization. Stability is a precise and surprising fact about the distribution of the weights learned by
SGD. Outside of our IMP experimental setup, one might not expect stability to align with accuracy
after training. For example, a subnetwork could be trapped in a bad local minimum and be stable.
It is an open question as to why stable networks are also matching in the setting we study. One
could imagine several possible explanations. In Appendix B, we cast doubt on the idea that IMP
subnetworks reach the same minimum as the full network: we find matching subnetworks in many
cases where there is no low-error linear path between the optima of the full network and the IMP
subnetwork.

Opportunities to prune. In Sections 4 and 5, we find sparse subnetworks that become matching
early on in training. These subnetworks match or exceed sparsity levels achieved by state-of-the-art
(unstructured) pruning methods. Most of these techniques work by pruning during or after training
(Gale et al., 2019; He et al., 2018). In these cases, our work suggests that there is, potentially, a sub-
stantial unexploited opportunity to prune neural networks much earlier in training. (See Appendix
D for more details.) Recent work proposes techniques to prune at initialization (Lee et al., 2019);
our experiments suggest that the best time to prune may actually be slightly later, corresponding to
when IMP subnetworks become stable.

7 LIMITATIONS

We focus only on image classification tasks and sparse pruning. For each neural network, we analyze
stability for a single sparsity level intended create matching subnetworks that are as small as pos-
sible; other relationships between subnetwork accuracy and stability may emerge in other sparsity
regimes. We only consider linear interpolation between optima, which may exclude other simple
paths between the optima of other combinations of networks.

IMP is our only technique for finding matching subnetworks, and our reliance on IMP limits the
scope of our claims. For example, there may exist other matching subnetworks with a different
relationship with stability. It may even be that stability is a necessary condition for IMP to find
matching subnetworks rather than a necessary condition for a subnetwork to be matching.
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A COMPARING SUBNETWORKS TRAINED WITH DIFFERENT DATA ORDERS

This appendix includes full data for our stability experiments, including plots at all points along the
interpolation between subnetworks (Subsection A.1), the interpolation summary plots from the main
body of the paper (Subsection A.2), the L2 distance between pairs of subnetworks trained on differ-
ent data orders (Subsection A.3), and the angle between pairs of subnetworks trained on different
data orders (Subsection A.4). All lines for MNIST and CIFAR10 networks are the average and stan-
dard deviation across 18 comparisons (three initializations and three data orders per initialization).
All lines for ImageNet networks are the average and standard deviation across three comparisons
(three initializations and two data orders per initialization).

A.1 FULL INTERPOLATION PLOTS

Figures 3 and 5 summarize the stability for each network. This subsection plots the values of the
test loss at all 50 points at which we linearly interpolate between each pair of duplicates. For the
summary plots in Figures 3 and 5, we select the maximum test error at any point in each curve and
subtract from it the mean of the two endpoints of each curve (i.e., the test errors of the uninterpolated
networks). For each network, the left graph is the IMP subnetwork and the right graph is the random
subnetwork. The fraction of weights remaining is listed in the title. For MNIST and CIFAR10
networks, the numbers are the rewinding iteration; for ImageNet networks, they are the rewinding
epoch.
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A.2 INTERPOLATION SUMMARY PLOTS

This subsection reproduces the interpolation summary plots from Figures 3 and 5 in a single location.
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A.3 L2 DISTANCE PLOTS

This subsection plots the L2 distance between the final trained weights of copies of the subnetworks
trained on different data orders. The trends with L2 distance match those we observe for test error
and stability: L2 distance drops as test error decreases, saturating at the same time the subnetwork
becomes stable. This data is further evidence that the optimization behavior of the stable subnet-
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works is robust to data order noise: not only do the duplicates reach the same optimum, but they are
also closer together in space.
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A.4 ANGLE DISTANCE PLOTS

This subsection plots the angle between the final trained weights of copies of the subnetworks trained
on different data orders. As in Appendix A.3, the trends in these plots match those we see with test
error and stability.
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B COMPARING THE FULL NETWORK AND SUBNETWORK TRAINED WITH
THE SAME DATA ORDER

This appendix considers the relationship between the trained weights of the full network and subnet-
work when they are trained using the same data order. One hypothesis for the relationship between
accuracy and subnetwork stability is that the subnetworks are finding the same optimum as the full
network. This appendix shows that this does not appear to be the case, at least under linear inter-
polation. Linearly interpolating between the full network and IMP subnetworks (Appendix B.1 for
full data and Appendix B.2 for summary plots) traverses a region of increased test error, even when
the subnetworks are stable and reach the maximum improvement in accuracy. However, as IMP
subnetwork accuracy improves with rewinding, the subnetworks are closer in L2 distance and angle
to the trained weights of the full network, suggesting that the subnetworks may more closely follow
the optimization trajectory of the full network, even if they do not end up in an optimum that is
linearly connected.

Other notes:

• We did not perform these interpolation experiments for the ImageNet networks.

• To compute L2 distance and angle between the full network and subnetwork, we only
consider weights that are not pruned. In other words, we compare trained subnetwork
At→T (m�Wt, u) to the trained full network with weights masked outm�At→T (Wt, u).

