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ABSTRACT

Explaining the prediction of deep models has gained increasing attention to in-
crease its applicability, even spreading it to life-affecting decisions. However
there has been no attempt to pinpoint only the most discriminative features con-
tributing specifically to separating different classes in a fine-grained classification
task. This paper introduces a novel notion of salient explanation and proposes a
simple yet effective salient explanation method called Gaussian light and shadow
(GLAS), which estimates the spatial impact of deep models by the feature pertur-
bation inspired by light and shadow in nature. GLAS provides a useful coarse-
to-fine control benefiting from scalability of Gaussian mask. We also devised
the ability to identify multiple instances through recursive GLAS. We prove the
effectiveness of GLAS for fine-grained classification using the fine-grained clas-
sification dataset. To show the general applicability, we also illustrate that GLAS
has state-of-the-art performance at high speed (about 0.5 sec per 224×224 image)
via the ImageNet Large Scale Visual Recognition Challenge.

1 INTRODUCTION

Over the last several years, convolutional neural networks (CNNs) (LuCun et al., 2015) have
achieved superior performance in various computer vision tasks, including image classification (He
et al., 2016; Shi et al., 2018), object detection (Oh et al., 2017; Zhou et al., 2016), semantic segmen-
tation (Pathak et al., 2015), and image captioning (Xu et al., 2015). Despite these dramatic advances,
the opacity of CNNs makes it difficult to understand why they reach particular decisions, limiting
the ability to widen their application to various fields.

In general, the visual interpretation of deep learning models is understood as estimating the impact of
a particular neuron activation related to a given input instance. In white-box approach, architectural
modification of the classification model (Bach et al., 2015; Dong et al., 2017; Mahendran & Vedaldi,
2016; Selvaraju et al., 2017; Simonyan et al., 2013; Springenberg et al., 2014; Zhou et al., 2016;
Zeiler & Fergus, 2013) or access to specific layers (Bach et al., 2015; Selvaraju et al., 2017; Zhang
et al., 2016) is inevitable (Petsiuk et al., 2018), resulting in severe limitation of application. In
contrast, the black-box approach (Seo et al., 2018; Petsiuk et al., 2018; Ribeiro et al., 2016; Tian &
Cai, 2017; Zeiler & Fergus, 2013; Zintgraf et al., 2017; Fong & Vedaldi, 2017) aims to be inherently
model agnostic. Its main concerns are how to perturb an input image and draw the model’s response
on the perturbed instance to the final heat map. For example, the Randomized Input Sampling
for Explanation (RISE) method (Petsiuk et al., 2018) perturbed an image with a randomised mask
to measure the importance of pixels and then linearly fused all importance from several thousand
masks.

The conventional black-box methods employed unnatural and fragile perturbation schemes such as
single colour out (Seo et al., 2018; Petsiuk et al., 2018; Ribeiro et al., 2016; Zeiler & Fergus, 2013),
random noise (Tian & Cai, 2017; Zintgraf et al., 2017; Fong & Vedaldi, 2017) and smoothing (Fong
& Vedaldi, 2017). These perturbation schemes have several limitations. First, they are deficient in
pinpointing only the most discriminative, i.e., salient features that are essential for the fine-grained
classification tasks where the between-class shape similarity is very high; for example, pinpointing
only the red face of Red-faced Cormorant in the bird classification task in Figure 1 is crucial for
explaining why a deep learning model classifies the image as Red-faced Cormorant. Second, the
conventional perturbation schemes highly suffer from local noise and, thus, fuse maps from a con-
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Figure 1: Salient explanation. As the value of decreases, the heat map concentrates more and more
on the most discriminative part of the relevant objects, the bird’s face in this case. The salient expla-
nation is very important for a variety of tasks such as the fine-grained classification and biomarker
discovery in medical image. Note that the salient explanation is possible due to our idea of adopting
Gaussian mask.

siderable number of perturbations for a reliable explanation. This is the main cause of slowness with
conventional black-box methods.

