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ABSTRACT

This paper considers the growth in the length of one-dimensional trajectories as
they are passed through deep ReLU neural networks, which, among other things,
is one measure of the expressivity of deep networks. We generalise existing re-
sults, providing an alternative, simpler method for lower bounding expected tra-
jectory growth through random networks, for a more general class of weights dis-
tributions, including sparsely connected networks. We illustrate this approach by
deriving bounds for sparse-Gaussian, sparse-uniform, and sparse-discrete-valued
random nets. We prove that trajectory growth can remain exponential in depth
with these new distributions, including their sparse variants, with the sparsity pa-
rameter appearing in the base of the exponent.

1 INTRODUCTION

Deep neural networks continue to set new benchmarks for machine learning accuracy across a wide
range of tasks, and are the basis for many algorithms we use routinely and on a daily basis. One fun-
damental set of theoretical questions concerning deep networks relates to their expressivity. There
remain different approaches to understanding and quantifying neural network expressivity. Some
results take a classical approximation theory approach, focusing on the relationship between the ar-
chitecture of the network and the classes of functions it can accurately approximate (Lu et al.[(2017));
Cybenko| (1992); |[Hornik et al.| (1989)). Another more recent approach has been to apply persistent
homology to characterise expressivity (Guss & Salakhutdinov| (2018))), while [Poole et al.| (2016))
focus on global curvature, and the ability of deep networks to disentangle manifolds. Other works
concentrate specifically on networks with piecewise linear activation functions, using the number of
linear regions (Montufar et al.|(2014)) or the volume of the boundaries between linear regions (Hanin
& Rolnick|(2019)) in input space. In 2017, Raghu et al.[{(2017) proposed trajectory length as a mea-
sure of expressivity; in particular, they consider the expected change in length of a one-dimensional
trajectory as it is passed through Gaussian random neural networks (see Figure[I]for an illustration).
Their primary theoretical result was that, in expectation, the length of a one-dimensional trajectory
which is passed through a fully-connected, Gaussian network is lower bounded by a factor that is
exponential with depth, but not with width.
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Figure 1: A circular trajectory, passed through a ReLU network with o,, = 2. The plots show the
pre-activation trajectory at different layers projected down onto 2 dimensions.

One-dimensional trajectories and their evolution through deep networks are also of interest in their
own right because they constitute simple data manifolds. Firstly, we commonly assume that the real
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data which we aim to correctly classify or predict with a deep network lie on one or more manifolds,
and thus design a network to perform appropriately on such a manifold. Secondly, researchers are
beginning to consider whether the output (manifolds) of generator networks could be a good model
for real word data manifolds, for example, as priors for a variety of inverse problems (Manoel et al.
(2017);\Huang et al.|(2018))). Both of these hypotheses motivate an understanding of how manifolds
are acted upon by deep networks.

Our results in this paper pertain specifically to the ‘trajectory length’ measure of expressivity. We
produce a simpler proof than in the pioneering work of Raghu et al.|(2017), which also generalises
their results, deriving similar lower bounds for a broader class of random deep neural networks.

Theoretical work of this nature is important because it allows for more straightforward transfer and
adaptation of prior theoretical results to new contexts of interest. For example, there is a current
surge in research around low-memory networks, training sparse networks, and network pruning.
Sparsely connected networks have shown the capacity to retain very high test accuracy (Frankle &
Carbin|(2019); Han et al.| (2015)), increased robustness (Ahmad & Scheinkman|(2019);|Aghasi et al.
(2017)), with much smaller memory footprints, and less power consumption (Yang et al.| (2019)).
The approach we take in this work enables us to extend results from dense random networks to sparse
ones. It also allows us to consider the other weight distributions of sparse-Gaussian, sparse-uniform
and sparse-discrete networks (see Definitions [2]- ).

More specifically we make the following contributions:

Contributions:

1. We provide an alternative, simpler method for lower bounding expected trajectory growth
through random networks, for a more general class of weights distributions (Theorem [2)).

2. We illustrate this approach by deriving bounds for sparse-Gaussian, sparse-uniform, and
sparse-discrete random nets. We prove that trajectory growth can be exponential in depth
with these distributions, with the sparsity appearing in the base of the exponential (Corol-
laries[T]-[3).

3. We observe that the expected length growth factor is strikingly similar across the aforemen-
tioned three distributions. This suggests a universality of the expected growth in length for
iid centered distributions determined only by the variance and sparsity (Figure [3).

1.1 NOTATION

We consider feedforward ReLU deep neural networks. We denote a the d-th post-activation layer as
2(4)and the subsequent pre-activation layer as h(?), such that

R — @@ ) (@),

where ¢(z) := max(z, 0) is applied elementwise. We denote 2 = 2(%).

