
Under review as a conference paper at ICLR 2020

PAIRNORM: TACKLING OVERSMOOTHING IN GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of graph neural nets (GNNs) is known to gradually decrease
with increasing number of layers. This decay is partly attributed to oversmooth-
ing, where repeated graph convolutions eventually make node embeddings indis-
tinguishable. We take a closer look at two different interpretations, aiming to
quantify oversmoothing. Our main contribution is PAIRNORM, a novel normal-
ization layer that is based on a careful analysis of the graph convolution operator,
which prevents all node embeddings from becoming too similar. What is more,
PAIRNORM is fast, easy to implement without any change to network architecture
nor any additional parameters, and is broadly applicable to any GNN. Experiments
on real-world graphs demonstrate that PAIRNORM makes deeper GCN, GAT, and
SGC models more robust against oversmoothing, and significantly boosts perfor-
mance for a new problem setting that benefits from deeper GNNs.

1 INTRODUCTION

Graph neural networks (GNNs) is a family of neural networks that can learn from graph structured
data. Starting with the success of GCN (Kipf & Welling, 2017) on achieving state-of-the-art per-
formance on semi-supervised classification, several variants of GNNs have been developed for this
task; including GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018), SGC (Wu et al.,
2019), and GMNN (Qu et al., 2019) to name a few most recent ones.

A key issue with GNNs is their depth limitations. It has been observed that deeply stacking the
layers often results in significant drops in performance for GNNs, such as GCN and GAT, even
beyond just a few (2–4) layers. This drop is associated with a number of factors; including the
vanishing gradients in back-propagation, overfitting due to the increasing number of parameters, as
well as the phenomenon called oversmoothing.

Li et al. (2018) was the first to call attention to the oversmoothing problem. Having shown that
the graph convolution is a type of Laplacian smoothing, they proved that after repeatedly applying
Laplacian smoothing many times, the features of the nodes in the (connected) graph would converge
to similar values—the issue coined as “oversmoothing”. In effect, oversmoothing hurts classification
performance by causing the node representations to be indistinguishable across different classes.
Later, several others have alluded to the same problem (Xu et al., 2018; Klicpera et al., 2019; Rong
et al., 2019; Li et al., 2019) (See §5 Related Work).

In this work, we address the oversmoothing problem in deep GNNs. Specifically, we propose (to the
best of our knowledge) the first normalization layer for GNNs that is applied in-between intermediate
layers during training. Our normalization has the effect of preventing the output features of distant
nodes to be too similar or indistinguishable, while at the same time allowing those of connected
nodes in the same cluster become more similar. We summarize our main contributions as follows.

• Normalization to Tackle Oversmoothing in GNNs: We introduce a normalization scheme,
called PAIRNORM, that makes GNNs significantly more robust to oversmoothing and as a
result enables the training of deeper models without sacrificing performance. Our proposed
scheme capitalizes on the understanding that most GNNs perform a special form of Laplacian
smoothing, which makes node features more similar to one another. The key idea is to ensure
that the total pairwise feature distances remains a constant across layers, which in turn leads to
distant pairs having less similar features, preventing feature mixing across clusters.
• Speed and Generality: PAIRNORM is very straightforward to implement and introduces
no additional parameters. It is simply applied to the output features of each layer (except the
last one) consisting of simple operations, in particular centering and scaling, that are linear in

1

Under review as a conference paper at ICLR 2020

the input size. Being a simple normalization step between layers, PAIRNORM is not specific
to any particular GNN but rather applies broadly. In this work we use PAIRNORM to tackle
oversmoothing for the GCN, GAT, and SGC models.
• Use Case for Deeper GNNs: While PAIRNORM prevents performance from dropping sig-
nificantly with increasing number of layers, it does not necessarily yield increased performance
in absolute terms. We find that this is because shallow architectures with no more than 2–4 lay-
ers is sufficient for the often-used benchmark datasets in the literature. In response, we motivate
a real-world scenario wherein a notable portion of the nodes have no feature vectors. In such
settings, nodes benefit from a larger range (i.e., neighborhood, hence a deeper GNN) to “re-
cover” effective feature representations. Through extensive experiments, we show that GNNs
employing our PAIRNORM significantly outperform the ‘vanilla’ GNNs when deeper models
are beneficial to the classification task.

All of our source code and datasets are shared publicly at http://bit.ly/PairNorm.

2 UNDERSTANDING OVERSMOOTHING

In this work, we consider the semi-supervised node classification (SSNC) problem on a graph. In
the general setting, a graph G = (V, E ,X) is given in which each node i ∈ V is associated with a
feature vector xi ∈ Rd where X = [x1, . . . ,xn]

T denotes the feature matrix, and a subset Vl ⊂ V
of the nodes are labeled, i.e. yi ∈ {1, . . . , c} for each i ∈ Vl where c is the number of classes. Let
A ∈ Rn×n be the adjacency matrix and D = diag(deg1, . . . , degn) ∈ Rn×n be the degree matrix
of G. Let Ã = A + I and D̃ = D + I denote the augmented adjacency and degree matrices with
added self-loops on all nodes, respectively. Let Ãsym = D̃−1/2ÃD̃−1/2 and Ãrw = D̃−1Ã denote
symmetrically and nonsymmetrically normalized adjacency matrices with self-loops.

The task is to learn a hypothesis that predicts yi from xi that generalizes to the unlabeled nodes
Vu = V\Vl. In Section 3.2, we introduce a variant of this setting where only a subset F ⊂ V of the
nodes have feature vectors and the rest are missing. We show that SSNC on such graphs necessitates
deeper GNNs with a larger number of layers, where tackling the oversmoothing problem becomes
particularly beneficial.

