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ABSTRACT

While tasks could come with varying the number of instances and classes in realistic
settings, the existing meta-learning approaches for few-shot classification assume
that the number of instances per task and class is fixed. Due to such restriction, they
learn to equally utilize the meta-knowledge across all the tasks, even when the num-
ber of instances per task and class largely varies. Moreover, they do not consider
distributional difference in unseen tasks, on which the meta-knowledge may have
less usefulness depending on the task relatedness. To overcome these limitations,
we propose a novel meta-learning model that adaptively balances the effect of the
meta-learning and task-specific learning within each task. Through the learning of
the balancing variables, we can decide whether to obtain a solution by relying on
the meta-knowledge or task-specific learning. We formulate this objective into a
Bayesian inference framework and tackle it using variational inference. We validate
our Bayesian Task-Adaptive Meta-Learning (Bayesian TAML) on two realistic
task- and class-imbalanced datasets, on which it significantly outperforms existing
meta-learning approaches. Further ablation study confirms the effectiveness of
each balancing component and the Bayesian learning framework.

1 INTRODUCTION

Despite the success of deep learning in many real-world tasks such as visual recognition and machine
translation, such good performances are achievable at the availability of large training data, and
many fail to generalize well in small data regimes. To overcome this limitation of conventional
deep learning, recently, researchers have explored meta-learning (Schmidhuber, 1987; Thrun & Pratt,
1998) approaches, whose goal is to learn a model that generalizes well over distribution of tasks,
rather than instances from a single task, in order to utilize the obtained meta-knowledge across tasks
to compensate for the lack of training data for each task.

However, so far, most existing meta-learning approaches (Santoro et al., 2016; Vinyals et al., 2016;
Snell et al., 2017; Ravi & Larochelle, 2017; Finn et al., 2017; Li et al., 2017) have only targeted
an artificial scenario where all tasks participating in the multi-class classification problem have
equal number of training instances per class. Yet, this is a highly restrictive setting, as in real-world
scenarios, tasks that arrive at the model may have different training instances (task imbalance), and
within each task, the number of training instances per class may largely vary (class imbalance).
Moreover, the new task may come from a distribution that is different from the task distribution the
model has been trained on (out-of-distribution task) (See (a) of Figure 1).

Under such a realistic setting, the meta-knowledge may have a varying degree of utility to each task.
Tasks with small number of training data, or close to the tasks trained in meta-training step may want
to rely mostly on meta-knowledge obtained over other tasks, whereas tasks that are out-of-distribution
or come with more number of training data may obtain better solutions when trained in a task-specific
manner. Furthermore, for multi-class classification, we may want to treat the learning for each
class differently to handle class imbalance. Thus, to optimally leverage meta-learning under various
imbalances, it would be beneficial for the model to task- and class-adaptively decide how much to
use from the meta-learner, and how much to learn specifically for each task and class.
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Figure 1: Concept. (a) To handle task imbalance (Task Imbal.), class imbalance (Class Imbal.) and out-
of-distribution tasks (OOD) for each task τ , we introduce task-specific balancing variables γτ , ωτ and zτ ,
respectively. (b) With those variables, we learn to balance between the meta-knowledge θ and task-specific
update to handle imbalances and distributional discrepancies.

To this end, we propose a novel Bayesian meta-learning framework, which we refer to as Bayesian
Task-Adaptive Meta-Learning (Bayesian TAML), that learns variables to adaptively balance the
effect of meta- and task-specific learning. Specifically, we first obtain set-representations for each
task, which are learned to convey useful statistics about the task or class distribution, such as mean,
variance, tailedness (kurtosis), and skewness, and then learn the distribution of three balancing
variables as the function of the set: 1) task-dependent learning rate decay, which decides how far
away to deviate from the meta-knowledge, when performing task-specific learning. Tasks with higher
shots could benefit from taking gradient steps afar, while tasks with few shots may need to stay close
to the initial parameter. 2) class-dependent learning rate, which decides how much information to
use from each class, to automatically handle class imbalance where the number of instances per class
can largely vary. 3) task-dependent attention mask, which modifies the shared parameter for each
task by learning a set-dependent attention mask to it, such that the task can decide how much and
what to use from the initial shared parameter and what to ignore based on its set representation. This
is especially useful when handling out-of-distribution task, which may need to ignore some of the
meta-knowledge.

We validate our model on Omniglot and mini-ImageNet dataset, as well as a new dataset that consists
of heterogeneous datasets, under a scenario where every class in each episode can have any number
of shots, that leads to task and class imbalance, and where the dataset at meta-test time is different
from that of meta-training time. The experimental results show that our Bayesian TAML obtains
significantly improves over the existing approaches under these realistic scenarios. Further analysis
of each component reveals that the improvement is due to the effectiveness of the balancing terms for
handling task and class imbalance, and out-of-distribution tasks.

