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ABSTRACT

The existence of adversarial examples, or intentional mis-predictions constructed
from small changes to correctly predicted examples, is one of the most significant
challenges in neural network research today. Ironically, many new defenses are
based on a simple observation—the adversarial inputs themselves are not robust
and small perturbations to the attacking input often recover the desired prediction.
While the intuition is somewhat clear, a detailed understanding of this phenomenon
is missing from the research literature. This paper presents a comprehensive
experimental analysis of when and why perturbation defenses work and potential
mechanisms that could explain their effectiveness (or ineffectiveness) in different
settings.

1 INTRODUCTION

Adversarial examples are synthesized inputs to a machine learning model to induce an intentional
mistake. The existence of such examples is widely known and extensively studied (Szegedy et al.|
2014; |Goodfellow et al., 2014} |Biggio et al., 2013} |Papernot et al., [2016; |Carlini & Wagner} |2017)).
Interestingly enough, there is a growing body of evidence that suggest such adversarial examples
are themselves not robust, namely, small perturbations sometimes will recover original, desired
prediction (Dziugaite et al.l 2016} [Roth et al., 2019). Many new defense techniques explicitly
leverage this property and prior techniques can be retrospectively interpreted as perturbations of the
input images. However, a detailed understanding of this phenomenon is lacking from the research
literature including: (1) what types of perturbations work, (2) whether all attacks exhibit this same
property, and (3) possible counter-measures attackers can employ to defeat perturbation defenses.

We start with a simple experimental model where every example is passed through a lossy channel
(whether stochastic or deterministic) prior to model inference. This channel induces a small perturba-
tion to the input. This perturbation should be small enough as not to affect the prediction accuracy
of normal examples, but large enough to dominate any adversarial attack. We can interpret a large
number of recent defenses in this model including: feature squeezing (Xu et al., 2017), frequency
or JPEG compression (Dziugaite et al.l 2016), randomized smoothing (Cohen et al.| 2019)), and
perturbation of network structure or the inputs randomly (Jafarnia-Jahromi et al.l [2018; Zhang &
Liang, |2019;|Guo et al.|, [2017).

The main trade-off is choosing the strength (lossiness) of such channel to carefully mitigate prediction
errors over true examples but maximize recovery of the adversarial examples. Our experiments suggest
that this trade-off is surprisingly consistent across very different families of input perturbations, where
the relationship between channel distortion (the /5 distance between channel input and output) and
robustness is largely the same. Our experiments provide a detailed study of when such recovery is
possible and the underlying mechanisms at work.

The objective of this analysis is not to demonstrate a new defense but to argue that many recent
defense proposals are all based on a similar underlying mechanism of perturbation—and potentially
suggest that they are all vulnerable to same types of attack strategies. In fact, we can devise a generic
attacker that attacks a particularly strong lossy channel, an additive Laplace noise channel, and attacks
designed on this channel are often successful against other defenses. This result implies that for many
input perturbation defenses the attacker need not be fully adaptive, i.e., they do not need to know
exactly what kind of transformation is used to defend the network. This analysis also highlights
a curious perturbation-theoretic property of state-of-the-art neural networks, namely, recoverable
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adversarial examples tend to exhibit higher instability (the more unstable the adversarial example, the
easier it is to restore its correct label)—from both a first-order and second-order analysis.

2 RELATED WORK

Much of the community’s current understanding of adversarial sensitivity in neural networks is
based on the seminal work by [Szegedy et al.|(2014). Multiple contemporaneous works also studied
different aspects of this problem, postulating linearity and over-parametrization as possible expla-
nations (Goodfellow et al.| 2014; [Biggio et al.| 2013)). Since the beginning of this line of work, the
connection between compression and adversarial robustness has been recognized. The main defense
strategies include: the idea of defensive network distillatiorﬂ (Papernot et al., 2015)), quantizing
inputs using feature squeezing (Xu et al., 2017), the thermometer encoding as another form of
quantization (Buckman et al.,|2018)), JPEG compression harnessed by (Dziugaite et al.,2016; |Guo
et al., 2017 Das et al., [2017; 2018}; |/Aydemir et al., 2018} [Liu et al., [2019). Other line of research
leveraged connection between randomization and adversarial robustness: Pixel Deflection (Prakash
et al.;2018), random resizing and padding of the input image (Xie et al.,|2017)), and total variance
minimization (Guo et al., [2017). In our work we unify the methods based on compression and
randomization that are applied to the input images.

While all of the aforementioned defenses were later broken (Carlini & Wagner, |2017; |Athalye et al.
2018)), it is important to understand why these approaches afforded any form of robustness. The
community actually lacks consensus on this point: |Szegedy et al.|(2014)) suggest that neural networks
have blind spots,|Xu et al.|(2017) suggest that quantization makes the adversarial search space smaller,
Buckman et al.| (2018)) suggest the linearity is the main culprit and quantized inputs break up linearity.

Zhang & Liang| (2019) inject random Gaussian noise into an image and then discretize it. This
method fits into the noisy channel framework with different definitions of C'(x). They show improved
performance of this combined model in the non-adaptive setting. Our experiments find that simply
injecting Gaussian noise (or even Uniform or Laplace noise) is an equally effective defense method.
We also show that the discretization is not essential to good performance if the level of noise is
appropriately tuned. The imprecise channel defense in a neural network is also related to the idea of
gradient masking or gradient obfuscation, i.e., a hard to differentiate layer (Papernot et al., | 2017). In
this work, the backward pass computation is perturbed to make it difficult for a gradient-based attack
to synthesize an adversarial image (while the forward pass is kept the same). We implement both
non-adaptive attacks and adaptive that can observe the channel and take an approximate gradient
through it. We further focus our study on the families of white-box attacks proposed by (Carlini &
'Wagner| (2017)), and their adaptive variants.