• All lines are the average and standard deviation of three experiments (three initializations).

B.1 FULL INTERPOLATION PLOTS

This subsection presents the test error when interpolating between the trained weights of the full
network and subnetwork when trained on different data orders. For Resnet-20, the maximum in-
crease in test error is generally smaller for IMP subnetworks than for random subnetworks, but we
do not find a relationship between this increase and the test error of the subnetworks. For VGG-19,
the maximum increase in test error is no smaller for IMP subnetworks than for random subnetworks
except at the latest rewinding iterations under warmup. This data does not support the hypothesis
that the pruned subnetworks find the same minimum as the full subnetwork, at least as far as can be
determined by linear interpolation.
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B.2 INTERPOLATION SUMMARY PLOTS

This subsection presents the summaries of the plots in Appendix B.1.
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B.3 L2 DISTANCE PLOTS

This subsection plots the L2 distance between the final trained weights of the full network and
subnetwork trained on the same data order. To compute this distance, we ignore any weights in
the full network that were pruned in the subnetwork. The trends with L2 distance generally match
the trends we see for test error and stability. In cases where we find matching subnetworks at
all rewinding iterations, the IMP subnetwork weights are consistently closer to those of the full
network than are the weights of the randomly pruned subnetworks. In cases where we need to rewind
later in training to find matching subnetworks (Resnet-20, VGG-19, Resnet-50, and Inception-v3),
there is no difference in L2 distance between the IMP subnetworks and random subnetworks; as
IMP subnetwork instability decreases and test accuracy improves, the L2 distance also decreases,
saturating at about the same iteration.
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B.4 ANGLE DISTANCE PLOTS

This subsection plots the angle between the final trained weights of copies of the subnetworks trained
on different data orders. As in Appendix B.3, the trends in these plots match those we see with test
error and stability.
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C COMPARING FULL NETWORKS TRAINED WITH DIFFERENT DATA ORDERS

In this Appendix, we consider interpolating between copies of the full network trained with different
data orders. We use the same structure as the rewinding experiments: we train the full network to
iteration k, make two copies of the network, and train those copies to completion with different data
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orders. Appendix C.1 plots the errors at 50 points along the line between the trained weights of
pairs of networks. Appendix C.2 summarizes the maximum increase in error across all rewinding
iterations. Each line is the average and standard deviation of 18 samples (three initializations and
three data orders per initialization). We do not include results for the ImageNet networks.

With the exception of Lenet, all networks are unstable at the earliest rewinding iterations. Beyond
a certain rewinding iteration, all networks become stable. This trend is in contrast to what we
observe with IMP subnetworks (blue lines), which—in many cases—are stable even at rewinding
iteration 0. The rewinding iteration at which full network instability decreases varies from network
to network. For Resnet-20 standard and VGG-19 standard, it occurs slightly later than when the
IMP subnetworks become stable. Warmup causes stability to improve later, and a lower learning
causes instability to improve slightly earlier.

Our first observation is that full networks do eventually become stable in all cases, and the point at
which they do so occurs relatively early in training. That stability emerges early in training is not
merely a property of extremely sparse IMP subnetworks—it is a property of SGD on these particular
networks in general.

However, the stability behavior of the full networks differs from that of the IMP subnetworks. They
become stable at different points, and—in some cases—the IMP subnetworks are never unstable
while the full networks are at early rewinding points. On Resnet-20 standard and VGG-19 standard,
the stability improvements for IMP subnetworks and the full networks occur in a similar pattern, al-
beit slightly delayed for the full networks, potentially indicating that there may be some relationship
between the stability behavior of the subnetwork and the full network.

One possible explanation for this data is that the overparameterized full networks have more possible
directions in the optimization landscape that they could pursue, meaning noise early in training may
have a higher probability of changing the optimization trajectory without affecting the eventual
performance of the trained network. In contrast, extremely sparse subnetworks have many fewer
possible directions, meaning their optimization trajectories may become more robust to noise earlier
in training.

C.1 FULL INTERPOLATION PLOTS
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C.2 INTERPOLATION SUMMARY PLOTS
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D SPARSITY LEVELS DURING TRAINING FOR PRUNING METHODS AND IMP

Figure 7 shows the sparsity levels achieved during training by gradual pruning (Gale et al., 2019),
training a pruned subnetwork from scratch with a new initialization (Liu et al., 2019), and the spar-
sity levels found by IMP. We do not propose IMP as an efficient pruning technique, as it requires
training the full network many times to achieve these sparsity levels. However, the sparse subnet-
works found early in training by IMP are proof that there is an unexploited opportunity to prune
earlier in training than current methods do.
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Figure 7: Sparsity levels during training (Resnet-50 on ImageNet) using a reinitialized pruned net-
work (Liu et al. (2019) with our experiments in Section 5) and gradual pruning (numbers from Gale
et al. (2019)) alongside the sparsity of subnetworks found retroactively at epochs 0 and 6 by IMP.
We selected the sparsest network available such that top-1 accuracy met the specified constraint.
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