To summarize, our contribution in this work is threefold:

• We consider a novel problem of meta-learning under a realistic task distribution, where the
number of instances across classes and tasks could largely vary, or the unseen task at the
meta-test time is largely different from the seen tasks.
• For effective meta-learning with such imbalances, we propose a Bayesian task-adaptive

meta-learning (Bayesian TAML) framework that can adaptively adjust the effect of the
meta-learner and the task-specific learner, differently for each task and class.
• We validate our model on realistic imbalanced few-shot classification tasks with a varying

number of shots per task and class and show that it significantly outperforms existing
meta-learning models.

2 RELATED WORK

Meta-learning Meta-learning (Schmidhuber, 1987; Thrun & Pratt, 1998) is an approach to learn
a model to generalize over a distribution of task. The approaches in general can be categorized
into either memory-based, metric-based, and optimization-based methods. A memory-based ap-
proach (Santoro et al., 2016) learns to store correct instance and label into the same memory slot
and retrieve it later, in a task-generic manner. Metric-based approaches learn a shared metric space
that defines the distance between the instance and the class prototype, such that the instances are
closer to their correct prototypes than to others (Vinyals et al., 2016; Snell et al., 2017). As for
optimization-based meta-learning, MAML Finn et al. (2017) learns a shared initialization parameter
that is optimal for any tasks within few gradient steps from the initial parameter. Meta-SGD (Li
et al., 2017) improves upon MAML by proposing to learn the learning rate differently for each
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parameter. For effective learning of a meta-learner, meta-learning approaches adopt the episodic
training strategy (Vinyals et al., 2016) which trains and evaluates a model over a large number of
tasks, which are called meta-training and meta-test phase, respectively. However, existing approaches
only consider an artificial scenario where each episode considers the classification of classes with
exactly the same number of training instances, both within each episode and across episodes. On the
other hand, we consider a more challenging scenario where number of shots per class and task could
vary at each episode, and that the task given at the meta-test time could be an out-of-distribution task.

Task-adaptive meta-learning The goal of learning a single meta-learner that works well for all
tasks may be overly ambitious and leads to suboptimal performances for each task. Thus recent
approaches adopt task-adaptively modified meta-learning models. Oreshkin et al. (2018) proposed to
learn the temperature scaling parameter to work with the optimal similarity metric. Qiao et al. (2018)
also suggested a model that generates task-specific parameters for the network layers, but it only
trains with many-shot classes, and implicitly expects generalization to few-shot cases. Rusu et al.
(2018) proposed a network type task-specific parameter producer, and Lee & Choi (2018) proposed
to differentiate the network weights into task-shared and task-specific weights. Our model also aims
to obtain task-specific parameter for each task, but is rather focused on learning how to balance
between the meta-learning and task-/class-specific learning. To our knowledge, none of the existing
approaches explicitly tackle this balancing problem since they only consider few-shot learning with
the fixed number of instances for each class and task.

Probabilistic meta-learning Recently, a probabilistic version of MAML has been proposed (Finn
et al., 2018), where they interpret a task-specific gradient update as a posterior inference process
under variational inference framework. Kim et al. (2018) proposed Bayesian MAML with a similar
motivation but with a stein variational inference framework and chaser loss. Gordon et al. (2018)
proposed a probabilistic meta-learning framework where the paramter for a novel task is rapidly
estimated under decision theoretic framework, given a set representation of a task. The motivation
behind these works is to represent the inherent uncertainty in few-shot classification tasks. Our model
also uses Bayesian modeling, but it focuses on leveraging the uncertainties of the meta-learner and
the gradient-direction in order to balance between meta- and task- or class-specific learning.

3 LEARNING TO BALANCE

We first introduce notations and briefly recap the model-agnostic meta-learning (MAML) by Finn
et al. (2017). Suppose a task distribution p(τ) that randomly generates task τ consisting of a training
set Dτ = {Xτ ,Yτ} and a test set D̃τ = {X̃τ , Ỹτ}. Then, the goal of MAML is to meta-learn the
initial model parameter θ to generalize over the task distribution p(τ), such that we can easily obtain
the task-specific predictor θτ in a single (or a few) gradient step from the initial θ. Toward this goal,
MAML optimizes the following gradient-based meta-learning objective:

min
θ

∑
τ∼p(τ)

L(θ − α∇θL(θ;Dτ ); D̃τ ) (1)

where α denotes stepsize and L denotes empirical loss such as negative log-likelihood of observations.
Note that by meta-learning the initial point θ, the task-specific predictor θτ = θ − α∇θL(θ;Dτ )
can minimize the test loss L(·; D̃τ ) even with Dτ which only contains few samples. We can easily
extend the Eq. (1), such that we obtain θτ with more than one inner-gradient steps from the initial θ.

However, the existing MAML framework has the following limitations that prevent the model from
efficiently solving real-world problems involving task/class imbalance and out-of-distribution tasks.

1. Task imbalance. MAML has a fixed number of inner-gradient steps and stepsize α across
all tasks, which prevents the model from adaptively deciding how much to use from the
meta-knowledge depending on the number of the training examples per task.

2. Class imbalance. The model does not provide any framework to handle class imbalance
within each task. Therefore, classes with large number of training instances (head classes)
may dominate the task-specific learning during the inner-gradient steps, yielding low perfor-
mance on classes with fewer shots (tail classes).