Noise injection can be much more powerful than regularization or a dataset augmentation method.
The dropout algorithm can be seen as applying noise to the hidden units. The dropout randomiza-
tion (Feinman et al.|[2017)) was used to create a defense that was not completely broken and required
a high distortion added to the adversarial examples (Carlini & Wagner} |2017). Many new defenses
propose randomization through noise injection without considering the adversarial training (Zhang &
Liang| |[2019; |Cohen et al.||2019). The work on injection of noise into inputs and each of the layers
of neural networks by [Liu et al.| (2018) is a strong heuristic that led to defenses with theoretical
guarantees. The random smoothing provides a certified robustness by utilizing inequalities from
the differential privacy literature (Lecuyer et al.,[2018)). |Cohen et al.| (2019) improve the theoretical
bounds of methods that randomly smooth the input examples. Recent work focuses on combination
of randomized smoothing with adversarial training and achieve state of the art in terms of the provable
robustness (Salman et al., [2019).

3 Lossy CHANNEL MODEL

We consider convolutional neural networks that take w x h (width times height) RGB digital images
as input, giving an example space of X' € (255)“*"*3 where (z) denotes the integer numbers from
0 to 2. We consider a discrete label space of k classes represented as a confidence value ) € [0, 1]*.

"The distillation is a form of compression, however, the defensive distillation does not result in smaller
models.



Under review as a conference paper at ICLR 2020

Neural networks are parametrized functions (by a weight vector #) between the example and label
spaces f(z;0) : X — ).

An adversarial input x,4, is a perturbation of a correctly predicted example x that is incorrectly
predicted by f.

f(x) # f(zaav)

The distortion is the {5 error between the original example and the adversarial one:

5adv - ||$ - xadv”%

3.1 MODEL

Approximating f(-) with a less precise version f(-) can counter-intuitively make it more robust
(Dziugaite et al., [2016)):

f(x) = f(-radv)

Intuitively, a lossy version of f introduces noise into a prediction which dominates the strategic
perturbations found by an adversarial attack procedure. It turns out that we can characterize a number
of popular defense methodologies with this basic framework.

Let  be an example and f be a trained neural network. Precise evaluation means running f(x)
and observing the predicted label. Imprecise evaluation involves first transforming = through a
deterministic or stochastic noise process C(z) = C[z’ | x], and then evaluating the neural network

y=[f@) 2’ ~C()

We can think of C'(z) as a noisy channel (as in signal processing). The distortion of a C(x) is the
expected {5 reconstruction error:

dc = E[||C(x) - =]3],
which is a measure of how much information is lost passing the example through a channel.

This paper shows that there is a subtle trade-off between d. and d,4,,. In particular, we can find J,.
such that 6. >> 044, and f(x) = f(C(24dv)). We show that compression and randomization based
techniques exhibit this property.

EXAMPLE OF DETERMINISTIC CHANNEL

When C(z) is deterministic it can be thought of as a lossy compression technique. Essentially, we
run the following operation on each input example:

2’ = compress(r)

One form of compression for CNNs is color-depth compression. Most common image classification
neural network architectures convert the integer valued inputs into floating point numbers. We abstract
this process with the norm function that for each pixel n € (255) maps it to a real number v € [0, 1]
by normalizing the value and the corresponding denorm function that retrieves the original integer
value (where | ] denotes the nearest integer function)

norm(n) : o denorm(v) := |255 % v]

255

This process is normally reversible v = norm(denorm(v)), but we can artificially make this process
lossy. Consider a parametrized C(+) version of the color-depth compression function:

1

C(U, b) = ﬁ

. L(2b —1)*xv|

By decreasing b by Ab we reduce the fidelity of representing v by a factor of 22 (for the b bits of
precision).

*More complex normalization schemes exist but for ease of exposition we focus on this simple process.
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EXAMPLE OF STOCHASTIC PERTURBATION

The channel model is particularly interesting when C(z) is stochastic. Randomization has also been
noted to play a big role in strong defenses in prior work (Madry et al.,[2017;|Zhang & Liang, 2019;
Cohen et al.| [2019). For example, we could add independent random noise to each input pixel:

¥ =x+e¢

We consider two schemes, Gaussian € ~ N (0, o) and additive Uniform noise ¢ ~ U(—B, B) which
add independent noise to each pixel.

One of the advantages of randomization is that an adversary cannot anticipate how the particular
channel C will transform an input before prediction. However, there is another subtle advantage to
randomization. Randomized approaches can partially recover their loss in accuracy due to imprecision
by averaging over multiple instances of the perturbation. In classification problems, we can take the
most frequent label seen after 7" perturbation trials:

T

f(z) = argmax}  f(z+e)

3.2 PERTURBATION ANALYSIS

While the intuition is that the channel’s perturbations dominate strategically placed distortions in
an adversarial example, the underlying mathematical mechanism of why recovery is sometimes
possible is less clear. We start with the hypothesis that synthesized adversarial examples are unstable
predictions—meaning that small perturbations to the input space can change confidence values
drastically. How do we quantify instability?