Inspired by the lighting and shadowing phenomena in nature, we propose a simple yet effective
black-box method, called Gaussian light and shadow (GLAS), which simulates feature perturbation
as the presence or the absence of light at the pixel level of an image. The primary idea of GLAS is to
perturb an input image by the Gaussian mask (light) and inverse-Gaussian mask (shadow) and, then,
record the responses of the perturbed images. GLAS uses a simple grid search; once completed
over the entire image, the response maps are fused to construct the final heat map. The fusion
mimics the Gaussian mixture. The proposed method has several advantages compared with other
black-box methods (Petsiuk et al., 2018; Zintgraf et al., 2017; Fong & Vedaldi, 2017). First, GLAS
provides scalability of explanation that we can achieve by adjusting the variance parameter of the
Gaussian mask. The scalability makes it possible to pinpoint clues for the salient explanation, which
is not feasible with the nonparameterized approaches (Mahendran & Vedaldi, 2016; Zhou et al.,
2016; Zeiler & Fergus, 2013; Petsiuk et al., 2018; Zintgraf et al., 2017; Fong & Vedaldi, 2017).
The salient explanation is valid for explaining fine-grained classifications, such as classifying bird
species in a CUB200 dataset, involving large between-class similarity and significant within-class
variance. Figure 1 shows an image of the Red-faced cormorant species that we can discriminate by
identifying the face color. It illustrates that GLAS adjusts its gaze from the body to the red face as the
scale parameter decreases and finally pinpoints the red area around the eye. Second, our pixel-wise
multiplication operation with the Gaussian mask at a specific search point simulates the gradual
dimming effect as going farther from the center. We argue that because of this characteristic, a
significantly reduced number of perturbations is sufficient. GLAS can process an image much faster
than conventional methods.

To summarize, the contributions of this paper are as follows: We introduce a novel notion of salient
explanation which is critical in explaining the fine-grained classification tasks. We propose a simple
yet efficient black-box method, GLAS, which provides an easy way to perturb an input image based
on Gaussian lighting and shadowing. (1) GLAS is fast because of the smoothly varying shape of
the Gaussian mask, which generates a visual explanation up to one order of magnitude faster than
other black-box methods. (3) We show the broad applicability of GLAS to various other tasks:
object localization and visual captioning. Quantitative comparisons show that GRAS is superior to
conventional methods.

2 RELATED WORKS

The white-box approach heavily uses the network’s internal information, such as gradients or feature
maps of specific layers. A gradient can indicate how much a small change in a pixel influences the
class output (Springenberg et al., 2014). For example, Simonyan et al. (2013) proposed the gradient-
based model, which directly mapped saliency values to the original space. Additionally, Zeiler &
Fergus (2013) proposed a deconvolution method. In the method, the forward signal is reversed at a
neuron and backpropagated to the input space. The study (Bach et al., 2015) proposed the layer-wise
relevance propagation method, in which the prediction in the output layer is decomposed into pixel-
wise relevance values and backpropagated until it satisfies the conservation rule. Samek et al. (2016)
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emphasized the importance of quantitative evaluation and provided a rigorous comparison of the pre-
viously mentioned methods; these approaches are extensively reviewed in Samek et al. (2016). The
visual feature maps provide important clues for the explanation, which some techniques exploit. The
technique (Zhou et al., 2016) called class activation mapping (CAM) is accomplished by weighted
fusion of visual feature maps and requires the modification of CNN architecture, replacing the fully
connected layer with the global average pooling. Grad-CAM (Selvaraju et al., 2017), an extended
version of CAM, is applicable to a broader range of CNNs. The previously mentioned techniques
modify the model’s internal operations or rely on the model’s internal values; thus, they are model
dependent.

The black-box approach measures the response change of the base model when the input instance is
spatially perturbed, and this change can be regarded as the significance of the classifier’s decision.
The study (Robnik & Kononenko, 2008) simulates feature perturbation based on marginal probabil-
ity, and several studies have extended and improved this method (Tian & Cai, 2017; Zintgraf et al.,
2017). For the CNN-based architectures, the study (Zintgraf et al., 2017) proposed the conditional
sampling approach. The method considers that a given pixel value highly depends on neighboring
pixels and that multivariate analysis excludes a rectangular region rather than a single pixel. Because
a pixel-wise perturbation method such as random noise (Zintgraf et al., 2017; Fong & Vedaldi, 2017)
was considered, pixels are highly vulnerable to adversarial attack.