3. Out-of-distribution tasks. The model assumes that the meta-knowledge will be equally
useful for the unseen tasks, but for unseen tasks that are out-of-distribution, the meta-
knowledge may be less useful.
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3.1 TASK-ADAPTIVE META-LEARNING (TAML)

As shown in Figure 1 for the concepts, we introduce three balancing variables γτ ,ωτ , zτ to tackle
each problem mentioned above. How to compute these variables will be described in Section 4. In
order to learn with realistic scenarios, we assume that the task distribution p(τ) samples some fixed
number of C classes ("way"), and then sample uniform-random number of instances for each class
(“shots”), thereby simulating both task and class imbalance at the same time.

Tackling task imbalance. To control whether to stay close to the initial parameter or deviate far
from it, we introduce a clipping function f(·) = max(0,min(·, 1)) and a task-dependent learning-rate
decaying factor f(γτ ), such that the learning rate exponentially decays as α → f(γτ )α → · · · →
f(γτ )K−1α, for step k = 1, . . . ,K. We expect f(γτ ) to be large for large tasks, such that they rely
more on task-specific updates, while small tasks use small f(γτ ) to benefit from the meta-knowledge.

Tackling class imbalance. To handle class imbalance, we vary the learning rate of class-
specific gradient update for each task-specific gradient update step. Specifically, for class c =
1, . . . , C, we introduce a non-negative activation function g(·) = SoftPlus(·) and a set of class-
specific non-negative scalars g(ωτ1 ), . . . , g(ω

τ
C) multiplied to each of the class-specific gradients

∇θL(θ;Dτ1 ), . . . ,∇θL(θ;DτC), where Dτc is the set of instances and labels for class c. We expect
g(ωτc ) to be large for tail-classes to consider them more in task-specific gradient updates.

Tackling out-of-distribution tasks. Lastly, we introduce an additional task-dependent variable zτ

with the non-negative activation function g(·) which weights the initial parameter θ according to the
usefulness for each task. We expect the variable g(zτ ) to heavily emphasize the meta-knowledge θ
when Dτ is similar to the trained dataset, and use less of it when Dτ is unfamilar. This behavior can
be implemented with Bayesian modeling on the latent zτ , which we introduce in the next subsection.

A unified framework. Finally, we assemble all these components together into a single unified
framework. The update rule for the task-specific θτ is recursively defined as follows:

θ0 = θ ◦ g(zτ ), (2)

θk = θk−1 + f(γτ )k−1α ◦
C∑
c=1

g(ωτc )∇θk−1
L(θk−1;Dτc ) for k = 1, . . . ,K (3)

where the last step θK corresponds to the task-specific predictor θτ and α is a multi-dimensional
global learning rate vector that is learned such as Li et al. (2017).

3.2 BAYESIAN TASK-ADAPTIVE META-LEARNING

(a) (b)

Figure 2: Graphical model. (a)
Generative process. (b) Infer-
ence.

As previously mentioned, we need a Bayesian framework for model-
ing zτ , since it needs a prior in order to prevent the posterior of zτ
from overly utilizing the meta-knowledge θ when the task is out-of-
distribution. Moreover, for the learning of balancing variables γτ and
ωτ , Bayesian modeling improve the quality of the inference on them,
which we empirically verified through extensive experiments. We
allow the three variables to share the same inference network pipeline
to minimize the computational cost, and thereby effectively amortize
the inference rule across variables as well.

Firstly, define Xτ = {xτn}
Nτ
n=1 and Yτ = {yτn}

Nτ
n=1 for training, and

X̃τ = {x̃τm}
Mτ
m=1 and Ỹτ = {ỹτm}

Mτ
m=1 for test. Let φτ denote the

collection of three latent variables, γτ , ωτ and zτ for uncluttered
notation. Then, the generative process is as follows for each task τ
(See Figure 2):

p(Yτ , Ỹτ ,φτ |Xτ , X̃τ ;θ) = p(φτ )

Nτ∏
n=1

p(yτn|xτn,φτ ;θ)
Mτ∏
m=1

p(ỹτm|x̃τm,φτ ;θ) (4)

for the complete data likelihood. Note that the deterministic θ is shared across all the tasks.
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Figure 3: Inference Network. The proposed Set-of-Sets encoder captures the instance-wise and class-wise
statistics hierarchically, from which we infer three different balancing variables.