Let f(x) be a function that maps an image to a single class confidence value (i.e., a scalar output).
We want to understand how f(x) changes if x is perturbed by €. We can apply a Taylor expansion of
f around the given example z:

flz+e)~ fx)+e'Vaf(z)+ %GTVif(x)E + ...

where V. f(x) denotes the gradient of the function f with respect to = and V2 f(x) denotes the
Hessian of the function f with respect to x. The magnitude of the change in confidence is governed
by the Taylor series terms in factorially decreasing importance. ||| is exactly the distortion measure
d. described at the beginning of Section[3.1] Thus, the expression is bounded in terms of the operator
norm, or the maximal change in norm that could be induced, of each of the terms:

1 1
'V fx) + ieTVif(x)e + ... <8 My(z)+ 56? My (z) + ...

As V., f(z) is a vector, this is simply the familiar ¢5 norm, and for the second order term this is the
maximal eigenvalue:

My(2) = [Vaf @)z Ma(2) = Anaa( V2 f(2)

When M, and M> are larger this means there is a greater propensity to change the prediction for
small perturbations. We will show that experimentally for certain types of attacks the M; and M,
values around adversarial examples show signs of instability compared to those around natural
examples—suggesting a mathematical mechanism of why recovery is possible.

4 EXPERIMENTS

Our experiments evaluate the efficacy of imprecision based defenses in a number of different adver-
sarial problem settings.

4.1 EXPERIMENTAL SETUP

We run our experiments using ResNet-18 on CIFAR-10 and ResNet-50 on ImageNet dataset using
P-100 GPUs (16GB memory). We explore a number of different attacks that are implemented in
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the foolbox library (Rauber et al.|2017). In each experiment we measure the test accuracy (%), the
confidence of predictions, and distances between the original images and either their adversarial
counterparts or the recovered images after applying one of the defenses. We present our results for
non-targeted attacks; if the adversary is successful it induces any misclassification. We experiment
with many gradient-based attacks provided in the foolbox library that explore different optimization
algorithms and distance measures, for instance:

e LBFGS minimizes the distance between the input image and the adversarial example as
well as the cross-entropy between the predictions for the adversarial and the input image;
introduced by [Szegedy et al.| (2014).

e Carlini-Wagner L, (C&W L) is a generalization of the LBFGS attack that is devised
after exhaustive search over possible space of: norms, loss functions, box optimization
procedures, etc. (Carlini & Wagner, 2017).

e BIM L; is a modified version of the Basic Iterative Method that minimizes the L; dis-
tance (Kurakin et al., [2016).

e FGSM adds the sign of the gradient to the image, gradually increasing the magnitude until
the image is misclassified |Goodfellow et al.|(2014).

e PGD L, the Projected Gradient Descent Attack that is an iterative version of the FGSM
attack; we use the version that minimizes the L., distance (Madry et al.,2017).

We extend the Carlini-Wagner L attack in its adaptive version so that the gradients are not obfuscated.
We approximate the gradients for the backward pass on the compression layers as an identity function,
similarly to (He et al.| 2017; |Athalye et al., | 2018]).

1. ALL PERTURBATION DEFENSES ARE SIMILAR

In the first experiment, we select 1000 random images from ImageNet and CIFAR-10 datasets.
For each of these images we generate an adversarial attack with popular white-box gradient-based
methods. Then, we run the adversarial images through different channels: Frequency Compression
(FC), Color Depth reduction (CD), Uniform noise (Unif), Gaussian Noise (Gauss), SVD-based
compression (SVD), Identity (Iden). The identity channel just passes through the adversarial image
with no modification. We measure the accuracy of f(C(x)), which indicates the ability of the
imprecise channels to recover the original label. We present the results in Figure[l|and also in the
Supplement in Figure [5] (for all images in the test CIFAR-10 and dev ImageNet sets) and in Table[3]
(for different channel parameters and five attacks).

When there is an identity channel, the adversarial attack is always successful. However, each of the
imprecise channels is able to recover a substantial portion of original labels from the adversarial
examples. It is important to note that we are evaluating these attacks in the setting, where any
mis-classification is considered a success and the adversary is not aware of the defense. Importantly,
all the channels are comparable in their performance. This suggests that any form of imprecision
with the right error magnitude is effective at defending against these types of attacks. We observe
that the attacks that incur higher distortions such as FGSM or LBFGS decrease the accuracy more
than the iterative attacks such as C&W Ly or PGD L. This is because the iterative attacks find
the adversarial images that are closer to the original images in terms of the corresponding distance
measure that they optimize for in the input space. The key is to ensure that the error introduced by
the imprecise channels is big enough to dominate the adversarial perturbations but small enough to
generate valid predictions.

Figure [T] illustrates this relationship (see also a detailed analysis for a single image presented in
Figure |0 in the Appendix). For five different imprecise channels, we plot the channel distortion
against the accuracy for CIFAR-10 and ImageNet datasets. We analyze FC, CD, Unif, Gauss, and
SVD channels. The curves are qualitatively similar in the low noise regime, but they show more
differences when higher distortions are incurred. The lowest accuracy across the datasets for high
distortions is observed for content-preserving FC and SVD compression channels. The Gaussian
and Uniform channels have very similar trends. They outperform other channels on ImageNet for
large distortions but are less performant on low-resolution CIFAR-10 images, where the CD channel
achieves higher accuracy.
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Figure 1: We plot the channel distortion against test accuracy (%). The distortion of the imprecise
channels has to be large enough to recover the correct label but not so large that it degrades model
performance. The base test accuracy is about 93.5% for CIFAR-10 and 83.5% for ImageNet on 1000
randomly chosen images (results for the full test CIFAR-10 set and the full dev ImageNet set can be
found in the Appendix in Figure[3). The experiment is run for the C&W Lo attack with 100 iterations
and the PGD attack with 40 iterations.