2.1 THE OVERSMOOTHING PROBLEM

Although GNNs like GCN and GAT achieve state-of-the-art results in a variety of graph-based tasks,
these models are not very well-understood, especially why they work for the SSNC problem where
only a small amount of training data is available. The success appears to be limited to shallow
GNNs, where the performance gradually decreases with the increasing number of layers. This
decrease is often attributed to three contributing factors: (1) overfitting due to increasing number
of parameters, (2) difficulty of training due to vanishing gradients, and (3) oversmoothing due to
many graph convolutions.

Among these, perhaps the least understood one is oversmoothing, which indeed lacks a formal
definition. In their analysis of GCN’s working mechanism, Li et al. (2018) showed that the graph
convolution of GCN is a special form of Laplacian smoothing. The standard form being (I−γI)X+

γÃrwX, the graph convolution lets γ = 1 and uses the symmetrically normalized Laplacian to
obtain X̃ = ÃsymX, where the new features x̃ of a node is the weighted average of its own and its
neighbors’ features. This smoothing allows the node representations within the same cluster become
more similar, and in turn helps improve SSNC performance under the cluster assumption (Chapelle
et al., 2006). However when GCN goes deep, the performance can suffer from oversmoothing
where node representations from different clusters become mixed up. Let us refer to this issue of
node representations becoming too similar as node-wise oversmoothing.

Another way of thinking about oversmoothing is as follows. Repeatedly applying Laplacian smooth-
ing too many times would drive node features to a stationary point, washing away all the information
from these features. Let x·j ∈ Rn denote the j-th column of X. Then, for any x·j ∈ Rn:

lim
k→∞

Ãk
symx·j = πj and

πj

‖πj‖1
= π , (1)

where the normalized solution π ∈ Rn satisfies πi =
√
degi∑

i

√
degi

for all i ∈ [n]. Notice that π is
independent of the values x·j of the input feature and is only a function of the graph structure (i.e.,

2

http://bit.ly/PairNorm

Under review as a conference paper at ICLR 2020

degree). In other words, (Laplacian) oversmoothing washes away the signal from all the features,
making them indistinguishable. We will refer to this viewpoint as feature-wise oversmoothing.

To this end we propose two measures, row-diff and col-diff, to quantify these two types of over-
smoothing. Let H(k) ∈ Rn×d be the representation matrix after k graph convolutions, i.e.
H(k) = Ãk

symX. Let h
(k)
i ∈ Rd be the i-th row of H(k) and h

(k)
·i ∈ Rn be the i-th column of

H(k). Then we define row-diff(H(k)) and col-diff(H(k)) as follows.

row-diff(H(k)) =
1

n2

∑
i,j∈[n]

∥∥∥h(k)
i − h

(k)
j

∥∥∥
2

(2)

col-diff(H(k)) =
1

d2

∑
i,j∈[d]

∥∥∥h(k)
·i /‖h

(k)
·i ‖1 − h

(k)
·j /‖h

(k)
·j ‖1

∥∥∥
2

(3)

The row-diff measure is the average of all pairwise distances between the node features (i.e., rows of
the representation matrix) and quantifies node-wise oversmoothing, whereas col-diff is the average
of pairwise distances between (L1-normalized1) columns of the representation matrix and quantifies
feature-wise oversmoothing.

2.2 STUDYING OVERSMOOTHING WITH SGC

Although oversmoothing can be a cause of performance drop with increasing number of layers in
GCN, adding more layers also leads to more parameters (due to learned linear projections W(k) at
each layer k) which magnify the potential of overfitting. Furthermore, deeper models also make the
training harder as backpropagation suffers from vanishing gradients.

In order to decouple the effect of oversmoothing from these other two factors, we study the over-
smoothing problem using the SGC model (Wu et al., 2019). (Results on other GNNs are presented
in §4.) SGC is simplified from GCN by removing all projection parameters of graph convolution
layers and all nonlinear activations between layers. The estimation of SGC is simply written as:

Ŷ = softmax(ÃK
sym X W) (4)

where K is the number of graph convolutions, and W ∈ Rd×c denote the learnable parameters of a
logistic regression classifier.

Note that SGC has a fixed number of parameters that does not depend on the number of graph
convolutions (i.e. layers). In effect, it is guarded against the influence of overfitting and vanishing
gradient problem with more layers. This leaves us only with oversmoothing as a possible cause of
performance degradation with increasing K. Interestingly, the simplicity of SGC does not seem to
be a sacrifice; it has been observed that it achieves similar or better accuracy in various relational
classification tasks (Wu et al., 2019).

0 20 40
Layers

0.5

1.0

1.5

Lo
ss

train_loss
val_loss
test_loss

0 20 40
Layers

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

train_acc
val_acc
test_acc

0 20 40
Layers

2

4

6

Di
st
an
ce

row_diff

0 20 40
Layers

0.1

0.2

0.3

0.4

Di
st
an
ce

col_diff

PairNorm Original

Figure 1: (best in color) SGC’s performance (dashed lines) with increasing graph convolutions (K)
on Cora dataset (train/val/test split is 3%/10%/87%). For each K, we train SGC in 500 epochs,
save the model with the best validation accuracy, and report all measures based on the saved model.
Measures row-diff and col-diff are computed based on the final layer representation of the saved
model. (Solid lines depict after applying our method PAIRNORM, which we discuss in §3.2.)

Dashed lines in Figure 1 illustrate the performance of SGC on the Cora dataset as we increase the
number of layers (K). The training (cross-entropy) loss monotonically increases with larger K,
potentially because graph convolution mixes node representations with their neighbors’ and makes
them less distinguishable (training becomes harder). On the other hand, graph convolutions (i.e.,
smoothing) improve generalization ability, reducing the gap between training and validation/test loss

1We normalize each column j as the Laplacian smoothing stationary point πj is not scale-free. See Eq. (1).