4 VARIATIONAL INFERENCE

The goal of learning for each task τ is to maximize the log-likelihood of the joint dataset D̃τ and Dτ :
log p(Ỹτ ,Yτ |X̃τ ,Xτ ;θ). However, solving it involves the true posterior p(φτ |Dτ , D̃τ ), which is
intractable. Thus, we resort to amortized variational inference with a tractable form of approximate
posterior q(φτ |Dτ , D̃τ ;ψ) parameterized by ψ. Further, similarly to Ravi & Beatson (2018), we
drop the dependency on the test dataset D̃τ for the approximate posterior, in order to make the two
different pipelines consistent; one for meta-training where we observe the whole test dataset, and the
other for meta-testing where the test labels are unknown. The form of our approximate posterior is
now q(φτ |Dτ ;ψ). It greatly simplifies the inference framework, while ensuring that the following
objective is still a valid lower bound of the log evidence. Also, considering that performing the
inner-gradient steps with the training dataset Dτ automatically maximizes the training log-likelihood
in MAML framework, we slightly modify the objective so that the expected loss term only involves
the test examples. The resultant form of the lower bound that suits for our meta-learning purpose is
as follows:

Lτθ,ψ =

Mτ∑
m=1

Eq(φτ |Dτ ;ψ)

[
log p(ỹτm|x̃τm,φτ ;θ)

]
−KL[q(φτ |Dτ ;ψ)‖p(φτ )]. (5)

We assume q(φτ |Dτ ;ψ) fully factorizes for each variable and also for each dimension as well:

q(φτ |Dτ ;ψ) = q(γτ |Dτ ;ψ)
∏
c

q(ωτc |Dτ ;ψ)
∏
i

q(zτi |Dτ ;ψ) (6)

where we assume that each single dimension of q(φτ |Dτ ;ψ) follows univariate gaussian having
trainable mean and variance. We also let each dimension of prior p(φτ ) factorize into N (0, 1). The
KL-divergence between two univariate gaussians has a simple closed form (Kingma & Welling,
2014), thereby we obtain the low-variance estimator for the lower bound Lτθ,ψ .

The final form of the meta-training minimization objective with Monte-Carlo approximation for the
expection in (5) is as follows:

min
θ,ψ

1

T

∑
τ∼p(τ)

1

Mτ

{ Mτ∑
m=1

1

S

S∑
s=1

− log p(ỹτm|x̃τm,φτs ;θ) + KL[q(φτ |Dτ ;ψ)‖p(φτ )]
}
. (7)

whereφτs ∼ q(φτ |Dτ ;ψ), and T is the number of tasks. We implicitly assume the reparameterization
trick for φτ to obtain stable and unbiased gradient estimate w.r.t. ψ (Kingma & Welling, 2014).
We set the number of MC samples to S = 1 for meta-training for computational efficiency. When
meta-testing, we can set S = 10 or naively approximate the expectation by taking the expectation
inside: Eq[p(ỹτm|x̃τm,φτ ;θ)] ≈ p(ỹτm|x̃τm,Eq[φτ ];θ), which works well in practice.

4.1 DATASET ENCODING

The main challenge in modeling our variational distribution q(φτ |Dτ ;ψ) is how to refine the training
dataset Dτ into informative representation capturing the dataset as a distribution, which is not
trivial. This inference network should capture all the necessary statistical information in the dataset
Dτ to solve both imblanace and out-of-distribution problems. DeepSets (Zaheer et al., 2017) is
frequently used as a practical set-encoder, where each instance in the set is transformed by the shared
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nonlinearity, and then summed together to generate a single vector summarizing the set. However,
for the classification dataset Dτ which is the set of (class) sets, we cannot use DeepSets directly as it
will completely ignore the label information. Therefore, we need to stack the structure of DeepSets
twice according to the hierarchical set of sets structure of classification dataset.

However, there exists additional limitation of DeepSets with sum-pooling when describing the
distribution. Suppose that we have a set containing a replication of single instance. Then, its
representation will change based on the number of replications, although distribution-wise all sets
should be the same. Mean-pooling may alleviate the problem; however, it does not recognize the
number of elements in the set, which is a critical limitation in encoding imbalance. To overcome the
limitations of the two pooling methods, we propose to use higher-order statistics in addition to the
sample mean, namely element-wise sample variance, skewness and kurtosis. For instance, the sample
variance could capture task imbalance and skewness will capture class imbalance (imbalance in the
number of instances per class). Based on this intuition, we propose the following encoder network
StatisticsPooling(·) that generates the concatenation of those statistics (See Figure 3):

vτ = StatisticsPooling
(
{NN2 (sc)}Cc=1

)
, sc = StatisticsPooling

(
{NN1(x)}x∈Xτ

c

)
for classes c = 1, . . . , C, and Xτ

c is the collection of class c examples in task t. NN1 and NN2 are
some appropriate neural networks parameterized by ψ. The vector vτ finally summarizes the whole
classification dataset Dτ and our balancing variables γτ , ωτ and zτ are generated from it with an
additional affine transformation. See Appendix B for the justification.

5 EXPERIMENTS

We validate our method in imbalanced scenarios, where each task, or every class within a task can
have different shots, and the tasks at the evaluation time could come from a different task distribution
from the seen task distribution. Following Finn et al. (2017), we use 4-block convolutional neural
networks with 64 channels for each layer for Omniglot and MNIST. We reduce the convolution filter
size of the 4-block CNN network into 32 for other datasets.

5.1 ANY-SHOT CLASSIFICATION

Table 1: Any-shot classification performance. All reported results are averaged performances over 1000
randomly selected episodes for Omniglot and MNIST and 600 randomly selected episodes for tiered-ImageNet
and mini-ImageNet with standard errors for 95% confidence intervals.