2. ACCURACY OF PERTURBATION DEFENSES ON CLEAN DATA

One pitfall of the imprecise channel defense is that it introduces errors whether or not there are
any adversarial examples. The errors act as an upper-bound for the best possible test accuracy we
can get under adversarial perturbations. Balancing this trade-off is the key parameter in leveraging
perturbation-based defenses. For frequency compression, color depth reduction, and uniform noise
injection, we compare the test accuracy for different levels of imprecision. Table[I]shows the results
for all test images from CIFAR-10 on the ResNet-18 architecture, for three of the imprecise channels,
and for different noise settings. We present results for six noisy channels and full CIFAR-10 and
ImageNet datasets in the Appendix in Figure [I2]

Table 1: On CIFAR-10 with ResNet-18, we measure the max test accuracy for imprecise channels
without any adversarial perturbation. This signifies the amount of accuracy we sacrifice with respect
to the baseline test accuracy of the model (without any perturbations of the images) which is 93.56%.

FC (%) Acc. (%) CD (bits) Acc. (%) Uniform (¢) Acc. (%)

1 93.5 8 93.4 0.009 93.52
10 93.42 6 93.3 0.03 92.59
50 91.6 4 91.9 0.07 85.2
75 79.53 2 87.4 0.1 70.67

The test accuracy of the models can be increased by training with compression, e.g., by using FFT
based convolutions with 50% compression in the frequency domain increases the accuracy to 92.32%.

3. ATTACKS ARE TRANSFERABLE

Many input transformation defenses are broken. If the attacker has full knowledge of the defense, it
is possible to construct an attack that is impervious to the defense. This is called the adaptive setting.
Since the underlying mechanisms of input transformations are similar, we find that an attacker does
not need to be fully adaptive. The attacker can assume a particular strong defense and that same
adversarial input often transfers to other defenses. We narrow the attacker to a single adaptive step
(for details see Section[B.6]in the Appendix). Even in this weak adaptive setting, the deterministic
channels are fully broken but the randomized channels retain relatively high accuracy above 23.8%.
We show in the Appendix in Figure |l I|that the randomized defenses can also be broken when the
adversary is given an unlimited number of adaptive steps.

Table 2] shows that FC attacked images do not transfer well to other defenses; the maximum drop in
accuracy of the model protected by other defenses is 14.8%. In general, Laplace attacked images
transfer the best to other defenses and decrease the accuracy of the defense models by at least 46.86%
(for Laplace itself) and the accuracy of the model protected by the Uniform noisy channel drops by
53.44%. Most adversarial images (against a given defense) transfer very well to the FC defense,
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Table 2: Transferability of the adversarial images created against a given noisy channel denoted as A
(adaptive attack specified in the first column) to the defense protected with a noisy channel denoted
as D (the defense with a noisy channel specified in the first row). Each result represents a recovery
(%) of the adversarial examples (generated for A) to correct labels after applying the defense (D). We
use 30% FC compression, 50% SVD compression, 4 bit values in CD, 0.03 noise level for Gauss and
Laplace, and 0.04 noise level for the Uniform channel. We use 2000 images from the CIFAR-10 test
set and 100 attack iterations with 5 binary steps to find the ¢ value (with initial ¢ value set to 0.01) for
the adaptive C&W L, attack. The baseline test accuracy is 93.56%.

N FC CD SVD Gauss Uniform Laplace

FC 0.20 80.75 83.05 81.15 79.65 78.70
CD 385 070 43.60 47.30 60.45 62.35
SVD 199 4796 0.77 46.52 62.87 65.75
Gauss 445 48.70 44.80 51.50 61.75 60.15
Uniform 345 3030 30.60 30.15 48.05 51.55
Laplace 3.05 23.35 24.60 23.80 39.15 46.70

i.e. an adversarial image against any defense (e.g. CD, SVD, Gauss, Uniform, or Laplace) is also
adversarial against the FC defense. The adversarial images generated against the Uniform defense
show better transfer to other defenses in comparison to the adversarial images generated against
the Gaussian defense. This is because the higher noise level is applied in the Uniform defense. We
observe analogous trends for the ImageNet dataset and present the results in the supplement (Tables 3]

and [6).
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4. ADVERSARIAL EXAMPLES ARE UNSTABLE

The key question is why adversarial examples are more sensitive to perturbations than natural inputs,
when there is evidence that from an input perspective they are statistically indistinguishable. Our
experiments suggest that this sensitivity arises from the optimization process that generates adversarial
inputs. Based on the operator-norm analysis in the text, we plot those values for both adversarial and
natural images. Figure [2]shows the ¢ norm of the input gradient w.r.t the correct class and adversarial
class for the original image and the adversarial image. For the original image, the gradient w.r.t the
original class is very small (i.e., a stable prediction).