We use fyn(z;P, Q) to denote a random feedforward deep neural network which takes as input
the vector x, and is parameterised by random weight matrices 1W(%) with entries sampled iid from
the distribution P, and bias vectors b(?) with entries drawn iid from distribution Q.
Definition 1. A random sparse network with sparsity parameter o, denoted fyn(z;a, P, Q), is
a random feedforward network in which all weights are sampled from a mixture distribution of the
form

w;; ~ aP + (1 —a)d,
where § is the delta distribution at 0, and ‘P is some other distribution. In other words, weights are
0 with probability 1 — «, and sampled from ‘P with probability «.. Biases are drawn iid from Q.
Definition 2. A sparse-Gaussian network is a random sparse network fnn(x;a, P, Q), where
P = N(0,02) and Q = N(0,02).
Definition 3. A sparse-uniform network is a random sparse network fyn(x;a,P,Q), where
P = U(—Cy,Cy) and Q = U(—C}, Cy).
Definition 4. A sparse-discrete network is a random sparse network fnn(x; o, P, Q), where P is
a uniform distribution over a finite, discrete, symmetric set W, with cardinality |W| = N, and Q
is a uniform distribution over a finite, discrete, symmetric set B, with cardinality |B| = Np.
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We define a trajectory z() in input space as a curve between two points, say o and x1, parameter-
ized by a scalar ¢ € [0, 1], with (0) = zo and x(1) = 1, and we define 2(? (z(t)) = 2@ (t) to
be the image of the trajectory in layer d of the network. The trajectory length I(z(t)) is given by the
standard arc length,

/ dz(t)

As in the work by [Raghu et al.| (2017), this paper considers trajectories with (¢ + dt) having a non-
trivial component perpendicular to z(t) for all ¢, dt.

dt.

Finally, we say a probability density or mass function fx () is even if fx(—x) = fx(x) for all
random vectors x in the sample space.

2 EXPECTED TRAJECTORY GROWTH THROUGH RANDOM NETWORKS

Raghu et al.|(2017) considered ReLU and hard-tanh Gaussian networks with the standard deviation
scaled by 1/ k. Their result with respect to ReLU networks is captured in the following theorem.

Theorem 1 (Raghu et al.| (2017)). Let fxn(x;N (0,02 /k),N(0,02)) be a random Gaussian deep
ReLU neural network with layers of width k, then

d Uw\/E !
B (0)] 2 0 ( m) YEO)

for x(t) a 1-dimensional trajectory in input space.

There are, however, other network weight distributions which may be of interest. For example, the
expressivity and generative power of sparse networks are of particular interest in the current mo-
ment, given the current interest in low-memory and low-energy networks, training sparse networks,
and network pruning (Frankle & Carbin|(2019); Han et al.| (2015); |Yang et al.| (2019)). We prove
that even for sparse random networks, trajectory growth can remain exponential in depth given suf-
ficiently large initialisation scale o,,. Scaling o, by 1/v/k can yield a width-independent lower
bound on this growth. Moreover, a sufficiently high sparsity fraction (1 — «) results in a lower
bound which, instead of growing exponentially, shrinks exponentially to zero. This is captured by
the following result.

Corollary 1 (Trajectory growth in deep sparse-Gaussian random networks). Let
Inn(z; 0, N(0,02),N(0,02)) be a sparse-Gaussian, feedforward ReLU network as defined
in Section[[_1] with layers of width k. Then

. A
E[l(z”(t))}z( N ) (1)), (1)

for x(t) a 1-dimensional trajectory in input space.

Corollary [I| with &« = 1 and o, replaced by o,/ V'k recovers a bound which is very similar to the
prior bound by Raghu et al| (2017) in Theorem I}

Beyond Gaussian weights, we consider other distributions commonly used for initialis-
ing and analysing deep networks.  Uniform distributions, for example, still constitute
the default initialisations of linear network layers in both Pytorch and Tensorflow (uni-
form according to U(—1/vk,1/vk) in the case of Pytorch, and uniform according to
U(—6/Vkin + kout, 6/VEkin + kour) — ak.a the Glorot/Xavier uniform initialization (Glorot &
Bengio| (2010)) — in the case of Tensorflow). We prove an analogous lower bound for uniformly
distributed weights.

Corollary 2 (Trajectory growth in deep sparse-uniform random networks). Let
Inn(z; o, U(—Cy, Cy),U(—Cy, Cy)) be a sparse-Uniform, feedforward ReLU network as
defined in Section[I.1) with layers of width k. Then

d
“C'M> (1)),

VR 2

E[I(='D(1))] > (
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Sor x(t) a 1-dimensional trajectory in input space.