Meta-train Omniglot tiered-ImageNet
Meta-test Omniglot MNIST tiered-ImageNet mini-ImageNet

Prototypical Net (Snell et al., 2017) 98.37 ± 0.05 82.16 ± 0.19 65.25 ± 0.74 49.67 ± 0.38
MAML (Finn et al., 2017) 93.38 ± 0.28 79.63 ± 0.33 66.70 ± 0.40 49.61 ± 0.36
Meta-SGD (Li et al., 2017) 94.27 ± 0.24 81.00 ± 0.31 68.16 ± 0.92 56.57 ± 0.37

MT-NET (Lee & Choi, 2018) 95.41 ± 0.36 81.89 ± 0.54 69.84 ± 0.79 55.36 ± 0.38
ABML (Ravi & Beatson, 2018) 95.72 ± 0.20 81.48 ± 0.44 57.32 ± 0.61 53.02 ± 0.48

Bayesian TAML 96.29 ± 0.31 84.39 ± 0.48 71.42 ± 1.00 58.37 ± 0.49

Imbalanced Omniglot. This dataset (Lake et al., 2015) consists of 1623 hand-written character
classes, with 20 training instances per class. We consider 10-way classification problems, where
we have 5 instances per each class for test (queries). To generate imbalanced tasks, we modify
the existing strategy for episode generation (Michalski et al., 1983), such that we randomly set the
number of training instances to be sampled within the range of 1 to 15. We train our model and all
baseline models with 5 inner-gradient steps on Omniglot, and evaluate on both Omniglot and MNIST,
where the latter is used to evaluate the performance on out-of-distribution task.

Imbalanced tiered-ImageNet. This is sub-sampled ImageNet dataset including 608 classes (Ren
et al., 2018). As similarly with the Imbalanced Omniglot dataset, we consider 5-way classification
problems, while randomly setting the number of training instances per class within the range of 1
to 50, and use 15 instances per class for test (queries). We train all models with 5 inner-gradient
steps on the tiered-ImageNet dataset, and evaluate the model on the test split of tiered-ImageNet and
mini-ImageNet, where the latter is used to evaluate on out-of-distribution task. See the Appendix A
for more details of the experimental setup.
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Analysis. Table 1 shows the any-shot classification accuracies of various meta-learning models.
Bayesian TAML outperforms all baseline models in all settings, including MAML variants that are
directly comparable with Bayesian TAML, except for the Omniglot In-distribution experiment where
Prototypical Network works the best. However, Prototypical Network shows poor performance on
out-of-distribution tasks (MNIST). Especially, for the tiered-ImageNet and mini-ImageNet which
are relatively difficult datasets, our model achieves largely outperforms all baseline models with
significant margins. These results overall confirm the effectiveness of our learning to balance
framework, that can balance the effect of the meta-knowledge and task- and class-specific knowledge.

Meta-test OVD Fashion MNIST
Prototypical Networks 96.87 ± 0.34 60.13 ± 0.30

Meta-SGD 93.97 ± 0.55 62.46 ± 0.73
MT-NET 94.72 ± 0.61 62.18 ± 0.90

Bayesian TAML 97.69 ± 0.62 64.25 ± 0.86

Table 2: Multi-Dataset any-shot classification results.

Multi-Dataset OVD. We further test
our model under a more challenging
setting where tasks could come from
a highly heterogeneous dataset. To
this end, we combine Omniglot, VGG
flower (Nilsback & Zisserman, 2008),
DTD (Cimpoi et al., 2014) into a single
dataset OVD, and randomly sample each class from the combined dataset for every task. We train
all models with 10-way any-shot tasks with 3 inner gradient steps and test on OVD and FasionM-
NIST(Xiao et al., 2017), where the latter is used to generate out-of-distribution tasks at evaluation
time. The results in Table 2 shows that under this challenging multi-dataset setting, our Bayesian
TAML outperforms all baselines, especially with larger gains on the out-of-distribution tasks (Fashion
MNIST) consistent with the result of Table 1.

5.2 EFFECTIVENESS OF THE BALANCING VARIABLES

We now validate the effectiveness of each balancing parameter. For these experiments, we trained
and evaluated the model with Omniglot 10-way 5 inner-gradient steps. We report the average
performances over 1000 randomly selected episodes. Due to the limits of space, we omit standard
errors for the confidence score. To correctly evaluate the effect of the individual balancing parameter,
we drop all other balancing parameters when experimenting with each term.

g(zτ ) for handling distributional discrepancy. g(zτ ) weights initialization parameter, to decide
on what and how much to use from the meta-knowledge, depending on the relateness of the
unseen tasks to seen tasks. We evaluate models on both Omniglot and MNIST with 15-shot.
Figure 4 shows that g(zτ ) is large for in-distribution task and small with out-of-distribution
task. Table 3 shows that suppressing the utilization of meta-knowledge with g(zτ ) effec-
tively handles out-of-distribution tasks and yields our model largely outperforms the baselines.