3

Under review as a conference paper at ICLR 2020

up to K = 4, after which (over)smoothing begins to hurt performance. The row-diff and col-diff
both continue decreasing monotonically with K, providing supporting evidence for oversmoothing.

3 TACKLING OVERSMOOTHING

3.1 PROPOSED PAIRNORM

We start by establishing a connection between graph convolution and an optimization problem, that
is graph-regularized least squares (GRLS), as shown by NT & Maehara (2019). Let X̄ ∈ Rn×d be a
new node representation matrix, with x̄i ∈ Rd depicting the i-th row of X̄. Then the GRLS problem
is given as

min
X̄

∑
i∈V
‖x̄i − xi‖2D̃ +

∑
(i,j)∈E

‖x̄i − x̄j‖2 (5)

where ‖z‖2
D̃

= zT D̃z. The first term can be seen as degree-weighted least squares. The second is
a graph-regularization term that measures the variation of the new features over the graph structure.
The goal of the optimization problem can be stated as estimating new “denoised” features x̄i’s that
are not too far off of the input features xi’s and are smooth over the graph structure.

The GRLS problem has a closed form solution X̄ = (2I − Ãrw)
−1X, for which ÃrwX is the first-

order Taylor approximation, that is ÃrwX ≈ X̄. By exchanging Ãrw with Ãsym we obtain the same
form as the graph convolution, i.e., X̃ = ÃsymX ≈ X̄. As such, graph convolution can be viewed as
an approximate solution of (5), where it minimizes the variation over graph structure while keeping
the new representations close to the original.

The optimization problem in (5) facilitates a closer look to the oversmoothing problem of graph
convolution. Ideally, we want to obtain smoothing over nodes within the same cluster, however
avoid smoothing over nodes from different clusters. The objective in (5) dictates only the first goal
via the graph-regularization term. It is thus prone to oversmoothing when convolutions are applied
repeatedly. To circumvent the issue and fulfill both goals simultaneously, we can add a negative
term such as the sum of distances between disconnected pairs as follows.

min
X̄

∑
i∈V
‖x̄i − xi‖2D̃ +

∑
(i,j)∈E

‖x̄i − x̄j‖22 − λ
∑

(i,j)/∈E

‖x̄i − x̄j‖22 (6)

where λ is a balancing scalar to account for different volume and importance of the two goals.2
By deriving the closed-form solution of (6) and approximating it with first-order Taylor expansion,
one can get a revised graph convolution operator with hyperparameter λ. In this paper, we take a
different route. Instead of a completely new graph convolution operator, we propose a general and
efficient “patch”, called PAIRNORM, that can be applied to any form of graph convolution having
the potential of oversmoothing.

Let X̃ (the output of graph convolution) and Ẋ respectively be the input and output of PAIRNORM.
Observing that the output of graph convolution X̃ = ÃsymX only achieves the first goal, PAIRNORM

serves as a normalization layer that works on X̃ to achieve the second goal of keeping disconnected
pair representations farther off. Specifically, PAIRNORM normalizes X̃ such that the total pairwise
distance TPD(Ẋ) :=

∑
i,j∈[n] ‖ẋi − ẋj‖22 is the same as TPD(X). That is,∑

(i,j)∈E

‖ẋi − ẋj‖22 +
∑

(i,j)/∈E

‖ẋi − ẋj‖22 =
∑

(i,j)∈E

‖xi − xj‖22 +
∑

(i,j)/∈E

‖xi − xj‖22 . (7)

By keeping the total pairwise distance unchanged, the term
∑

(i,j)/∈E ‖ẋi− ẋj‖22 is guaranteed to be
at least as large as the original value

∑
(i,j)/∈E ‖xi−xj‖22 since the other term

∑
(i,j)∈E ‖ẋi−ẋj‖22 ≈∑

(i,j)∈E ‖x̃i − x̃j‖22 is shrunk through the graph convolution.

In practice, instead of always tracking the original value TPD(X), we can maintain a constant TPD
value C across all layers, where C is a hyperparameter that could be tuned per dataset.

To normalize X̃ to constant TPD, we need to first compute TPD(X̃). Directly computing TPD
involves n2 pairwise distances that is O(n2d), which can be time consuming for large datasets.

2There exist other variants of (6) that achieve similar goals, and we leave the space for future exploration.

4

Under review as a conference paper at ICLR 2020

Equivalently, normalization can be done via a two-step approach where TPD is rewritten as3

TPD(X̃) =
∑

i,j∈[n]

‖x̃i − x̃j‖22 = 2n2
(
1

n

n∑
i=1

‖x̃i‖22 − ‖
1

n

n∑
i=1

x̃i‖22
)
. (8)

The first term (ignoring the scale 2n2) in Eq. (8) represents the mean squared length of node
representations, and the second term depicts the squared length of the mean of node represen-
tations. To simplify the computation of (8), we subtract the row-wise mean from each x̃i, i.e.,
x̃c
i = x̃i − 1

n

∑n
i x̃i where x̃c

i denotes the centered representation. Note that this shifting does not
affect the TPD, and furthermore drives the term ‖ 1n

∑n
i=1 x̃i‖22 to zero, where computing TPD(X̃)

boils down to calculating the squared Frobenius norm of X̃c and overall takes O(nd). That is,
TPD(X̃) = TPD(X̃c) = 2n‖X̃c‖2F . (9)