Another research direction which has gathered some momentum in recent years are quantized or
discrete-valued deep neural networks (Li et al.[(2017); [Hubara et al.|(2016;|[2017)), including recent
work using integer valued weights (Wu et al.| (2018)). This motivates consideration of discrete
weight distributions, in addition to continuous ones. As an example of such, we prove a similar lower
bound for networks with weights and biases uniformly sampled from finite, symmetric, discrete sets.

Corollary 3 (Trajectory growth in deep sparse-discrete random networks). Ler
fyn(xz;a,P, Q) be a sparse-discrete random feedforward ReLU network as defined in Sec-
tion[1.1] and layers of width k. Then

d
ok Cuew |w|> a(®) -

2v/2 Ny

Sor x(t) a 1-dimensional trajectory in input space.

E[i(='D(1))] > (

The main idea behind the derivation of these results is to consider how the length of a small piece
of a trajectory (some ||dz(?||) grows from one layer to the next (||dz(?+V|| = ||¢p(h%(t + dt)) —
H(RD(@)]). In the context of random feedforward networks, we can consider piecewise linear
activation functions as restrictions of dh(? to a particular support set which is statistically dependent
on h(4. This approach was developed by [Raghu et al.| (2017). The key to our proof is providing
a more direct and more generally applicable way of accounting for this dependence than originally
provided by Raghu et al.|(2017). Specifically, our approach lets us derive the following, more general
result, from which Corollaries and 3| follow easily.

Theorem 2 (Trajectory growth in deep random sparse networks). Let fyy(z;a, P, Q) be a
random sparse network as defined in Section with layers of width k. Let P and Q be such that
the joint distribution over a vector of independent elements from both distributions is even. Then,
ifE[lu";]] > M|ul||, where ; is restriction of any row of a weight matrix to its P distributed
entries, and u and M are constants, then

“4)

d
O‘Mf) (1)

Ei(='9(1))] 2 (

Sor x(t) a 1-dimensional trajectory in input space.

Remark. It is trivial to amend this result for networks where the width, distribution, and sparsity
varies layer by layer, in which case the lower bound (@) is replaced by

11 (W) 1(x(0)

j=i

Moreover, the bounds from Theorem@]and Corollariesg] - [Ejhold true in the 0 bias case as well.

3  PROOF OF THEOREM [2

We prove Theorem [2] in three stages: i) We turn the problem into one of bounding from below
the change in the length of an infinitesimal line segment; ii) we account simply and explicitly for
the dependence generated by the ReLU activation; and iii) we break this dependence by taking
advantage of the symmetry characterising this class of distributions. Supporting lemmas can be
found in Appendix A.

Proof. Stage 1:

For the first stage of proof, we will closely follow Raghu et al.|(2017). We are interested in deriving

a lower bound of the form,
(d)
e[ fEg] o
t dt t

dt

Hdt, &)
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for some constant C'. As noted by Raghu et al.| (2017), it suffices to instead derive a bound of the
form

E[la=@ )] = Clldao)],

since integrating over ¢ yields the desired form. Our approach will be to derive a recurrence relation
between ||dz(“+1) || and ||dz(¥)||, where we refrain from explicitly including the dependence of dz
on t, for notational clarity.

Next, like [Raghu et al.| (2017), our proof relies on the observation that
A2\ = (WD D (1 4 5t) + bD) — (W DD (1) 4 D)
= 0D (1 + 6t) - 91 (1)
= dp?D,
and that since ¢ is the ReL.U operator, h?d) is either 0 or 1. When z(%) is fixed independently of

W@ and b(@ | then P(hg-d) = 0) = 0 (see the preamble to Lemma@for more detail on this), and
thus we need only note that d(bg-d) = dh;d) when h§d) > 0, and d(ﬁg-d) = 0 when h§-d) < 0. We
define A4 to be the set of ‘active nodes’ in layer d; specifically,

4= {j: h;d) > 0},

and I 4y € R¥** is defined as the matrix with ones on the diagonal entries indexed by set Al
and O everywhere else. We can then write

ld=" D = || Lacar (B (¢ + dt) — B (2)]
= || Ly WDz
From here we will drop the weight index (d) to minimise clutter in the exposition.
It is at this point where we depart from the proof strategy used by Raghu et al.|(2017). The next steps
in their proof depend heavily on the weight matrices in the network being Gaussian. For example,
they require that a weight matrix after rotation has the same, i.i.d. distribution as the matrix before

rotation. Instead, our proof can tackle a number of other, non-rotationally-invariant distributions, as
well as sparse networks.