Several techniques (Seo et al., 2018; Ribeiro et al., 2016; Tian & Cai, 2017) aim at region-wise per-
turbation approaches, rather than using pixels. A study (Tian & Cai, 2017) improved the conditional
sampling method using the superpixel algorithm, making it more robust from local noise than Zint-
graf’s method. Additionally, the superpixel segmentation technique was used in existing methods
(Seo et al., 2018; Ribeiro et al., 2016; Tian & Cai, 2017). In these methods, high-level segments,
rather than pixels (Zintgraf et al., 2017) or oversegmented regions (Tian & Cai, 2017), are used to
perturb the feature of instance, and the methods have achieved explanation results that are more
visually pleasing compared with previous methods. However, the results are probably limited when
the segmentation map’s quality is poor. Petisiuk et al. proposed the RISE method (Petsiuk et al.,
2018), which simulates the feature’s absence using randomized masks and measures its response to
each masked instance. Because of its random masking strategy, RISE requires a considerable num-
ber of feedforward executions and suffers from local noise. The meta learning approach that tries
to maximize the interpretability of a learning model is used in some studies (Ribeiro et al., 2016;
Fong & Vedaldi, 2017). One study (Ribeiro et al., 2016) employed superpixel-wise random samples
around the instance and an approximate linear decision model. Fong & Vedaldi (2017) proposed an
optimized framework that learns a minimum perturbation mask from the corresponding response to
its output neuron. However, such frameworks often fail to optimize their result because of its sen-
sitivity to various types of models and instances. Unlike the white-box approaches, the black-box
methods are inherently model agnostic; i.e., they are applicable to any learning model, because they
rely only on the output values, regardless of the internal workings of the classification models.

The fine-grained classification is to recognize subordinate classes of a base class such as species of
birds and different models of cars and planes. Most of recent works use the deep CNN models and
propose better loss function. Shi et al. (2018) proposed a generalized large-margin (GLM) loss to
reduce between-class similarity and within-class variance. The contrastive loss (Sun et al., 2014)
and triplet loss (Schroff et al., 2015) have also been proposed. Qiu et al. 2018 proposed a method
based the sqeeze-and-excitation atention model. Peng et al. 2018 used both the object-level attention
and part-level attention. The literatures treated various types of objects. Shi et al. (2018) used birds,
cars, and airplanes datasets. Other objects include fashion (Seo et al., 2018), fish (Qiu et al., 2018),
vehicle (Li et al., 2019), plant (Lin et al., 2019), leukemia (Sipes & Li, 2018), and plankton (Lee
et al., 2016).

3 PROPOSED APPROACH

GLAS method. Given an image I, we define a set of search points Ω = (µ1, µ2, ..., µk×k) by the
centers of k × k grids overlaid upon I, as shown in Figure 2. For a given class label y and a specific
search point µi, the prediction score fl(µi) by Gaussian light can be written as

fl(µi) = P (y|I�G(µi, σl)) (1)
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Figure 2: Overview of the GLAS method.

Where � denotes element-wise multiplication, and G(µi, σl) is a Gaussian distribution with mean
µi and standard deviation σl. Eq 1 simulates light projected on a specific part of the image to
measure the contribution of the local pattern. It is also possible to define the score based on the
inverse-Gaussian mask; i.e., the shadow is given by the following equation:

fs(µi) = |P (y|I)− P (y|I�G′(µi, σl))|+ λ (2)

where G′(µi, σl) = 1 − G(µi, σl). Here,λ is a constant, and we empirically set it to 105 to avoid
fs(µi) being 0. We use a weighted fusion to define the saliency score S(xj) for a pixel xj as

S(xj) =
1

|Ω|
∑
µi∈Ω

exp(−D(xj , µi)

σ2
spatial

)fl(µi)fs(µi) (3)

where exp(−D(xj ,µi)

σ2
spatial

) is a spatial weighting factor; here, D(a, b) denotes the distance between a

and b. Eq3 represents the Gaussian mixture-based weighted fusion. The high flexibility of the visual
explanation can be achieved by adjusting the scale parameter for each Gaussian mask.