This analysis extends to higher orders as well. Our results in Figure [3]show that the adversarial inputs
lead to noticeably higher Hessian spectrum than the original inputs. This suggests that the model
predictions for the adversarial inputs are less stable than for the original images. Thus, perturbations
of the adversarial images with some form of noise can easily change the classification outcome
while the prediction for the original images are much more robust and do not lead to such unstable
predictions.
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the CIFAR-10 dataset trained on the ResNet-18 erable ranges in terms of the ¢ parameter in the
architecture. We plot the histogram that shows C&W L attack. We systematically change the ¢

counts of magnitudes for the eigenvalues. |Yao parameter and keep the parameters for the chan-
et al.| (2018)) show analysis of the Hessian w.r.t. nels unchanged. We use the VGG-16 network and

parameters and we extend it to analyze Hessian 1024 images from the CIFAR_IO dataset'. The test
W.Lt. inputs accuracy of the model without any noise layers
o ’ and on the clean data is 85.23%.

5. RECOVERABLE RANGES

In Figure ] we present the accuracy of different channels as the ¢ parameter in the C&W algrorithm is
systematically increased. For example, Carlini & Wagner L2 attack with ¢ = 0.1 causes the accuracy
after the Gauss channel to drop from about 85% to 67%, the empty channel accuracy drops to 10%,
and the accuracy of the simple RGB brightness reduction method drops to 53%. The Laplace channel
gives the highest accuracy for high values of the ¢ parameter (above 1.0). The CD, FC, SVD, Gauss,
and Uniform channels show similar trends.

We also add a related approach which is the RSE (Random Self-Ensemble) network with 0.2 noise
level in the first layer and 0.1 noise level in the remaining layers (as recommended in [Liu et al.
(2018))). This defense does better for lower distortion levels (c value below 0.1) than other noisy
channels, but then its accuracy deterioration is faster for higher distortion levels. We also include
a very simple channel that reduces brightness of an image by subtracting an arbitrary value from
each pixel. The comparison between a very complex approach and simple input transformation is
informative—as they largely follow the same trends.

We present a detailed analysis of recoverable ranges for an ImageNet example in Appendix in Figure[6]
The recovery range shrinks as we increase the strength of the attack that also incurs higher distortion
of the adversarial image.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

There is a growing body of evidence to suggest that the attacks themselves are not robust since small
changes to the adversarial input often recover the original label. In hindsight, this is an obvious
corollary to the very existence of adversarial examples—by definition they are relatively close to
correctly predicted examples in the input space. Random perturbations of the input can dominate
the strategically placed perturbations synthesized by an attack. In fact, results are consistent across
both deterministic and stochastic channels that degrade the fidelity of the input example. This paper
put forth a detailed experimental study illustrating the conditions under which the true label can be
recovered.

The current trend in the community leads towards certified defenses that give robust theoretical
guarantees and eschew the adversarial arms race (Salman et al 2019). Our paper caters to the
need of unifying the input transformation and perturbation methods, characterizing their common
aspects, and preventing future proposals that fall into the same family of weak techniques. Looking
on the bright side, eliminating the known unsuccessful defenses leaves an uncharted territory for new
methods that could lead from an experimental success to its theoretical resultant.
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A COMPRESSION TECHNIQUES

A.1 FFT-BASED COMPRESSION

Dziedzic et al.|(2019) train neural networks with a compressed convolutional frequency spectrum.
We apply a similar transformation to the inputs to reduce their precision. Let x be an input image,
which has corresponding Fourier representation, which re-indexes each tensor in the spectral (or
frequency) domain:

Flw] = F(z[n])
This Fourier representation can be efficiently computed with an FFT. This mapping is invertible
x = F~1(F(x)). Let M_.[w] be a discrete indicator function defined as follows:

lLw<e
Mc — b =
] {07 w>c
M. |w] is a mask that limits the F'[w] to a certain band of frequencies. ¢ represents how much of the
frequency domain is considered. The band-limited spectrum is defined as, F'[w] - M. [w], and the
band-limited filter is defined as:
' = F Y Flw] - M,[w])

A.2 SVD-BASED COMPRESSION

Analogously to the FFT-based compression, we decompose the image with SVD, then instead of
separating the image into low-frequency and high-frequency components, we separate the image into
one reconstructed with dominant singular values (the ones with bigger absolute values).

B ADDITIONAL EXPERIMENTS FOR WHITE-BOX ATTACKS

B.1 CHANNEL DISTORTION VS ACCURACY

We show channel distortion vs accuracy for the C&W Lo attack on the full CIFAR-10 test set and
full ImageNet dev set in Figure 5]

We further show the performance of the defenses across different attacks and 1000 images in Table 3]

Table 3: Given an adversarial input, we pass the input through a channel before prediction. We
evaluate the accuracy (%) of the classifier over 1000 images, the best possible accuracy is listed in
the Baseline column. For the channels, we report in parentheses: compression used (%), number of
bits per value, and the strength of the attack (¢). We use the attacks described in Section: {.1]

Attack Data set Baseline FC (%) CD (bits) Uniform (¢)  Gauss (¢€) Iden

BIML, CIFARI0O 935 862(20) 85.1(4) 82.8(0.03) 82.1(0.03) 0
LBFGS CIFARIO 935  82.8(50) 80.2(4) 79.2(0.04)  79.3(0.05)
C&W L, CIFARIO 935  852(20) 84.4(4) 843(0.01) 84.8(0.02)
FGSM  CIFARI0O 935  79.0(50) 49.2(4) 49.4(0.03)  49.9 (0.03)
PGD L., CIFARIO 935  88.6(10) 84.3(5) 85.7(0.01) 84.9(0.02)
BIML, ImageNet 835  81.5(10) 82.0(4) 81.2(0.009) 81.2(0.009)
LBFGS  ImageNet 83.5 71.7(70) 77.6(4) 764 (0.07)  76.5(0.07)
C&W L, TImageNet 835  78.7(50) 80.9(4) 81.4(0.03) 80.4(0.03)
FGSM  ImageNet 83.5  73.8(50) 76.0(4) 754(0.03) 75.4(0.02)
PGD L., ImageNet 83.5  82.1(5) 829(4) 82.0(0.007) 80.9(0.01)

eNeNeNoNol oo NoNo]