Stage 2:
The next stage of the proof begins by noting that after conditioning on size of the set A,
ElLaWd=V| | |A]] = E[|Wd'D | | @] 2@ +b; > 074, | AL, (6)
where W € RIAXF is the matrix comprlsed of the rows of W indexed by A, and we denote the i-th
row of W as ;, and the i-th entry of bas b;. Equation @follows since the elements of Wdz(? are
iid., and A4 selects all entries whose corresponding entries in 1(?) have positive values. Thus,
in expectation, pre-multiplying by the matrix I 4 is equivalent to considering Wdz? instead of
IaWdz9 together with conditioning on the fact that every element in the vector Wz(® + b is
positive.

This gives us

i W -
E[[LaWdz D] =E |EE-- E || (@] dz®)2 | ] 2D +b; > 0Vi, | Al (7
w1 w2 wiA| i—1
- T A a-
=E|EE- B || [@]dz@2 | ] 2D +b; > 0Vi, | A (8)
wiy w2 w‘A| i—1
[ [ )
>E || Y Bl dz@| o] 2@ +b; > 0] )
=1
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where (7 follows from the analysis above and the independence of each w;, (§) is trivial, and ()
follows from iteratively applying Jensen’s inequality, after noting that f(x) = /22 + C' is convex
for x,C' > 0.

Now let J; denote the (random) index set of the P-distributed entries of w;, and let w,, dz(Jd), ng)

denote the restrictions to the indices in J; of w;, dz(® and z(?) respectively. Then w; z(Y =

w]) zf,i_l), and b, dzY = w] dzf,?, such that, after conditioning on .J;, we have that

(%)
| Al

E[|Wp| | & 2@ +b; > 0Vi,|A]] > E ZE \indzJ [ [w], 25" +b; > 0,7;]] 2

()

(k%)
(10)
Stage 3:

The third stage of the proof is to work our way from the inside out, lower bounding (x) first, then
(#%), and finally (* * *).

Consider the expectation in (). Having conditioned on J;, we can define X = w; dzgff) and

Y =wy, ng) + b;, such that lower bounding (*) means lower bounding

E[|X] Y > 0]. (11
By assumption the joint distribution over G = [wy, 1,..., W, k, ZA)l]T is even. The vector H =
(X, Y,wy,3...,w5 &, bi]T is obtained by a linear transformation of G (which is invertible since

[| (]| is not parallel to ||dz(®|)). Thus by Lemma 1| (continuous) or Lemma 2| (discrete) this joint
distribution over H is also even, and by Lemma [3| (continuous) or Lemma 4| (discrete), the joint
distribution of [X,Y]" is even too. We can therefore apply Lemma [5| (continuous) or Lemma
(discrete) and need only consider E[| X|], which is bounded as

E[|X|) > M]|d=f? (12)
again by assumption.

Having bounded (x), we average over J; to get (xx), for which we can apply Lemmato get

B[M|dz5[]) = aM =], (13)

Finally, we can bound (x * %) as follows

[ [
I Wdz 4 a2 M2||dz(d) |2 14)
E[[| 74 > \AI ;:1 [ l (
) S 2 M2 || dz(d)]|2 15
E 1Al etz (15)
[ 1
SE |——— Al a2 M2 ||dz@ 2] 16
2 Vrear @] | Al | [ (16)
aM||dz ||
= Al 17
Vi E[|.A[] (17)

where (4) is obtained by substituting the bound for (+x) into the inequality in (I0 (10), (13) follows
since there is no dependence on i in the summed terms, and (I6) follows since for any 0 < v <

max(y), v/ > \/;’y, and |.A| is at most k.
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The proof is concluded by calculating E[|.A|]. Since |.A| is the number of entries in the vector i(?
which are positive, and each entry in that vector is an independent, centred random variable, |.A| has
a binomial distribution with probability 1/2, and therefore an expected value of k/2. Plugging this
in yields the final recursive relation between ||dz(?+V)|| and ||dz(®|,

aMVk
2
Iterative application of this result starting at the first layer yields the final result.

E[lld=' D] > ld= .