Recursive GLAS (RGLAS) method. GLAS tends to high-light the most discriminative clue. To
discover the various evidences that lead to the classifier’s decision, we propose a simple schema
called RGLAS. Figure 3 shows the key idea of RGLAS: to prevent revisits to the search points
related to the most discriminative fea-tures that have already been found, leading to extraction of
the next important features. This mechanism also helps in discovering multiple instances in an

Figure 3: Framework of RGLAS. The GLAS instances are repeated until all discriminative patterns
related to a given class have been dis-covered.
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Algorithm 1 :Recursive GLAS
Require: image I , target class c
Ensure: Final saliency map O

1: O=0; Ω = (µ1, µ2, ..., µk×k)

2: while
√
mean(S)/f(y|I) <t2 do

3: for each pixel xj do
4: S(xj) = 1

|Ω|
∑
µi∈Ω exp(−

D(xj ,µi)

σ2
spatial

)fl(µi)fs(µi)

5: end for
6: B = S > t2
7: for each serach point µi do
8: If(B(µi)==1) remove µi from Ω
9: I = I � (1− S)

10: end for
11: O+ = normalizeS

image. The RGLAS algorithm starts by constructing the saliency map S (lines 3–4). We compute
the binary map of S using the threshold value t1 = 0.8 (line 5) and eliminate search points located
in the positive region of the binary map (lines 6–7). The input image is updated using the previous
input and the inverse saliency map (line 8). We define a simple stop condition, as formu-lated in
line 9, with t2 = 5. We found that as the iteration increases, mean(S) tends to increase but f(y|I)
decreases, guaranteeing that the stop condition occurs consistently.

4 EXPERIMENTAL RESULTS

The experiments were conducted on an Intel Core i7-7800X with a 3.50 CPU, 32 GB of memory, and
a GTX 1080 Ti GPU. We aimed to evaluate quantitatively and qualitatively the salient explanation
capabilities of GLAS and existing explanation models.

Salient explanation for fine-grained classification tasks.
The GLAS provides us with fine-level visual clue identification, enabling the salient explanation.
To demonstrate the effectiveness of scalability, we employed CUB200 (Wah et al., 2011), Stanford
Cars (Krause et al., 2013), and Air-craft (Maji et al., 2013) benchmarks that have been used for
the fine-grained image classification tasks. The CUB200 dataset consists of 11,788 images of 200
bird species. The Stanford Cars dataset includes 8,144 training and 8,041 test images with 196
classes. The Aircraft dataset is a set of 10,000 images with 100 classes reflecting a fine-grained

Figure 4: Visual comparison with the existing models. From top to bottom: red-winged blackbird,
Northern flicker, European goldfinch, and crested auklet. We introduce the uniform characteristics
of each bird: first row (red wings), second row (red below the eyes and black spots on the body),
third row (red face and yellow on the wings), and fourth row (orange beak).
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set of airplanes. We used the basic procedure of transfer learning using ResNet-50 pretrained on
ILSVRC. The resulting networks of CUB200, Stanford Cars and Aircraft yielded top-1 accuracies
of 76.11%, 92.01%, and 80.59%, respectively. GLAS can pinpoint more detailed clues by adjusting
its scale parameters.Figure 4 shows the visual comparison. In the experiment, we used an equal
sigma value of 3.0 for σl, σs, and σspatial. Unlike other methods, we can see that GLAS consis-
tently pinpoints meaningful patterns of birds. For example, in the case of the Northern flicker, an
instance has characteristics such as the red spot below the eyes and black dots on the body. GLAS
surprisingly pinpoints two characteristics of the Northern flicker with the scale 3.0; however, the
other methods only discover the location of the instance and fail to explain the detailed patterns.
In this regard, Grad-CAM and RISE tend to explain only global significance, such as the target’s
location. Numerous visual examples are available in the Supplementary Materials.