In summary, our proposed PAIRNORM (with input X̃ and output Ẋ) can be written as a two-step,
center-and-scale, normalization procedure:

x̃c
i = x̃i −

1

n

n∑
i=1

x̃i (Center) (10)

ẋi = s · x̃c
i√

1
n

∑n
i=1 ‖x̃c

i‖22
= s
√
n · x̃c

i√
‖X̃c‖2F

(Scale) (11)

After scaling the data remains centered, that is, ‖
∑n

i=1 ẋi‖22 = 0. In Eq. (11), s is a hyperparameter
that determines C. Specifically,

TPD(Ẋ) = 2n‖Ẋ‖2F = 2n
∑
i

‖s · x̃c
i√

1
n

∑
i ‖x̃c

i‖22
‖22 = 2n

s2

1
n

∑
i ‖x̃c

i‖22

∑
i

‖x̃c
i‖22 = 2n2s2 (12)

Then, Ẋ := PAIRNORM(X̃) has row-wise mean 0 (i.e., is centered) and constant total pairwise
distance C = 2n2s2. An illustration of PAIRNORM is given in Figure 2. The output of PAIRNORM
is input to the next convolution layer.

graph conv center

PairNorm

rescale
X X̃cX̃ Ẋ

Figure 2: Illustration of PAIRNORM, comprising centering and rescaling steps.

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

cora-GCN
PairNorm(SI)
Original

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

cora-GAT
train_acc
val_acc
test_acc

Figure 3: (best in color) Performance comparison of
the original (dashed) vs. PAIRNORM-enhanced (solid)
GCN and GAT models with increasing layers on Cora.

We also derive a variant of PAIRNORM
by replacing

∑n
i=1 ‖x̃c

i‖22 in Eq. (11)
with n‖x̃c

i‖22, such that the scaling
step computes ẋi = s · x̃c

i

‖x̃c
i‖2

.
We call it PAIRNORM-SI (for Scale
Individually), which imposes more re-
striction on node representations, such
that all have the same L2-norm s. In
practice we found that both PAIRNORM
and PAIRNORM-SI work well for SGC,
whereas PAIRNORM-SI provides better
and more stable results for GCN and
GAT. The reason why GCN and GAT require stricter normalization may be because they have more
parameters and are more prone to overfitting. In all experiments, we employ PAIRNORM for SGC
and PAIRNORM-SI for both GCN and GAT.

PAIRNORM is effective and efficient in solving the oversmoothing problem of GNNs. As a general
normalization layer, it can be used for any GNN. Solid lines in Figure 1 present the performance
of SGC on Cora with increasing number of layers, where we employ PAIRNORM after each graph
convolution layer, as compared to ‘vanilla’ versions. Similarly, Figure 3 is for GCN and GAT

3See Appendix A.1 for the detailed derivation.

5

Under review as a conference paper at ICLR 2020

(PAIRNORM is applied after the activation of each graph convolution). Note that the performance
decay with PAIRNORM-at-work is much slower. (See Fig.s 5–6 in Appx. A.3 for other datasets.)

While PAIRNORM enables deeper models that are more robust to oversmoothing, it may seem odd
that the overall test accuracy does not improve. In fact, the benchmark graph datasets often used
in the literature require no more than 4 layers, after which performance decays (even if slowly). In
the next section, we present a realistic use case setting for which deeper models are more likely to
provide higher performance, where the benefit of PAIRNORM becomes apparent.

3.2 A CASE WHERE DEEPER GNNS ARE BENEFICIAL

In general, oversmoothing gets increasingly more severe as the number of layers goes up. A task
would benefit from employing PAIRNORM more if it required a large number of layers to achieve
its best performance. To this effect we study the “missing feature setting”, where a subset of the
nodes lack feature vectors. Let M ⊆ Vu be the set where ∀m ∈ M,xm = ∅, i.e., all of their
features are missing. We denote with p = |M|/|Vu| the missing fraction. We call this variant of
the task as semi-supervised node classification with missing vectors (SSNC-MV). Intuitively, one
would require a larger number of propagation steps (hence, a deeper GNN) to be able to “recover”
effective feature representations for these nodes.

SSNC-MV is a general and realistic problem that finds several applications in the real world. For
example, the credit lending problem of identifying low- vs. high-risk customers (nodes) can be
modeled as SSNC-MV where a large fraction of nodes do not exhibit any meaningful features (e.g.,
due to low-volume activity). In fact, many graph-based classification tasks with the cold-start issue
(entity with no history) can be cast into SSNC-MV. To our knowledge, this is the first work to study
the SSNC-MV problem using GNN models.

Figure 4 presents the performance of SGC, GCN, and GAT models on Cora with increasing number
of layers, where we remove feature vectors from all the unlabeled nodes, i.e. p = 1. The models
with PAIRNORM achieve a higher test accuracy compared to those without, which they typically
reach at a larger number of layers. (See Fig. 7 in Appx. A.4 for results on other datasets.) Note that
we have not explored the full range of possible settings that could benefit from deeper GNN models.
We leave the exploration of other use cases for which PAIRNORM could yield performance boost as
a possible future direction.

0 20 40
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

cora-SGC

0 10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

cora-GCN
PairNorm(SI)
Original

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

cora-GAT
train_acc
val_acc
test_acc

Figure 4: (best in color) Comparison of ‘vanilla’ vs. PAIRNORM-enhanced SGC, GCN, and GAT
performance on Cora for p = 1. Green diamond symbols depict the layer at which validation
accuracy peaks. PAIRNORM boosts overall performance by enabling more robust deep GNNs.