O

Let us illustrate the ease with which Corollaries [T} [2] and [3] are obtained. In the case of each distri-
bution, we need to do two things. First, we must verify that the necessary assumption holds in the
case of those distributions P and Q: that the joint distribution over a vector of independent elements
from both distributions is even. Second, we must derive a bound of the form E[|u " w|] > M|u
where w; ~ P, and substitute M into Theorem [2}

[l

When P and Q are centred Gaussians, the joint distribution over elements from one or both distri-
butions is a multivariate Gaussian, with an even joint probability density function. Moreover, for
U = u'w, E[|U|] has a closed form solution,

V20,
N

When P and Q are centred uniform distributions, the joint distribution is uniform over the polygon
bounded in each dimension by the symmetric bounds [—C,,, C,,] or [-C}, Cy], and thus is even.
Next, to bound E[|U|], we apply the Marcinkiewicz-Zygmund inequality with p = 1, using the
optimal A; from Lemmas[8|and 9] to get that

E[U]] = [l

Cu
E[|U]] = —=]|ull;
R

for details of this derivation, see Lemmal[I0]

Likewise, when P and Q are uniform distributions over discrete, symmetric, finite sets V' and B
respectively, we make a discrete analogue of the argument made in the continuous uniform case
to confirm the necessary assumption holds. Bounding E[|U|] in this case also follows from a very
similar argument to that made in the continuous case, detailed in full in Lemma|[TT] yielding

2wew ||
E[lu]] > TV]\Z}IIUIL

4 NUMERICAL SIMULATIONS

In this section we demonstrate, through numerical simulations, how the relationships between the
the network’s distributional and architectural properties observed in practice compare with those
described in the lower bounds of Corollaries [I]-[3] To this end, we use as our trajectory a straight
line between two (normalised) MNIST datapointq'} discretized into 10000 pieces. For each combi-
nation of distribution and parameters, we pass the aforementioned line through 100 different deep
neural networks of width 784, and average the results. Specifically, we consider three different net-
works types, sparse-Gaussian, sparse-uniform, and sparse-discrete networks, from Definitions 2] - 4]
respectively. For each distribution we consider different values of network fractional density « rang-
ing from 0.1 to 1. In the sparse-Gaussian networks, non-zero weights are sampled from N (0, 02 /k),
and biases from A/(0,0.012). In the sparse-Uniform networks, non-zero weights are sampled from
U(—C/Vk,C/Vk), and biases from U(—0.01,0.01). In the sparse-discrete networks, non-zero
weights are uniformly sampled from W := (1/vk) ® {~C, —(C +1),...,C — 1,C}, and biases
from B := {—0.01,0.01}. We do this for a variety of o,, and C' values. The results are shown in
Figures [2]and [3]

'In this experiment we chose the 101* and 1001 points from the MNIST test set, but the choice of points
does not qualitatively change the results.



Under review as a conference paper at ICLR 2020

1064

104,

E[U(=(1))]

1024

Figure 2: Expected length of a line connecting two MNIST data points as it passes through a sparse-
Gaussian deep network, plotted at each layer d.

Figure [2] plots the average length of the trajectory at layer d of a sparse-Gaussian network, with
0w = 6 and for different choices of sparsity ranging from 0.1 to 0.9. We see exponential increase
of expected length with depth even in sparse networks, with smaller slopes for smaller « (higher
sparsity). In Figures [3al and [3b] we plot the growth ratio of a small piece of the trajectory from one
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Figure 3: Expected growth factor, that is, the expected ratio of the length of any very small line
segment in layer d + 1 to its length in layer d. Figure|3alshows the dependence on the variance of
the weights’ distribution, and Figure [3bshows the dependence on sparsity.

layer to the next, averaged over all pieces, at all layers, and across all 100 networks for a given
distribution. This E[||dz(?+1)||/||dz(?||] corresponds to the base of the exponential in our lower
bound. The solid lines reflect the observed averages of this ratio, while the dashed lines reflect
the lower bound from Corollaries [T} [2] and [3] Figure [3a]illustrates the dependence on the standard
deviation of the respective distributions (before scaling by 1/v/k), with « fixed at a = 0.5. We
observe both that the lower bounds clearly hold, and that the dependence on o, is linear in practice,
exactly as we expect from our lower bounds. Figure [3b[ shows the dependence of this ratio on the
sparsity parameter «, where we have fixed o,, = 2 for all distributions. Once again, the lower
bounds hold, but in this case there is a slight curve in the observed values, not a strictly linear
relationship. The reason for this is that the linear bound we provide is necessary in order to account
for the more pathological cases of dz. This is discussed in more depth in Appendix|B} One striking
observation in Figuresand is that for a given 7,,, the observed E[||dz(?+1)|| /||dz(?||] matches
perfectly across all three distributions, for different values of o, and different .

5 CONCLUSION

Our proof strategy and results generalise and extend previous work by Raghu et al.|(2017) to develop
theoretical guarantees lower bounding expected trajectory growth through deep neural networks for
a broader class of network weight distributions and the setting of sparse networks. We illustrate this
approach with Gaussian, uniform, and discrete valued random weight matrices with any sparsity
level.
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A SUPPORTING LEMMAS

Lemma 1. Let fx(x) be an even joint probability density function over random vector X € R¥,
Let A € R*** be an invertable linear transformation such that Y = AX. Then the joint density
fy(y) is also even.