Models (K=5) Omniglot MNIST
MAML 98.32 89.19

Meta-SGD 98.38 90.42
ABML 98.67 90.69

Bayesian g(zτ ) TAML 98.92 92.06

Table 3: Distribution discrepancy results.
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Figure 4: ‖g(zτ )‖2 under ID/OOD.

f(γτ ) for handling task imblance. f(γτ ), which is a decaying factor for inner gradient steps,
handles inter-task imbalance where each task has different number of examples. Figure 5 shows
the f(γτ ) to varying size of tasks, where it increases monotonically with the number of instances
allowing the model to stay close to the initial parameter for few-shot cases and deviate far from it
for many-shot cases. Table 4 shows that the larger gains of our model for 1-shot than 5 or 15 shots
support that relying on meta-knowledge is useful to improve the performance on the small size tasks.

Models (K=5) 1-shot 5-shot 15-shot
MAML 92.93 97.13 95.52

Meta-SGD 92.38 96.60 98.04
ABML 92.46 97.27 98.27

Bayesian f(γτ ) TAML 94.41 97.74 98.62

Table 4: Task-Imbalance results.
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Figure 5: f(γτ ) with varying number of shots.
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g(ωτ ) for handling class imbalance. g(ωτ ) adjusts the scale of the gradient for each class to
handle class imbalance where the number of instances per class largely varies. Table 5 shows
the result of each model under varying degree of the number of shots imbalance between classes
within each task. We observe that our model significantly outperforms baselines especially
on sets with a high degree of class imbalance (x5 and x15). Figure 6 further shows that the
g(ωτ ) supresses the empirical loss of classes with larger shots to balance the learning for each
class, and that we obtain the most improvements on classes with small number of instances.

Models (K=5) x1 x5 x15
MAML 98.17 95.77 84.97

Meta-SGD 97.31 95.38 89.12
ABML 97.79 95.89 91.09

Bayesian g(ωτ ) TAML 97.29 96.82 91.61

Table 5: Class-Imbalance results.
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Figure 6: g(ωτ ) and accuracy gains over Meta-
SGD with varying number of instances per class.

5.3 MORE ABLATION STUDY

Effectiveness of Bayesian modeling We further see the effect of the Bayesian framework by
comparing the behaviors of each balancing variable on out-of-distribution tasks. Table 6 shows
the performance of the models with the same setting of Table 3. The result clearly shows that the
Bayesian methods greatly contribute to address imbalance problem, especially with the OOD tasks.
Figure 7 further confirms the effectiveness against deterministic model (Deterministic TAML) as the
balancing variables more sensitively react to the imbalance conditions with the Bayesian modeling
(Bayesian TAML) of those variables.

Models (K=5) Omniglot MNIST
MAML 98.32 89.19

Meta-SGD 98.38 90.42
ABML 98.67 90.69

Deterministic TAML 98.75 90.77
Bayesian TAML 99.13 92.38

Table 6: Distribution discrepancy results.
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Figure 7: Balancing variables under OOD.

Models (K=5) DeepSets Set of Sets (Ours)
Mean 63.22 68.89

Mean + Var. 65.32 69.70
Mean + Skew. 66.76 70.49
Mean + Kurt. 68.46 70.75
Mean + All 69.21 71.42

Table 7: Ablation study on the dataset-encoding
methods.

Dataset encoding We perform an ablation study to
validate the effectiveness of the proposed dataset encod-
ing method Set of Sets when generating the balancing
variables. Table 7 shows the performance of various
encoding schemes on the imbalanced tiered-ImageNet
for 5-way classification with the same setting as Table 1.
We observe the effectiveness of Set of Sets with higher-
order statistics and hierarchical set encoding against
DeepSets (Zaheer et al., 2017).

6 CONCLUSION

We propose Bayesian TAML that learns to balance the effect of meta-learning and task-adaptive
learning, to consider meta-learning under a more realistic task distribution where each task and class
can have varying number of instances. Specifically, we encode the dataset for each task into set
representations, and use it to generate weight mask for the original parameter, learning rate decay,
and the class-specific learning rate. We use a Bayesian framework to infer the posterior of these
balancing variables, and propose a effective meta-learning variational inference framework to solve
for them. Our model outperforms existing meta-learning methods when validated on imbalanced
few-shot classification tasks. Further analysis of each balancing variable shows that each variable
effectively handles task imbalance, class imbalance, and out-of-distribution tasks respectively. We
believe that our work makes a meaningful step toward application of meta-learning to real-world
problems.
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A EXPERIMENTAL SETUP

A.1 BASELINES AND NETWORK ARCHITECTURE.

We describe baseline models and our task-adaptive learning to balance model. Note that all gradient-
based models can be extended to take K inner-gradient steps for both meta-training and meta-testing.

1) Meta-Learner LSTM. A meta-learner that learns optimization algorithm with LSTM (Ravi &
Larochelle, 2017). The model performs few-shot classification using cosine similarities between the
embeddings generated from a shared convolutional network.

2) Prototypical Networks. A metric-based few-shot classification model proposed by (Snell et al.,
2017). The model learns the metric space based on Euclidean distance between class prototypes and
query embeddings.

3) MAML. The Model-Agnostic Meta-Learning (MAML) model by (Finn et al., 2017), which aims
to learn the global initial model parameter, from which we can take a few gradient steps to get
task-specific predictors.