We conducted another experiment measuring how much the pinpointed clues affect the class deci-
sion. In Figure 5, original images are perturbed by the inverse heat map, and the amount that the
score drops is recorded. As expected, the class score dropped rapidly, ensuring the significance of
the pinpointed features. Figure 6 shows the European goldfinch characterized by red face and yel-
low spot on the wings used for demonstrating coarse-to-fine controls. GLAS adjusts the standard
deviation. Deconv adjusts the occlusion mask size. The RISE adjusts the size of the initial mask.
The most prominent observation is that the heat maps from RISE and Deconv are very noisy and less
accurate in identifying the most discriminative parts of the relevant object. The failure case analysis
in Figure 7 deserves an attention. The second row unveils an interesting behavior of CNN through
failure cases. The first and second images belonging to the Red-legged Kittiwake was incorrectly
classified into Pigeon guillemot with 34.09% and 11.59% probabilities, respectively. The salient
explanation capability of GLAS allows us to understand that the CNN misclassified the images into
the Pigeon guillemot by looking at the red leg. Figure 8 shows the visual explanations on Aircraft
and Stanford Cars benchmarks, respectively. For Aircraft examples, GLAS consistently pinpointed
propellers of wings for the class “Yu 12”. For Stanford Cars dataset, we found that CNN changed
its gaze consistently according to poses of Car. When the front is shown for the car class 138, the
grille part is highly probable to be pinpointed. When the back side is shown, lamps and wheels are
pinpointed. Note that these behaviors of CNNs can be unveiled only when the salient explanation is
available.

Figure 5: From left to right: original
image, heat map, and image perturbed
by the inverse heat map along with the
class probabilities. Green-tailed towhee
and red-winged blackbird.

Figure 6: Visual comparisons of GLAS, RISE, and Deconv
according to their parameters controlling the locality. The
example is the Eu-ropean goldfinch characterized by red
face and yellow spot on the wings. GLAS adjusts the stan-
dard deviation. Deconv adjusts the occlusion mask size. The
RISE adjusts the size of the initial mask.
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Figure 7: Unveiling the feature selection behaviors of
CNN. The top two rows illustrate two bird classes,
Red-legged Kittiwake and Pi-geon guillemot. Despite
its name, the Red-legged Kittiwake were consistently
highlighted on faces while the Pigeon guil-lemot was
highlighted on the red legs

Figure 8: Visual explanations on Aircraft and
Stanford Car benchmarks.

Evaluation on target localization.
We performed quantitative evaluations on the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) (Deng et al., 2009). As a metric, we employed the pointing game (PT) presented in the
study (Ribeiro et al., 2016) . The PT purely measures the spatial selectiveness of the continuous
visual saliency map. In the evaluation, the PT detects the maximum intensity point on the saliency
map, and a Hit is recorded if the maximum point is in the ground-truth annotation; otherwise, a Miss
is recorded. The accuracy is calculated using Acc = Hit

Hit+Miss . Because multiple maximum points
often arise, we em-ployed the threshold value T > 0.95 to generate binary blobs, and then we used
the centroid of the biggest blob as the localization point. We empirically set the scale parameters
σl=5 and σs=3, with σspatial=6.

Table 1: PT scores according to the number of search points

Search points k × k 12× 12 15× 15 22× 22 25× 25 30× 30

PT score 0.905 0.912 0.914 0.913 0.913
Time(s) 0.398 0.652 1.435 1.909 3.95

Table 2: Quantitative comparisons with existing models using the PT on the ILSVRC validation
data using ResNet50

Methodn PT PT-small Time(s)
Grads (Simonyan et al. 2013) 0.773 0.604 0.128
Deconv (Zeiler et al. 2014) 0.750 0.584 0.117

Grad-CAM (Selvaraju et al. 2017) 0.901 0.754 0.183
Deconv (Zeiler et al. 2014) 0.809 0.688 2.64
LIME (Ribeiro et al. 2016) 0.766 0.645 15.11
RISE (Petisiuk et al. 2018) 0.907 0.787 8.11
MASK (Fong et al. 2017) 0.841 0.711 16.38

GLAS (light) 0.889 0.782 0.328
GLAS (shadow) 0.877 0.751 0.328
GLAS (fusion) 0.912 0.792 0.612
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Figure 9: Visual comparison of the class-
discriminative capability of MASK, Grad-CAM,
RISE, and GLAS by varying the object classes.

Figure 10: Recursive process. This algorithm dis-
covers the relevant parts of a given class in order
of significance. We used the adaptive stop condi-
tion mentioned in Section 3.

Figure 11: Visual explanation examples produced by GLAS for the image captioning model.