Proof. Wlog we assume fx is defined on R*. To calculate the density over Y € R* we make a
change of variables such that

fr(y) = fx(A7ly)| A7) (18)

Since A is one-to-one, we have that fx(xz) = fx(A ly) for some y, and fx is even, so
fx(Aly) = fx(—(A7Yy)) = fx (A~ (—y)) for all y. Putting this together completes the proof,
fyr(y) = fx(Ay)| AT = fx (A (=y)IAT = fr (=) (19)

O

Lemma 2. Let fx(x) be an even joint probability mass function over random vector X € R¥. Let
A € RF*F be an invertable linear transformation such that Y = AX. Then the joint mass function
fy(y) is also even.

Proof. fx is defined on some discrete, finite, symmetric set X'. To calculate the density over Y €
Y :={Ap: p € X} we make a change of variables such that

fr(y) = Z fx (x). (20)
cze{Axz=y}
Since A is one-to-one, we have that fx(z) = fx(A ly) for some y, and fx is even, so
Ix(Aly) = fx(—(A7Yy)) = fx (A~ (—y)) for all y. Putting this together completes the proof,
fr(y) = Z fx(Aly) = Z fx (A7 (=y)) = fr(-y) 2D
re{Ax=y} ze{Az=y}
O
Lemma 3. Let fx, . x, (z1,...,2,) be an even probability density function. Then
SxiXos (@1, mem1) = [T fxx (@1, - ) dag s also even.
Proof.
Ixio X (@1, Tpm1) = Ixy,ox, (@1, 2 )day,
= le,m)Xk(—xl,...,—mk)dxk
= fxi o oxo(—x1, ..., —Tp—1, xp)dTy
= le,...,Xk,l(*fﬂlw--,*Sﬂk—l)

The first and last equalities follow from the definition of marginalisation of random variables. The
second equality follows from the assumption that fx, . x, is even, and the third equality follows
from the change of variables: —x; — xy.

Lemma 4. Let X1,..., X} be discrete random variables with symmetric support sets X1, ..., Xy
respectively, i.e. z; € X; <= —ux; € Xj. Let P(X1 = 1, ..., Xy = x1) be an even probability
mass function such that P(X, = xy,..., Xy =x) = P(X1 = —21,..., X = —2%) .

Then P(X; = x1,...,Xk_1 = Tx_1) is also even.

11
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Proof.
P(X1=21,...,Xp1 = Tpp_1) = Z P(Xy=x1,..., X} = xp) (22)
T EXy
= > P(Xy=-x1,..., Xp = —xp) (23)
T, €Xk
= > PXi=-m,..., X} =) (24)
—TrEX}
=Y P(Xi=-z1,.... X =) (25)
T EXy
:P(Xl :7$17...,Xk_1 = 7!17k_1) (26)

Lines 22] and 26] follow from the definition of marginal distributions, (23) follows by assumption,
(24) follows fro a change of variables, and (23] follows since summing over —xy, is equivalent to
summing over xy.

O

Lemma 5. Let X and Y be random variables with an even joint probability density function
fXY(xv y) Then

E[[X]Y > 0] = E[[X]]

Proof. Letting |X| = Z, we can make a straightforward change of variables to calculate the joint
distribution fzy (z,y), which works out to be

fzy(z,9) = [xv(2,9) + fxy(=2y)
for z > 0 and y € R. Then we have that
oo
E[Z]Y > 0] = / z- fz1yso(zly > 0)dz
0

> fzyso(z,y>0)
e v
/o T iy

= 2/ z- fzyso(z,y > 0)dz
0

2/ Z/ fzv (2, y)dydz
0 0

2/0OC Z/OOO(ny(Z7y) + fxy(—2,y))dydz.

One the other hand, we have that
E[Z] = . d
21= [ = a0z
- /O 2 (fx(2) + fx(=2))dz
=9 . d
/0 z- fx(2)dz

2/ Z/ Ixy (2, y)dydz
0 —00

2 [ T ( / Ooo Py + [ N fxy<z,y>dy) dz

12
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Comparing the expressions for E[Z|Y > 0] and E[Z], we can see that they are equal if

0 %)
/ Ixy(z,y)dy = / Ixy (=2,y)dy.
—o0 0

A change of variables on the left hand side from y to —y yields

0 %)
/ Ixv(z,y)dy = / Ixy (2, —y)dy.
—o0 0

and by assumption, we know that fxy (z, —y) = fxv(—z,y) since fxy is even, which completes
the proof.