4) Meta-SGD. A base MAML with the learnable learning-rate vector (without any restriction on
sign) element-wisely multiplied to each step inner-gradient (Li et al., 2017).

5) MT-NET. A gradient-based meta-learning model proposed by Lee & Choi (2018). The model
obtains a task-specific parameter only w.r.t. a subset of the whole dimension (M-Net), followed by a
linear transformation to learn a metric space (T-Net).

6) Probabilistic MAML. A probabilistic version of MAML by Finn et al. (2018), where they
model task-adaptive inner-gradient steps as a posterior inference process under hierarchical Bayesian
framework.

7) ABML. This model also interprets MAML under hierarchical Bayesian framework, but they
propose to share and amortize the inference rules across both global initial parameters as well as the
task-specific parameters.

8) Bayesian TAML. Our learning to balance model that can adaptively balance between meta- and
task-specific learners for each task and class.

A.2 REALISTIC ANY-SHOT CLASSIFICATION.

We describe more detailed settings for realistic any-shot classification.

Imbalanced Omniglot. We modified the episode generating strategy of C-way classification,
which selects the number of shots randomly between 1 to 15 for each of the classes. The meta
learning rate β and the total number of iteration are set to 1e-3 and 60000, respectively for all models,
and the inner gradient step size α is set to 0.05 for MAML, MT-NET and ABML and is set to
learnable parameters for Meta-SGD and our model. The number of inner-gradient steps is 5 for all
models and all other components are the same as reported for fixed-way and fixed-shot few-shot
classification in the paper for each model. We keep the meta-batch as 1 for all experiments to clearly
see the effect of imbalance scenario. We trained models in 5-way 5 inner-gradient steps on the
Omniglot, and evaluated with the test split of Omniglot and MNIST.

Imbalanced tiered-ImageNet. We modified the episode generating strategy of C-way classifica-
tion, which selects the number of shots randomly between 1 to 50 for each of the classes. We set the
number of query points as 15 and the meta learning rate β is set to 1e-4. Other components are set
to the same as referred in Imbalanced Omniglot. We trained models on the tiered-ImageNet, and
evaluated with the test split of tiered-ImageNet and mini-ImageNet.

A.3 INFERENCE NETWORK ARCHITECTURE

We describe the network architecture of the inference network that takes a classification dataset as an
input and generates three balancing variables as output. We additionally used two average pooling
with 2 × 2 strides before the shared encoder NN1 with large inputs such as tiered-ImageNet and
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mini-ImageNet. We empirically found that attaching average pooling reduces computation cost while
improving performance.

Shared encoder NN1 : Xτc → sc

conv2d 10 feature maps with 3 × 3 kernels and ReLU activation
max pooling with 2 × 2 strides
conv2d 10 feature maps with 3 × 3 kernels and ReLU activation
max pooling with 2 × 2 strides
fully-connected linear layer with 64 units
Statistics Pooling across the 64-dim. representations.
Concatenate the statistics into a single vector sc for class c

Shared encoder NN2 : s1, . . . , sC → vτ

fully-connected layer with 128 units and ReLU activation
fully-connected linear layer with 32 units
Statistics Pooling across the 32-dim. class representations
Concatenate the statistics into a single vector vτ for task τ

Shared encoder NN3 : vτ → µτφ,σ
τ
φ

fully-connected layer with 64 units and ReLU activation
fully-connected layer to generate µτφ and στφ

B JUSTIFICATION FOR SET-OF-SETS STRUCTURE.

Based on the previous justification of DeepSets (Zaheer et al., 2017), we can easily justify the Set-of-
Sets structure proposed in the main paper as well, in terms of the two-level permutation invariance
properties required for any classification dataset. The main theorem of DeepSets is:
Theorem 1. A function f operating on a set X ∈ X is a valid set function (i.e. permutation
invariant), iff it can be decomposed as f(X) = ρ2(

∑
x∈X ρ1(x)), where ρ1 and ρ2 are appropriate

nonlinearities.

See (Zaheer et al., 2017) for the proof. Here we apply the same argument twice as follows.

1. A function f operating on a set of representations {s1, . . . , sC} (we assume each sc is an
output from a shared function g) is a valid set function (i.e. permutation invariant w.r.t. the
order of {s1, . . . , sC}), iff it can be decomposed as f({s1, . . . , sC}) = ρ2(

∑C
c=1 ρ1(sc))

with appropriate nonlinearities ρ1 and ρ2.
2. A function g operating on a set of examples {xc,1, . . . ,xc,N} is a valid set function (i.e.

permutation invariant w.r.t. the order of {xc,1, . . . ,xc,N}) iff it can be decomposed as
g({xc,1, . . . ,xc,N}) = ρ4(

∑N
i=1 ρ3(xc,i)) with appropriate nonlinearities ρ3 and ρ4.