Table 1 shows the execution time of GLAS according to the number of grid search points. The result
tends to show favorable PT scores as the number of the search points grows. It starts to become
saturated after k = 15 in terms of performance, even as the execution time continues to grow. Table
2 illustrates the results of comparisons with the existing methods on the ILSVRC validation dataset.
GLAS achieves the best result in terms of PT score. GLAS is 13 times faster than RISE even with
the higher PT score. This is because a considerable number of perturbed images using a randomized
masking process are necessary for reliable visual explanation in RISE. When RISE is forced to use
450 (225 × 2) perturbed images, identical to the number used by GLAS, we observed that the PT
score of RISE drops from 0.907 to 0.869. This observation tells us that GLAS perturbs and localizes
the important features efficiently. We separately evaluated the cases in which the object is small in
the PT-small column of 2. Like a related study (Cao et al., 2015), we consider an object to be small
if the total area of the bounding box of the given class is smaller than one quarter of the size of the
image. Even though all models encountered a performance drop, GLAS still beats other models.

In our work, GLAS operations can be used together or independently. The results in the last three
rows of Table 2 show an ablation study on GLAS by measuring model performance with either
Gaussian lighting or shadowing suppressed. Table 2 shows the performance of the ablated GLAS
is comparable to that the state-of-the-art methods, outperforming all methods except Grad-CAM,
RISE, and fused GLAS. Figure 9 provides a visual comparison of the methods. GLAS and Grad-
CAM clearly highlight the important region related to a given class, whereas MASK and RISE suffer
from nontrivial local noise. The advantage of GLAS is obvious without the noise and produces a
visualization map that is highly interpretable. Because the GLAS map consists of Gaussian mixture
clues, it identifies the most important area without being distracted by meaningless clues.

Multiple evidence discovery by the recursive process.
Table 3 illustrates the mean intersection over union (IOU) scores of the proposed recursive process.
Because the visual saliency map consists of continuous intensity values, the mean IOU scores were
measured with varying thresholds, from 0 to 1.0. In particular, significant progress occurs at the
second iteration. Higher IOU scores over the threshold values indicate that the object regions are
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Table 3: IOU scores of the proposed method on the ILSVRC validation data as the iteration in-
creases. “A” represents the final iteration under the adaptive stop condition

Iteration Threshold
0.1 0.3 0.5 0.7 0.9

1 0.53 0.51 0.40 0.31 0.09
2 0.54 0.56 0.51 0.39 0.07
3 0.55 0.56 0.52 0.37 0.06
A 0.55 0.59 0.55 0.38 0.06

uniformly highlighted. In the fusion results shown in the last column of Figure 10, we can see that
multiple instances and multiple evidences are well discovered.

Visualization of the image captioning model.
Image captioning is a challenging task for which both computer vision and natural language process-
ing techniques should be considered. We constructed the image captioning model based on publicly
available implementations for which the fine-tuned InceptionV3-based image and long short-term
memory-based language models are considered. Figure 11 shows some visual explanation results
from the image captioning model to demonstrate the applicability of GLAS. GLAS shows the ca-
pability to localize visual concepts such as objects (man, bicycle, ball, boy, hurdle, and dog) and
actions (riding, playing, and jumping).

5 CONCLUSION

In this study, we proposed a visual explanation method called GLAS for the black-box model. Our
method is in-spired by the natural light and shadow phenomena and provides a simple yet robust
way to perturb an input in-stance. The GLAS presented the ability of fine-level visual explanation
at various scales through the adjustment of the Gaussian scale. Additionally, we showed the broad
applicability of GLAS to various tasks. In experiments, GLAS showed state-of-the-art performance
and efficient computing time. For a future work, we plan to improve the heat map by optimizing
the scale parameters of the Gauss-ian mask adaptively on an image instance. A deeper theo-retical
analysis of GLAS is also needed.
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6 APPENDIX

A. Visualization of neuroimaging classification model.
We consider a neuroimaging classification problem to show applicability of GLAS in a medi-
cal imaging domain. We employed 3D-magnetic resonance imaging (MRI) scans reflecting 199
Alzheimer’s Disease (AD) vs. 230 healthy Normal Control (NC) from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), which is publicly available. A 3D-CNN was employed for clas-
sification of AD vs. NC. Due to limited dataset size, 3D-MRIs are spatially normalized based on
template brain image and unsupervised learning technique (Convolutional auto-encoder) is applied
before supervised learning. The overall architecture is comprised of three 333 Conv layers with 10
filters each, two FC layers with 32 and 16 nodes each, and softmax activation; each of Conv layers
is followed by ReLU and 222 max-pooling; Gaussian dropout with a dropping ratio 0.8 is applied
in between Conv layers; in the FC layers, we used SELU activation for speeding up learning and
taking normalization effect in the FC layers. 5-fold cross validations were conducted to evaluate the
classification model. The mean accuracy was 85.31%.