O

Lemmaimplicitly makes use of the fact that P(Y" = 0) = 0, which follows from w, and b; being

continuous random variables, and Y = w; zj, + Ei, with z;, being fixed independent of wj,. We
similarly make use of the fact that P(Y = 0) = 0 in the application of Lemma @ though that this
is true is less immediately apparent in the discrete case. For clarity, let us define v := [wy,, b;], the
concatenation of w, and b;, and 2 := [z, 1], the concatenation of 2, and 1, such that Y = v " 2.
Associated with the discrete distribution over v there are NJUJ”’ | Ny, possible discrete random vectors
in RI7il+1, The set of vectors 2 € RI”i1+1 orthogonal to such a discrete set is measure zero, and as
such for £ fixed independent of the choice of the discrete measure v we have P(v'2 = 0) = 0.
If however 2 were selected with knowledge of the discrete distribution v then one of two cases
will occur; either v 2 = 0, or z is selected to be from the measure zero set of vectors orthogonal
to any of the quJ;]”Nb vectors generated by v. In the latter case, the assumptions in Lemma Bgof Yy
excluding 0 would not be satisfied. In such an adversarial case there would be a discrepancy between
E[|X]||Y > 0] and E[|X|] which would shrink as the proportion of the NLJI N, vectors generated
by v to which that particular 2 is orthogonal.

Lemma 6. Let X and Y be discrete random variables with finite, symmetric support sets X and

Y respectively, where 0 ¢ ), and an even joint probability mass function fxvy (x,y) such that
P(X=z,Y=y)=PX=—2,Y =—y). Then

E[[X]Y > 0] = E[|X]]

Proof. Letting |X| = Z, we can make a change of variables to obtain the joint mass function
fzy (z,y), which works out to be

Ixv(z,y)+ fxy(—z,y) for (z,y) where z € XTandy € Y
fZY(Zay) = —
fxv(z,v) for (z,y) where z = 0and € Y

where X' is the set of all positive elements of X.

Next, we have that

E[Z]Y >0]= ) zP(Z=z]Y >0)
zEXT

B P(Z=zNnY >0)

= Z§+ TP(Y >0) 7

=2 Y 2P(Z=zNY >0) (28)
zeX+

=9 Z Z 2P(Z=2zNY =y)
ZEXT yeYt

=9 Z Z Z(fxy(Z,y)+fXY(*Zay)) (29)
zeX+ yeyt

On the other hand, we have

13
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E(Z] = Y zP(Z=z) (30)
zeXt
= > 2(fx(2) + fx(=2) 31)
zeXt
=2 ) zfx(2) (32)
zeXT
=2 Z szxy(z7y) (33)
zeX+ yey

=2 | D afxv(zu)+ D 2fxv(zy) (34)

zext \yey+t yeY -~

Next, we not that
> zfxv(zy) = Y 2fxv(z—y)
yeY— yey+

E: ZfXY(_ZﬂD

yey+

Thus the expressions in[29]and [34] are equal, which completes the proof.
O

Lemma 7 (Expected norm of a random sub-vector). Let u € R* be a fixed vector and let J C
{1,2,...,k} be a random index set, where the probability of any index from 1 to k appearing in any
given sample is independent and equal to o. Then, defining w; to be the vector comprised only of
the elements of u indexed by J, we can lower bound the expectation of the norm of this subvector by

Ejfllusll] = offull (35)

Proof. First, we bound the expectation of the norm in terms of the expectation of the squared norm

as follows:
Elllws ] =E[ > u3 )] (36)
jeJ

1 2
2 mE[Z uy;l (37

jeJ
This follows because for any 0 < v < max(y), /7 > \/ﬁ(v)%

Next we note that > jed u?] ; 1s exactly equivalent to Zle u? B;, a weighted sum of k iid Bernoulli
random variables B; with p = «, and so

k
E[> uj,) = ui-E[B] (38)
jeJ i=1
= [lul?- . (39)

Substituting this into inequality [37]completes the proof,

Elllusl] = aflu]

Lemmas and@] are taken from [Ferger| (2014), and are restated here for completeness.