Inserting sc = g({xc,1, . . . ,xc,N}) into the expression of f , we arrive at the following valid compos-
ite function operating on a set of sets:

f
(
{g ({xc,1, . . . ,xc,N})}Cc=1

)
= ρ2

(
C∑
c=1

ρ1

(
ρ4

(
N∑
i=1

ρ3 (xc,i)

)))
(8)

Let F denote the composite of f and (multiple) g and let NN2 denote the composite of ρ1 and ρ4.
Further define NN1 := ρ3 and NN3 := ρ2. Then, we have

F
({
{x1,1, . . . ,x1,N}, . . . , {xC,1, . . . ,xC,N}

})
= NN3

(
C∑
c=1

NN2

(
N∑
i=1

NN1 (xc,i)

))
(9)

where C is the number of classes and N is the number of examples per class. See Section A.3 for the
correspondence between Eq. (9) and the actual encoder structure.
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C COMPARISON BETWEEN THE TWO APPROXIMATIONS

We provide the comparison between the two approximation schemes for evaluating the expectation
of the test example predictions at meta-testing time. Naive approximation means that we take the
expectation inside (i.e. we do not sample) and MC approximation means that we perform Monte-
Carlo integration with sample size S = 10 1. We see from the Table 8 that MC ingetration performs
better than the naive approximation, especially with OOD tasks (e.g. MNIST, mini-ImageNet). This
is because the predictive distributions involve higher uncertainty for OOD tasks, hence there exists
more benefit from considering the large variance than simply ignoring it.

Models (K=5) Omniglot MNIST tiered-ImageNet mini-ImageNet
Bayesian TAML (Naive approx.) 96.18 ± 0.33 83.95 ± 0.52 71.17 ± 1.09 57.68 ± 0.48
Bayesian TAML (MC approx.) 96.29 ± 0.31 84.39 ± 0.48 71.42 ± 1.00 58.37 ± 0.49

Table 8: Classification performance under realistic scenario. The models are trained with Omniglot(left)
and tiered-ImageNet(right) with imbalanced setting. All reported results are average performances over 1000
for Omniglot and MNIST and 600 for tiered-ImageNet and mini-ImageNet randomly selected episodes with
standard errors for 95% confidence interval over tasks.

D FEW-SHOT CLASSIFICATION WITH FIXED-WAY AND FIXED-SHOT.

We further compare our model with the existing meta-learning approaches on conventional few-shot
classification with fixed-way and fixed-shot.

Omniglot. We report the 20-way classification performance for this dataset. Following Finn et al.
(2017), we use 4-block convolutional neural network architecture with 64 channels for each layer.
We set the number of inner-gradient steps K to 5 for both meta-training and meta-testing.

Mini-ImageNet. We report the 5-way classification performance with the meta-batch 4 and 2 for 1-
and 5-shot, respectively. We reduce the convolution filter size of the 4-block CNN network into 32 to
prevent overfitting. We set K = 5 for multi-step models for both meta-training and meta-testing.

Omniglot 20-way mini-ImageNet 5-way

Models 1-shot 5-shot 1-shot 5-shot
Meta-Learner LSTM Ravi & Larochelle (2017) - - 43.44 ± 0.77 60.60 ± 0.71

Prototypical Networks Snell et al. (2017) 2 96.0 98.9 49.42 ± 0.78 65.77 ± 0.70
MAML (Finn et al., 2017) 95.80 ± 0.30 98.90 ± 0.20 48.70 ± 1.84 63.11 ± 0.92
Meta-SGD (Li et al., 2017) 95.93 ± 0.38 98.97 ± 0.19 50.71 ± 1.87 64.03 ± 0.94

Meta-SGD (K=3,5) 96.03 ± 0.43 98.72 ± 0.56 49.63 ± 1.41 63.74 ± 1.03
Relation Net (Yang et al., 2017) 97.6 ± 0.2 99.1 ± 0.1 50.44 ± 0.82 65.32 ± 0.70
MT-NET (Lee & Choi, 2018) 96.20 ± 0.40 - 51.70 ± 1.84 -

Probabilistic MAML (Finn et al., 2018) - - 50.13 ± 1.86 -
Reptile (Nichol et al., 2018) 89.43 ± 0.14 97.12 ± 0.32 49.97 ± 0.32 65.99 ± 0.58
BMAML (Kim et al., 2018) - - 53.8 ± 1.46 -

VERSA (Gordon et al., 2018) 97.66 ± 0.29 98.77 ± 0.18 53.40 ± 1.82 67.37 ± 0.86
Bayesian TAML 98.10 ± 0.26 99.12 ± 0.18 51.72 ± 1.62 68.32 ± 1.11

We first compare our method on conventional fixed-way fixed-shot classification task against existing
meta-learning methods. Though the classification with uniformly distributed instances is not the task
we aim to tackle, we find that Bayesian TAML outperforms most baseline models, except for the
mini-imagenet 5-way 1-shot experiment where BMAML works the best.

1At meta-training time, we perform MC approximation with a single sample for computational efficiency
2We adopt the accuracies of the Prototypical Network in the setting which the number of shot and way are

the same for training and testing phase for the consistency with other methods. In the "higher way" setting where
20-way is used during training for 5-way testing, the reported performance of the model is 68.20 ± 0.66%.
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