Since the Automated Anatomical Labeling (AAL) [5] map exists, all MRIs are spatially normalized
based on AAL, and then we considered the centroid of AAL as the search points. In this work, 3D-
GLAS method were considered to perturb 3D-MRI data, and we empirically set σ=10 and σ=15. The
validation MRIs of AD category are fed to 3D-GLAS, then the entire saliency maps of validation
MRIs were linearly integrated and normalized. For this reason, the highlighted biomarkers have
statistical significance. Since the centroids of each AAL segment are considered as search points,
we mark out impact of each biomarker to its corresponding AAL segment directly. In Figure 25,
the hippocampus, amygdala and temporal inf were selected as the important biomarkers for the
accurate classification of AD. These biomarkers have previously been known to be closely related
with dementia in many existing studies [1][2][3][4]. In particular, the hippocampus, a brain region
for learning and memory, is one of the first brain biomarker, which is affected by AD and undergoes
severe structural changes as the disease progresses [4]

[1] R. Casanova, C.T. Whitlow, B. Wagner, J. Williamson, S.A. Shumaker,J.A. Maldjian M.A.
Espeland. High Dimensional Classification of Structural MRI Alzheimer’s Disease Data Based on
Large Scale Regularization. Frontiers in Neuroimformatics, doi:0.3389/fninf.2011.00022. 2011.

[2] H. Kilian, T. Vinh-Thong, C. Gwenaelle, T. Thomas, V.M. Jose C. Pierrick.
Multimodal Hippocampal Subfield Grading for Alzheimer’s Disease Classification. doi:
https://doi.org/10.1101/293126. 2018.

[3] S.W. Seo, N. Ayakta, L.T. Grinberg, S.Villeneuve, M. Lehmann, B. Reed G.D. Rabinovici.
Regional correlations between [11C] PIB PET and post-mortem burden of amyloid-beta pathology
in a diverse neuropathological cohort. Neuroimage Clinic 13 (Suppl. C), 130–137,2017.

[4] S. Tian, C Ying. Visualizing Deep Networks with Interaction of Super-pixel with Interaction of
Super-pixels. In CIKM, 2017.

[5] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, Bernard
Mazoyer M. Joliot. Automated anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15: 273-289, 2002

Figure 12: Visual distribution of discriminative biomarkers in the classification of AD. The first rows
illustrate a brain template image overlapped with important biomarkers (rank 1 of Table 1: red, rank
2: green, rank 3: blue, rank 4: yellow, rank 5: purple). The second rows show AAL wise saliency
map.
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B. Salient explanation results for fine-grained classification task.
In this part, we provide numerous visual examples to show the precision explanation. We chose 13
bird categories of CUB200 that have the unique characteristics. In the experiment, we used the same
sigma value of 3.0.

Figure 13: Red winged blackbird. The uniform characteristic is red shoulder patch.

Figure 14: Red winged blackbird. The uniform characteristic is red shoulder patch.
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Figure 15: Crested auklet. The uniform characteristic is orange beak.

Figure 16: Eared grebe. The uniform characteristic is red eyes.
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Figure 17: Red headed woodpecker. The uniform characteristic is red head.

Figure 18: Red bellied woodpecker. The uniform characteristic is black and white barred patterns
on their back, wings and tail. Adult males have a red cap going from the bill to the nape; females
have a red patch on the nape and another above the bill.
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Figure 19: Pileated woodpecker. The uniform characteristic is red crest.

Figure 20: Prairie warbler. The uniform characteristic is dark streaks on the flanks and head.
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Figure 21: Myrtle warbler. The uniform characteristics are yellow crown, rump and flank patches.

Figure 22: European goldfinch. The uniform characteristics are red face and broad yellow bar on
the wings.
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Figure 23: Gold Winged Warbler. The uniform characteristics are yellow crown and wing patch.

Figure 24: Rose breasted grosbeak. The uniform characteristic is bright red-red patch on the breast.
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Figure 25: Red faced cormorant. The uniform characteristic is red patch around the eyes.
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