14
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Lemma 8 (Marcinkiewicz-Zygmund Inequality (Ferger| (2014))). Let Xi,...,X,, be n € N in-
dependent and centered real random variables defined on some probability space (), A, P) with
E[|Xi|P] < coforeveryi € {1,...,n} and for some p > 0. Then for every p > 1 there exist positive
constants A, and B, depending only on p such that

p

n p/2 n n p/2
AE (ZXE) <E||) Xi| | <BE (ZX?) (40)
i=1 =1 =1

Lemma 9 (Optimal constants for Marcinkiewicz-Zygmund Inequality (Ferger| (2014))). Let I de-

note the Gamma function and let py be the solution of the equation F(%) = \/7/2 in the interval
(1,2), i.e. po ~= 1.84742. Then for every p > 0 it holds:

20/271, 0<p<po
Apopt = { 2P/2. F(?)7 po<p<2 (41)
1 2<p< o
and
{1 0<p<2
Bp opt — F(m) (42)
’ p/2, Nz )
2 N 2<p<oo
Lemma 10. Ler X = ). ow;, where w; ~ U(—C, C) Then
C
E[|X]|] > — |«
[1X1] > 2\@” |

Proof. Defining X; = a;w;, we can then apply the Marcinkiewicz-Zygmund inequality with p = 1,
using the optimal A; from Lemma[J|to get that

k

>ox

=1

1
E[X[] = E l ] > —E

1 1

—E =—_F

V2 V2
J 1
27

where the first equality is trivial and the second follows from a repeated application of Jensen’s
inequality.

To calculate E[| X;|] we note that X; = a;w; is uniformly distributed X; ~ U(—|a;|C, |o;|C), and
thus

C (67
[, = 9
and so
1 Kk
E[|X]] > — E[| X:[)?
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Lemma 11. Let X = ) . oyw;, where w; are uniformly sampled from some discrete symmetric
sample space WW. Then

ZwGW |w|
V2N,

Proof. Defining X; = o,;w;, we follow exactly the same steps as in the first part of the proof of
Lemma|[I0} to get that

E[X]] > [lev]

To calculate E[|X;|] we note that X; = «;w; is uniformly sampled from o; W and thus

_ il Ypew vl

El|X;|] =
1)) = e
and so
1 k
B[ X[ > —=4| > _E[IX:[)?
V2 i=1
k
_ L Xwew |w‘)22|a,‘2
_ ZwGW |’lU|
=,

O

Lemma 12. Let W, X C R* be discrete sets with finite cardinality, and g : W — X be a one-
to-one transformation. Then if P(W = w) = P(Wy = wy,..., Wi = wy) = C forallw € W,
where C is constant, then P(X =x) = C forallx € X

Proof.
PX=x)= > PW=w) (43)
we{g(w)=x}
=C (44)
Equation {i3]is a change of variables, and (44) follows from the fact the there is only ever one term
in the sum, since g is one-to-one. O

B NON-LINEAR DEPENDENCE ON « IN THE TYPICAL CASE

One interesting observation which merits further detail is that the observed dependence of the growth
factor on « in practice, shown in Figure [3b] is not exactly linear, but rather the shape of that depen-
dence looks closer to y/a. The likely source of this qualitative discrepancy is the use of Lemma
to lower bound

Ejlldz5. ] = alldz]l, (45)

used in (I3)) in Stage 3 of the proof of Theorem?] It is straightforward to derive an upper bound for
this same quantity, as

Ejllldzz ] < Valldz|, (46)

first using Jensen’s inequality to get that E s, [v/[|dz, [|2] < /E[||dz,
egy from the proof of Lemma([7]to get E[||dz, ||?] = o|dz|>.

2], and then using the strat-
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To explore this discrepancy between the observed growth ratio and the lower and upper bounds
from (43)) and (&6)), we consider different fixed vectors dz € R¥, and average over subvectors dz s, .
Specifically, we calculated the expected value of a subvector dz;, containing only the entries of dz
indexed by J;, where J; C {1,2,...,k} is a random index set, where the probability of any index
from 1 to k appearing in any given sample is independent and equal to . Figure[a]shows the results
when dz a realisation of the uniform distribution over the unit sphere, with different dimensions k.

For even moderately large k, and vectors dz where most entries are roughly this same magnitude,
this upper bound is very tight, such that the expected norm of the subvector generally behaves like
Valldz||, not «||dz||. However, it is also possible to construct an example where the lower bound is

101 — Bounds 101 — Bounds
- k=4 - k=4

k=10 k=10

089 —=== k=20 089 —=== k=20
- k=50 - k=50

- k=100 - k=100

0.6 0.6

sllldzs ]

Eylldzs]

0.2

0.0 0.0

(@) (b)

Figure 4: The dependence on « and k of expected value of a subvector dz;,. In Figure 4a, dz is a
realisation of the uniform distribution over the unit sphere. In Figure dz has the first entry equal
to 1, and the rest zeros.

tight, by letting dz have only a single non-zero entry, which case E[[|u;||] = o||u|| (see Figure 4b).
While the former case, with entries of dz mostly of the same order, is typical, especially past the
first few layers of the network, the bound cannot be improved without further assumptions on ||dz||.
Further work on quantifying the probabilistic concentration of E[||w||] close to \/a||u|| would be
an interesting extension of this research.
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