4 EXPERIMENTS

In section 3 we have shown the robustness of PAIRNORM-enhanced models against increasing num-
ber of layers in SSNC problem. In this section we design extensive experiments to evaluate the
effectiveness of PAIRNORM under the SSNC-MV setting, over SGC, GCN and GAT models.

4.1 EXPERIMENT SETUP

Datasets. We use 4 well-known benchmark datasets in GNN domain: Cora, Citeseer, Pubmed
(Sen et al., 2008), and CoauthorCS (Shchur et al., 2018). Their statistics are reported in Appx. A.2.
For Cora, Citeseer and Pubmed, we use the same dataset splits as Kipf & Welling (2017), where
all nodes outside train and validation are used as test set. For CoauthorCS, we randomly split all
nodes into train/val/test as 3%/10%/87%, and keep the same split for all experiments.
Models. We use three different GNN models as our base model: SGC (Wu et al., 2019), GCN
(Kipf & Welling, 2017), and GAT (Velickovic et al., 2018). We compare our PAIRNORM with

6

Under review as a conference paper at ICLR 2020

residual connection method (He et al., 2016) over base models (except SGC since there is no “resid-
ual connected” SGC), as we surprisingly find it can slow down oversmoothing and benefit SSNC-
MV problem. Similar to us, residual connection is a general technique that can be applied to any
model without changing its architecture. We focus on the comparison between the base models
and PAIRNORM-enhanced models, rather than achieving the state of the art performance for SSNC
and SSNC-MV. There exist a few other work addressing oversmoothing (Klicpera et al., 2019; Li
et al., 2018; Rong et al., 2019; Xu et al., 2018) however they design specialized architectures and
not simple “patch” procedures like PAIRNORM that can be applied on top of any GNN.
Hyperparameters. We choose the hyperparameter s of PAIRNORM from {0.1, 1, 10, 50, 100}
over validation set for SGC, while keeping it fixed at s = 1 for both GCN and GAT due to resource
limitations. We set the #hidden units of GCN and GAT (#attention heads is set to 1) to 32 and 64
respectively for all datasets. Dropout with rate 0.6 and L2 regularization with penalty 5 · 10−4 are
applied to GCN and GAT. For SGC, we vary number of layers in {1, 2, . . . 10, 15, . . . , 60} and for
GCN and GAT in {2, 4, . . . , 12, 15, 20, . . . , 30}.
Configurations. For PAIRNORM-enhanced models, we apply PAIRNORM after each graph convo-
lution layer (i.e., after activation if any) in the base model. For residual-connected models with t
skip steps, we connect the output of l-th layer to (l + t)-th, that is, H

(l+t)
new = H(l+t) + H(l) where

H(l) denotes the output of l-th graph convolution (after activation). For the SSNC-MV setting, we
randomly erase p fraction of the feature vectors from nodes in validation and test sets (for which we
input vector 0 ∈ Rd), whereas all training (labeled) nodes keep their original features (See 3.2). We
run each experiment within 1000 epochs 5 times and report the average performance. We mainly
use a single GTX-1080ti GPU, with some SGC experiments ran on an Intel i7-8700k CPU.

4.2 EXPERIMENT RESULTS

We first show the global performance gain of applying PAIRNORM to SGC for SSNC-MV under
varying feature missing rates as shown in Table 1. PAIRNORM-enhanced SGC performs similar
or better over 0% missing, while it significantly outperforms vanilla SGC for most other settings,
especially for larger missing rates. #L denotes the best number of layers for the model that yields
the largest average validation accuracy (over 5 runs), for which we report the average test accuracy
(Acc). Notice the larger #L values for SGC-PN compared to vanilla SGC, which shows the power
of PAIRNORM for enabling “deep” SGC models by effectively tackling oversmoothing.

Similar to Wu et al. (2019) who showed that the simple SGC model achieves comparable or better
performance as other GNNs for various tasks, we found PAIRNORM-enhanced SGC to follow the
same trend when compared with PAIRNORM-enhanced GCN and GAT, for all SSNC-MV settings.
Due to its simplicity and extreme efficiency, we believe PAIRNORM-enhanced SGC sets a strong
baseline for the SSNC-MV problem.

Table 1: Comparison of ‘vanilla’ vs. PAIRNORM-enhanced SGC performance in Cora, Citeseer,
Pubmed, and CoauthorCS for SSNC-MV problem, with missing rate ranging from 0% to 100%.
Showing test accuracy at #L (K in Eq. 4) layers, at which model achieves best validation accuracy.

Missing Percentage 0% 20% 40% 60% 80% 100%
Dataset Method Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L

Cora
SGC 0.815 4 0.806 5 0.786 3 0.742 4 0.733 3 0.423 15
SGC-PN 0.811 7 0.799 7 0.797 7 0.783 20 0.780 25 0.745 40

Citeseer
SGC 0.689 10 0.684 6 0.668 8 0.657 9 0.565 8 0.290 2
SGC-PN 0.706 3 0.695 3 0.653 4 0.641 5 0.590 50 0.486 50

Pubmed
SGC 0.754 1 0.748 1 0.723 4 0.746 2 0.659 3 0.399 35
SGC-PN 0.782 9 0.781 7 0.778 60 0.782 7 0.772 60 0.719 40

CoauthorCS
SGC 0.914 1 0.898 2 0.877 2 0.824 2 0.751 4 0.318 2
SGC-PN 0.915 2 0.909 2 0.899 3 0.891 4 0.880 8 0.860 20

We next employ PAIRNORM-SI for GCN and GAT under the same setting, comparing it with the
residual (skip) connections technique. Results are shown in Table 2 and Table 3 respectively for
GCN and GAT. Due to space and resource limitations, we only show results for 0% and 100% miss-
ing rate scenarios. (We provide results for other missing rates (70, 80, 90%) over 1 run only in Appx.
A.5.) We observe similar trend for GCN and GAT: (1) vanilla model suffers from performance drop
under SSNC-MV with increasing missing rate; (2) both residual connections and PAIRNORM-SI