B.2 NEIGHBORHOOD OF ADVERSARIAL EXAMPLES
We use an example from the ImageNet dataset, the ResNet-50 model, and set the stochastic channel

to the Gaussian noise. We start from an adversarial example generated with the Carlini & Wagner Lo
attack and for consecutive subplots (in the left to right and top to bottom sequence), we increase the
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Figure 5:  We plot the channel distortion against accuracy (%), analogously to Figure [5] The
experiment is run for the C&W Lo attack with 100 iterations and on all images from the test
CIFAR-10 and the dev ImageNet datasets. The adversary is not aware of the defense. The test
accuracy on the full clean data is 93.56% and 76.13% for CIFAR-10 and ImageNet, respectively.

attack strength and incur higher distortion of the adversarial image from the original image. For a
single plot, we increase the Ly distance of the output from the channel to the adversarial example
by increasing the Gaussian noise level in the channel (controlled by parameter o). For each Lo
distance (incurred by the set noise level) we execute 100 predictions. In our Figure [6]instead of
the softmax values, we use the frequency count and report how many times the model predicts the
original, adversarial or other class. The plot shows what range of distances from the adversarial image
reveal the correct class. For the adversarial that are very close to the original image (e.g. adversarial
distance of 0.006 for the top-left figure), the window of recovery is relatively wide, however, as we
increase the distance of the adversarial image from the original image, the window shrinks and finally
we are not enable to recover the correct label but have to resort to other statistics as proposed in |[Roth
et al.[(2019).

B.3 DISTRIBUTIONS OF DELTAS BETWEEN INPUTS & OUTPUTS FOR CHANNELS

We plot the distribution of deltas for six imprecise channels in Figure[7]] We compute the delras by
subtracting an original image from the perturbed adversarial image and plotting the histograms of
differences. We use an image from the ImageNet dataset. For all the examples, the correct labels
were recovered. We use the C&W attack with 1000 iterations and the initial value ¢ = 0.01.

The CD channel resembles the Uniform distribution. The FFT and SVD compression methods belong
to double-sided exponential distributions, thus they are more related to the Laplace distribution than
to the Gaussian distribution.

B.4 VISUALIZATIONS OF ATTACKS AND IMPRECISE CHANNELS
Figure 8] presents a sample image from ImageNet for the Carlini-Wagner L2 attack.

Figure [0 shows the effect of the FC (frequency-based imprecise channel) in both spatial and Fourier
domains.
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Figure 6: Frequency of model predictions for original, adversarial, and other classes as we increase
the distance from an adversarial example using Gaussian noise.
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Figure 7: Distribution of deltas for imprecise channels.

B.5 MULTIPLE TRIALS FOR STOCHASTIC CHANNELS

In addition to the robustness to non-adaptive attacks, another compelling reason to use a stochastic
channel (like Uniform noise) as a defense is that it can be run repeatedly in a number of random trials.
We show that doing so improves the efficacy of the defense. We randomly choose 1000 images from
the CIFAR-10 test set. For each of these images, we generate an adversarial attack. We then pass
each image through the same stochastic channel multiple times. We take the most frequent prediction.
Figure [IQ]illustrates the results.

Only 16 trials are needed to get a relatively strong defense. We argue that this result is significant.
Randomized defenses are difficult to attack. The attacker cannot anticipate which particular pertur-
bation to the model will happen. The downside is a potential of erratic predictions. We show that a
relatively small number of trials can greatly reduce this noise. Furthermore, the expense of running
multiple trials of a randomized defense is small relative to the expense of synthesizing an attack in
the first place.

B.6 WHITE-BOX ADAPTIVE ATTACK

We consider the problem setting when the adversary knows the defense method (i.e., has full
knowledge of C'(z)). We use the strategy described in|He et al.[(2017) to construct attacks for each
case. Not surprisingly, deterministic channels (CD, FC, and SVD) are easy for an adversary to fool
when they are known. However, such attacks incur higher distortion (distance to the original image)
when compared to attacks against unprotected networks. Intuitively, when the channel is deterministic
and known, the adversary can account for the error introduced by the channel. Table @]illustrates the
results.

The stochastic channel is harder to attack with a gradient-based adaptive methods. Unlike for
deterministic compression, the adversary cannot anticipate the particular error pattern. We build an
adaptive attack against the additive uniform noise channel. Our strategy is to send an output from
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Table 4: The distortion and accuracy for the adaptive setting where the adversary knows the defense
method. We report top-1 class, use 100 image samples, run 1000 iterations of C&W attack, e = 0.04,
apply a single random noise injection.

CIFAR-10 [, Distortion Acc. (%) ImageNet L, Distortion Acc. (%)
Iden 0.17 0 Iden 0.28 0

CD (b=5) 0.5 0 CD (b=5) 3.6 0

FC (c=30) 0.74 0 FC (c=30) 3.64 0

the adversarial algorithm through the stochastic channel and the network at least as many times as
set in the defense. We mark the attack as successful if the most frequent output label is different
from the ground truth. The more passes through the noisy channel we optimize for, the stronger the
attack. Furthermore, we run many iterations of the attack to decrease the Lo distortion. An attack that
always evades the noise injection defense is more difficult to generate because of randomization. The
other randomized approach was introduced in dropout (Feinman et al., 2017). The attacks against
randomized defenses require optimization of complex loss functions, incur higher distortion, and the
attacks are not fully successful (Carlini & Wagner, 2017).

In the Figure we present the result of running attacks and defenses on CIFAR-10 data with
single and many iterations. The defense with many trials can be drawn to 0% accuracy, however,
the defense not fully optimized by the adversary (single noise injection) can result in about 40% or
higher accuracy.

B.7 HYBRID APPROACHES

A natural thought is whether these defenses can be made more effective by combining them. This is
an approach that has been applied, for example, in random discretization (Zhang & Liang| 2019).
Our experiments contrast with the previous work and suggest that there is little benefit to hybrid
approaches. We present an illustrative example for pair-wise combinations of Frequency Compression
(FC), Color Depth (CD) compression, and Uniform (Unif) noise. Other combinations are possible but
for brevity, we exclude them from the manuscript; we found no to very small benefit to combining for
properly tuned channels. We show the recovery rate, i.e. a fraction of original labels recovered. Table
presents results for the L2 Carlini-Wagner attack on the MNIST, the whole test set of CIFAR-10,
and the whole development set of ImageNet.

CD (bits) FC (%) Unif (¢) CD+FC FC+CD CD+Unif FC+Unif

MNIST 100 95 100 100 100 100 100
CIFAR-10  84.4(4) 85.2(20) 83.4(0.03)  86.0 83.6 85.18 86.45
ImageNet  80.9(4)  78.7(50) 80.3(0.03)  78.6 77.5 73.15 76.13

We believe these results suggest that the noisy channels do not exploit anything inherent to the
images. Simply the addition of noise (through reconstruction error) is the mechanism for robustness.
Composing two different schemes usually increases this noise.

B.8 ACCURACY OF PERTURBATION DEFENSES ON CLEAN DATA

We present the results for six different noisy channels; three of them are compression based: FC,
CD, SVD, and other three add different type of noise: Gauss, Uniform, and Laplace. For each of the
compression based channels, we increase the compression rate systematically from 0 to about 90%
(in case of the CD channel, the compression rate is computed based on how many bits are used per
value). For the noise based channels, we increase the strength of the noise by controlling the epsilon
parameter € (in case of the Gaussian noise, it corresponds to the sigma parameter o). The full result
is presented in Figure [I2]

Figure [T3] presents the test accuracy (%) after four different attacks (3 different norms) and the
recovery via the uniform noise stochastic channel in more detail.
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Table 5: Transferability of the adversarial images that extend results from Table [2] for ImageNet
dataset. We use 30% FC compression, 50% SVD compression, 4 bit values in CD, 0.03 noise level
for Laplace, and 0.04 noise level for the Gauss and Uniform channels. We use 3000 images from the
ImageNet-10 validation set and 100 attack iterations.

N FC CD SVD Gauss Uniform Laplace

FC 0.10 7550 75.83 77.04 77.49 76.29
CD 0.17 1.16 6.77 62.60 62.04 65.46
SVD 1202 7233 046 7279 72.52 73.09
Gauss 0.57 26.67 6.67 58.68 58.62 64.95
Uniform 0.50 26.71 6.99  58.48 59.06 64.59
Laplace 033 1859 4.16 29.76 29.84 50.00

Table 6: Transferability of the adversarial images. The results are presented similarly to Figure [2]but
for different parameters. We use 50% FC compression, 50% SVD compression, 4 bit values in CD,
0.03 noise level for Laplace, and 0.04 noise level for the Gauss and Uniform channels. We use 3000
images from the CIFAR-10 validation set and 1000 attack iterations.

N FC CD SVD Gauss Uniform Laplace

FC 0.19 79.00 83.73 79.19 79.38 76.70
CD 6.74 093 4757 62.98 63.04 65.22
SVD 78.89 47.04 050 59.85 63.42 67.94
Gauss 477 3852 3695 51.36 51.27 52.61
Uniform 4.65 38.14 3635 50.14 51.08 53.21
Laplace 46.75 2222 22.68 34.03 33.93 46.39

B.9 TRANSFERABILITY OF THE ADVERSARIAL IMAGES

We present more results on the transferability of adversarial examples between different channels in
Table 2]and Table [6).

B.10 HESSIAN-BASED ANALYSIS
We present the Hessian spectrum in Figure [I4] for top 20 eigenvalues and in Figure[I3]the distribution

of top eigenvalues of Hessians on ImageNet. For the adversarial images, the eigenvalues are clearly
higher in both cases, which indicates higher instability and proclivity to prediction changes.
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C ADDITIONAL EXPERIMENTS FOR BLACK-BOX ATTACKS

As a black box attack, we define an attack that does not need the knowledge about the gradient or the
model.

C.1 DECISION-BASED ATTACKS

The attacks require neither gradients nor probabilities. They operate directly on the images.

C.1.1 ROBUSTNESS TO UNIFORM AND GAUSSIAN NOISE

We evaluate the robustness of band-limited CNNs. Specifically, models trained with more compres-
sion discard part of the noise by removing the high frequency Fourier coefficients (FC channel). In
Figure we show the test accuracy for input images perturbed with different levels of uniform
and Gaussian noise, which is controlled systematically by the sigma parameter, fed into models
trained with different compression levels (i.e., 0%, 50%, or 85%) and methods (i.e., band-limited vs.
RPA—base(ﬂ). Our results demonstrate that models trained with higher compression are more robust
to the inserted noise. Interestingly, band-limited CNNs also outperform the RPA-based method and
under-fitted models (e.g., via early stopping), which do not exhibit the robustness to noise.