7

Under review as a conference paper at ICLR 2020

enable deeper models and improve performance (note the larger #L and Acc); (3) GCN-PN and
GAT-PN achieve performance that is comparable or better than just using skips; (4) performance
can be further improved (albeit slightly) by using skips along with PAIRNORM-SI.4

Table 2: Comparison of ‘vanilla’ and (PAIRNORM-SI/ residual)-enhanced GCN performance on
Cora, Citeseer, Pubmed, and CoauthorCS for SSNC-MV problem, with 0% and 100% feature
missing rate. t represents the skip-step of residual connection. (See A.5 Fig. 8 for more settings.)

Dataset Cora Citeseer Pubmed CoauthorCS
Missing(%) 0% 100% 0% 100% 0% 100% 0% 100%
Method Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L

GCN 0.821 2 0.582 2 0.695 2 0.313 2 0.779 2 0.449 2 0.877 2 0.452 4

GCN-PN 0.790 2 0.731 10 0.660 2 0.498 8 0.780 30 0.745 25 0.910 2 0.846 12
GCN-t1 0.822 2 0.721 15 0.696 2 0.441 12 0.780 2 0.656 25 0.898 2 0.727 12
GCN-t1-PN 0.780 2 0.724 30 0.648 2 0.465 10 0.756 15 0.690 12 0.898 2 0.830 20
GCN-t2 0.820 2 0.722 10 0.691 2 0.432 20 0.779 2 0.645 20 0.882 4 0.630 20
GCN-t2-PN 0.785 4 0.740 30 0.650 2 0.508 12 0.770 15 0.725 30 0.911 2 0.839 20

Table 3: Comparison of ‘vanilla’ and (PAIRNORM-SI/ residual)-enhanced GAT performance on
Cora, Citeseer, Pubmed, and CoauthorCS for SSNC-MV problem, with 0% and 100% feature
missing rate. t represents the skip-step of residual connection. (See A.5 Fig. 9 for more settings.)

Dataset Cora Citeseer Pubmed CoauthorCS
Missing(%) 0% 100% 0% 100% 0% 100% 0% 100%
Method Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L

GAT 0.823 2 0.653 4 0.693 2 0.428 4 0.774 6 0.631 4 0.892 4 0.737 4

GAT-PN 0.787 2 0.718 6 0.670 2 0.483 4 0.774 12 0.714 10 0.916 2 0.843 8
GAT-t1 0.822 2 0.706 8 0.693 2 0.461 6 0.769 4 0.698 8 0.899 4 0.842 10
GAT-t1-PN 0.787 2 0.710 10 0.658 6 0.500 10 0.757 4 0.684 12 0.911 2 0.844 20
GAT-t2 0.820 2 0.691 8 s0.692 2 0.461 6 0.774 8 0.702 8 0.895 4 0.803 6
GAT-t2-PN 0.788 4 0.738 12 0.672 4 0.517 10 0.776 15 0.704 12 0.917 2 0.855 30

5 RELATED WORK

Oversmoothing in GNNs: Li et al. (2018) was the first to call attention to the oversmoothing prob-
lem. Xu et al. (2018) introduced Jumping Knowledge Networks, which employ skip connections
for multi-hop message passing and also enable different neighborhood ranges. Fey (2019) proposed
Just-Jump that makes a improvement based on Xu et al. (2018). Klicpera et al. (2019) proposed a
propagation scheme based on personalized Pagerank that ensures locality (via teleports) which in
turn prevents oversmoothing. Li et al. (2019) built on ideas from ResNet to use residual as well as
dense connections to train deep GCNs. DropEdge Rong et al. (2019) proposed to alleviate over-
smoothing through message passing reduction via removing a certain fraction of edges at random
from the input graph. These are all specialized solutions that introduce additional parameters and/or
a different network architecture.
Normalization Schemes for Deep-NNs: There exist various normalization schemes proposed for
deep neural networks, including batch normalization Ioffe & Szegedy (2015), weight normalization
Salimans & Kingma (2016), layer normalization Ba et al. (2016), and so on. Conceptually these
have substantially different goals (e.g., reducing training time), and were not proposed for graph
neural networks nor the oversmoothing problem therein. Important difference to note is that larger
depth in regular neural-nets does not translate to more hops of propagation on a graph structure.

6 CONCLUSION

We investigated the oversmoothing problem in GNNs and proposed PAIRNORM, a novel normal-
ization layer that boosts the robustness of deep GNNs against oversmoothing. PAIRNORM is fast to
compute, requires no change in network architecture nor any extra parameters, and can be applied to
any GNN. Experiments on real-world classification tasks showed the effectiveness of PAIRNORM,
where it provides performance gains when the task benefits from more layers. Future work will
explore other use cases of deeper GNNs that could further showcase PAIRNORM’s advantages.

4 Notice a slight performance drop when PAIRNORM is applied at 0% rate. For this setting, and the datasets we have, shallow networks
are sufficient and smoothing through only a few (2-4) layers improves generalization ability for the SSNC problem (recall Figure 1 solid lines).
PAIRNORM has a small reversing effect in these scenarios, hence the small performance drop.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised Learning. 2006.

Matthias Fey. Just jump: Dynamic neighborhood aggregation in graph neural networks. CoRR,
abs/1904.04849, 2019.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, pp. 1024–1034, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 770–778. IEEE, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR). OpenReview.net, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural networks
with personalized pagerank for classification on graphs. In International Conference on Learning
Representations (ICLR), 2019.

Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Can GCNs go as deep as CNNs?
CoRR, abs/1904.03751, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper Insights into Graph Convolutional Networks
for Semi-Supervised Learning. In Proceedings of the 32nd AAAI Conference on Artificial Intelli-
gence, pp. 3538–3545, 2018.

Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
CoRR, abs/1905.09550, 2019.

Meng Qu, Yoshua Bengio, and Jian Tang. Gmnn: Graph markov neural networks. In International
Conference on Machine Learning, pp. 5241–5250, 2019.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. The truly deep graph convolutional
networks for node classification. CoRR, abs/1907.10903, 2019.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems, pp.
901–909, 2016.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR). OpenReview.net, 2018.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In ICML, volume 97 of Proceedings of Machine
Learning Research, pp. 6861–6871. PMLR, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation Learning on Graphs with Jumping Knowledge Networks. In Proceedings
of the 35th International Conference on Machine Learning, volume 80, pp. 5453–5462, 2018.

9

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 DERIVATION OF EQ. 8

TPD(X̃) =
∑

i,j∈[n]

‖x̃i − x̃j‖22 =
∑

i,j∈[n]

(x̃i − x̃j)
T (x̃i − x̃j) (13)

=
∑

i,j∈[n]

(x̃T
i x̃i + x̃T

j x̃j − 2x̃T
i x̃j) (14)

= 2n
∑
i∈[n]

x̃T
i x̃i − 2

∑
i,j∈[n]

x̃T
i x̃j (15)

= 2n
∑
i∈[n]

‖x̃i‖22 − 21T X̃X̃T1 (16)

= 2n
∑
i∈[n]

‖x̃i‖22 − 2‖1T X̃‖22 (17)

= 2n2
(
1

n

n∑
i=1

‖x̃i‖22 − ‖
1

n

n∑
i=1

x̃i‖22
)
. (18)

A.2 DATASET STATISTICS

Table 4: Dataset statistics.
Name #Nodes #Edges #Features #Classes Label Rate
Cora 2708 5429 1433 7 0.052
Citeseer 3327 4732 3703 6 0.036
Pubmed 19717 44338 500 3 0.003
CoauthorCS 18333 81894 6805 15 0.030

A.3 ADDITIONAL PERFORMANCE PLOTS WITH INCREASING NUMBER OF LAYERS

0 20 40
Layers

0.5

1.0

Lo
ss train_loss

val_loss
test_loss

0 20 40
Layers

0.6

0.8

1.0

Ac
cu
ra
cy train_acc

val_acc
test_acc

0 20 40
Layers

4

6

8

Di
st
an
ce

row_diff

0 20 40
Layers

0.2

0.3

0.4

Di
st
an
ce

col_diff

citeseer (random split: 3%/10%/87%) PairNorm Original

0 20 40
Layers

0.4

0.6

0.8

1.0

Lo
ss train_loss

val_loss
test_loss

0 20 40
Layers

0.4

0.6

0.8

Ac
cu
ra
cy train_acc

val_acc
test_acc

0 20 40
Layers

0

2

4

Di
st
an
ce

row_diff

0 20 40
Layers

0.02

0.04

Di
st
an
ce

col_diff

pubmed (random split: 3%/10%/87%) PairNorm Original

0 20 40
Layers

0.5

1.0

1.5

Lo
ss

train_loss
val_loss
test_loss

0 20 40
Layers

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
val_acc
test_acc

0 20 40
Layers

0.0

2.5

5.0

7.5

10.0

Di
st

an
ce

row_diff

0 20 40
Layers

0.00

0.05

0.10

0.15

0.20

Di
st

an
ce

col_diff

coauthor_CS (random split: 3%/10%/87%) PairNorm Original

Figure 5: Comparison of ‘vanilla’ vs. PAIRNORM-enhanced SGC, corresponding to Figure 1, for
datasets (from top to bottom) Citeseer, Pubmed, and CoauthorCS. PAIRNORM provides im-
proved robustness to performance decay due to oversmoothing with increasing number of layers.

10

Under review as a conference paper at ICLR 2020

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

citeseer-GCN
PairNorm(SI)
Original

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

citeseer-GAT
train_acc
val_acc
test_acc

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

pubmed-GCN

PairNorm(SI)
Original

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

pubmed-GAT

train_acc
val_acc
test_acc

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

coauthor_CS-GCN

PairNorm(SI)
Original

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

coauthor_CS-GAT

train_acc
val_acc
test_acc

Figure 6: Comparison of ‘vanilla’ (dashed) vs. PAIRNORM-enhanced (solid) GCN (left) and GAT
(right) models, corresponding to Figure 3, for datasets (from top to bottom) Citeseer, Pubmed, and
CoauthorCS. PAIRNORM provides improved robustness against performance decay with increasing
number of layers.

11

Under review as a conference paper at ICLR 2020

A.4 ADDITIONAL PERFORMANCE PLOTS WITH INCREASING NUMBER OF LAYERS UNDER
SSNC-MV WITH p = 1

0 20 40
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

citeseer-SGC

0 10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

citeseer-GCN
PairNorm(SI)
Original

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

citeseer-GAT
train_acc
val_acc
test_acc

0 20 40
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

pubmed-SGC

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra
cy

pubmed-GCN

PairNorm(SI)
Original

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

pubmed-GAT
train_acc
val_acc
test_acc

0 20 40
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

coauthor_CS-SGC

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

coauthor_CS-GCN

PairNorm(SI)
Original

10 20 30
Layer

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
coauthor_CS-GAT

train_acc
val_acc
test_acc

Figure 7: Comparison of ‘vanilla’ (dashed) vs. PAIRNORM-enhanced (solid) (from left to right)
SGC, GCN, and GAT model performance under SSNC-MV for p = 1, corresponding to Figure 4,
for datasets (from top to bottom) Citeseer, Pubmed, and CoauthorCS. Green diamond symbols
depict the layer at which validation accuracy peaks. PAIRNORM boosts overall performance by
enabling more robust deep GNNs.