Input test images are perturbed with uniform or Gaussian noise, where the sigma parameter is
changed from O to 1 or O to 2, respectively. The more band-limited model, the more robust it is to the
introduced noise.

C.1.2 CONTRAST REDUCTION ATTACK

This black-box attack gradually distorts all the pixels:

max + min
2
perturbed = (1 — €) * image + € * target

target =

where min and max values are computed across all pixels of images in the dataset.

We can defend the attack with CD (Color Depth reduction) until certain value of epsilon, but then
every pixel is perturbed in a smooth way so there are no high-frequency coefficients increased in the
FFT domain of the image. The contrast reduction attack becomes a low-frequency based attack when
considered in the frequency domain. Another way to defend the attack is to run a high-pass filter in
the frequency domain instead of the low-pass filter.

We run the experiments for different models with CD and two band-limited models (the model with
full spectra and no compression as well as model with 85% of compression - with FC layers). The
CD does defend the attack to some extent and the fewer pixels per channel (the stronger the CD in a
model), the more robust the model is against the contrast reduction attack.

Test accuracy as a function of the contrast reduction attack for ResNet-18 on CIFAR-10 (after 350
epochs) is plotted in Figure We control the strength of the attack with parameter epsilon that
is changed systematically from 0.0 to 1.0. We use the whole test set for CIFAR-10. R denotes the
number of values used per channel (e.g., R=32 means that we use 32 values instead of standard 256).

C.1.3 MULTIPLE PIXELS ATTACK

The foolbox library supports a single pixel attack, where a given pixel is set to white or blackﬂ A
certain number of pixels (e.g., 1000) is chosen and each of them is checked separately if it can lead to
the misclassification of the image. The natural extension is to increase the number of pixels to be
perturbed, in case where the single pixel attack does not succeed. We present results for the multiple
pixel attack in Figure[16]

3The Reduced Precision Arithmetic, where operations on 16 bit floats are used instead of on 32 or 64 bit float
numbers.

“The single and multiple pixels attacks are categorized as decision-based attacks since they treat the model
as an oracle and require access neither to gradients nor probabilities.
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C.2 SPATIAL-BASED ATTACKS

Spatial attacks apply adversarial rotations and translations that can be easily added to the data
augmentation during training. However, these attacks are defended neither by removing the high
frequency coefficients nor by quantization (CD) . We separately apply rotation by changing its angle
from O to 20 degrees and do the translations within a horizontal and vertical limit of shifted pixels

(Figure [16).
C.3 SCORE-BASED ATTACKS

The score based attack require access to the model predictions and its probabilities (the inputs to the
softmax) or the logits to estimate the gradients.

C.3.1 LOCAL SEARCH ATTACK

The local search attack estimates the sensitivity of individual pixels by applying extreme perturbations
and observing the effect on the probability of the correct class. Next, it perturbs the pixels to which
the model is most sensitive. The procedure is repeated until the image is misclassified, searching for
additional critical pixels in the neighborhood of previously found ones. We run the experiments for
the attack on 100 test images from CIFAR-10, since the attack is relatively slow (Figure [I6).
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Original label: Loafer Adv. label: pencil box, pencil case
confidence: 0.9561 confidence: 0.5466
L2 distance: 0.0 L2 distance: 0.4032
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confidence: 0.7438 confidence: 0.8995
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0 100 200

Figure 8: We plot a sample image from the ImageNet dataset in its original state, after adversarial
(white-box, non-adaptive) attack, and then after recovery via imprecise channels: CD (color depth
reduction with 32 bits), FC (30% compression in the frequency domain), Gaussian, and uniform
noise (¢ = 0.03). The order is from left to right, and from top to bottom.
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Figure 9: The original image from the ImageNet dataset, its adversarial example, and the state of
the image after recovery from the attack via the 30% compressed Fourier Channel (FC). The heat
maps of magnitudes of Fourier coefficients are presented in a logarithmic scale (dB) with linear
interpolation and the max value is colored with white while the min value is colored with black.
The black part of the (bottom-right) image represents the removed high-frequency coefficients. The
Fourier-ed representation is plotted for a single (0-th) channel. The lowest frequency coefficients are
placed in the corners of the FFT maps (with the DC component in the top-left corner).
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Figure 12: The test accuracy after passing clean images through six different noisy channels, where

the added noise is controlled by the compression rate and epsilon parameters. We use full CIFAR-10
test set for ResNet-18, and full ImageNet validation set for ResNet-50.
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Figure 13: The test accuracy after four different attacks and the recovery via the uniform noise
stochastic channel with different parameters €. For the Carlini-Wagner L2 attack, the best performing
parameter € = 0.03. We run the experiment for ResNet-50 on ImageNet (1000 samples).
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Figure 14: The spectrum of the Hessian with eigenvalue magnitude

respect to the original and adversarial inputs. We

use the symmetric log scale on the y axis and plot Figure 15: The top eigenvalues of the Hessians
the min and max ranges of the eigenvalues for on ImageNet using ResNet-50.

100 images from the ImageNet dataset trained the

ResNet-50 architecture.
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Figure 16: Test accuracy as a function of the strenghts of the attacks for ResNet-18 on CIFAR-10.
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