12

Under review as a conference paper at ICLR 2020

A.5 ADDITIONAL EXPERIMENTS UNDER SSNC-MV WITH INCREASING MISSING
FRACTION p

In this section we report additional experiment results under the SSNC-MV setting with varying
missing fraction, in particular p = {0.7, 0.8, 0.9, 1} and also report the base case where p = 0 for
comparison.

Figure 8 presents results on all four datasets for GCN vs. PAIRNORM-enhanced GCN (denoted
PN for short). The models without any skip connections are denoted by *-0, with one-hop skip
connection by *-1, and with one and two-hop skip connections by *-2. Barcharts on the right report
the best layer that each model produced the highest validation accuracy, and those on the left report
the corresponding test accuracy. Figure 9 presents corresponding results for GAT.

We discuss the take-aways from these figures on the following page.

GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2

0

5

10

0% missing 70% missing 80% missing 90% missing 100% missing

Best Layer

GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2

0.6

0.7

0.8

0% missing 70% missing 80% missing 90% missing 100% missing

Test Acc cora GCN

GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2

0

5

10

0% missing 70% missing 80% missing 90% missing 100% missing

Best Layer

GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2

0.4

0.6

0% missing 70% missing 80% missing 90% missing 100% missing

Test Acc citeseer GCN

GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2

0

5

10

0% missing 70% missing 80% missing 90% missing 100% missing

Best Layer

GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2

0.4

0.6

0.8

0% missing 70% missing 80% missing 90% missing 100% missing

Test Acc pubmed GCN

GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2

0

5

10

0% missing 70% missing 80% missing 90% missing 100% missing

Best Layer

GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2
GCN-0
 PN -0
GCN-1
 PN -1
GCN-2
 PN -2

0.4

0.6

0.8

0% missing 70% missing 80% missing 90% missing 100% missing

Test Acc coauthor_CS GCN

Figure 8: Supplementary results to Table 2 for GCN on (from top to bottom) Cora, Citeseer,
Pubmed, and CoauthorCS.

13

Under review as a conference paper at ICLR 2020

We make the following observations based on Figures 8 and 9:

• Performance of ‘vanilla’ GCN and GAT models without skip connections (i.e., GCN-0 and
GAT-0) drop monotonically as we increase missing fraction p.

• PAIRNORM-enhanced ‘vanilla’ models (PN-0, no skips) perform comparably or better than
GCN-0 and GAT-0 in all cases, especially as p increases. In other words, with PAIRNORM
at work, model performance is more robust against missing data.

• Best number of layers for GCN-0 as we increase p only changes between 2-4. For GAT-0,
it changes mostly between 2-6.

• PAIRNORM-enhanced ‘vanilla’ models (PN-0, no skips) can go deeper, i.e., they can lever-
age a larger range of #layers (2-12) as we increase p. Specifically, GCN-PN-0 (GAT-PN-0)
uses equal number or more layers than GCN-0 (GAT-0) in almost all cases.

• Without any normalization, adding skip connections helps—GCN/GAT-1 and GCN/GAT-2
are better than GCN/GAT-0, especially as we increase p.

• With PAIRNORM but no-skip, performance is comparable or better than just adding skips.
• Adding skips on top of PAIRNORM does not seem to introduce any notable gains.

In summary, simply employing our PAIRNORM for GCN and GAT provides robustness against
oversmoothing that allows them to go deeper and achieve improved performance under SSNC-MV.

GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2

0

5

10

0% missing 70% missing 80% missing 90% missing 100% missing

Best Layer

GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2

0.6

0.8

0% missing 70% missing 80% missing 90% missing 100% missing

Test Acc cora GAT

GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2

0

5

10

0% missing 70% missing 80% missing 90% missing 100% missing

Best Layer

GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2

0.4

0.6

0% missing 70% missing 80% missing 90% missing 100% missing

Test Acc citeseer GAT

GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2

0

5

10

0% missing 70% missing 80% missing 90% missing 100% missing

Best Layer

GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2

0.5

0.6

0.7

0.8

0% missing 70% missing 80% missing 90% missing 100% missing

Test Acc pubmed GAT

GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2

0

5

10

0% missing 70% missing 80% missing 90% missing 100% missing

Best Layer

GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2
GAT-0
 PN -0
GAT-1
 PN -1
GAT-2
 PN -2

0.7

0.8

0.9

0% missing 70% missing 80% missing 90% missing 100% missing

Test Acc coauthor_CS GAT

Figure 9: Supplementary results to Table 3 for GAT on (from top to bottom) Cora, Citeseer,
Pubmed, and CoauthorCS.

14

	Introduction
	Understanding Oversmoothing
	The Oversmoothing Problem
	Studying Oversmoothing with SGC

	Tackling Oversmoothing
	Proposed PairNorm
	A Case Where Deeper GNNs are Beneficial

	Experiments
	Experiment Setup
	Experiment Results

	Related Work
	Conclusion
	Appendix
	Derivation of Eq. 8
	Dataset Statistics
	Additional Performance Plots with Increasing Number of Layers
	Additional Performance Plots with Increasing Number of Layers under SSNC-MV with p=1
	Additional Experiments under SSNC-MV with Increasing Missing Fraction p

