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ABSTRACT

Machine learning (ML) especially deep neural networks (DNNs) have been
widely applied to real-world applications. However, recent studies show that
DNNs are vulnerable to carefully crafted adversarial examples which only deviate
from the original data by a small magnitude of perturbation. While there has been
great interest on generating imperceptible adversarial examples in continuous data
domain (e.g. image and audio) to explore the model vulnerabilities, generating ad-
versarial text in the discrete domain is still challenging. The main contribution of
this paper is to propose a general targeted attack framework AdvCodec for ad-
versarial text generation which addresses the challenge of discrete input space and
be easily adapted to general natural language processing (NLP) tasks. In partic-
ular, we propose a tree based autoencoder to encode discrete text data into con-
tinuous vector space, upon which we optimize the adversarial perturbation. With
the tree based decoder, it is possible to ensure the grammar correctness of the
generated text; and the tree based encoder enables flexibility of making manipula-
tions on different levels of text, such as sentence (AdvCodec(Sent)) and word
(AdvCodec(Word)) levels. We consider multiple attacking scenarios, including
appending an adversarial sentence or adding unnoticeable words to a given para-
graph, to achieve arbitrary targeted attack. To demonstrate the effectiveness of
the proposed method, we consider two most representative NLP tasks: sentiment
analysis and question answering (QA). Extensive experimental results show that
AdvCodec has successfully attacked both tasks. In particular, our attack causes
a BERT-based sentiment classifier accuracy to drop from 0.703 to 0.006, and a
BERT-based QA model’s F1 score to drop from 88.62 to 33.21 (with best targeted
attack F1 score as 46.54). Furthermore, we show that the white-box generated
adversarial texts can transfer across other black-box models, shedding light on an
effective way to examine the robustness of existing NLP models.

1 INTRODUCTION

Recent studies have demonstrated that deep neural networks (DNNs) are vulnerable to carefully
crafted adversarial examples (Goodfellow et al., 2015; Papernot et al., 2016; Eykholt et al., 2017;
Moosavi-Dezfooli et al., 2016). While there are a lot of successful attacks proposed in the con-
tinuous data domain including images, audios, and videos, how to effectively generate adversarial
examples in the discrete text domain still remains a hard problem. There are several challenges for
generating adversarial text: 1) most existing gradient-based adversarial attack approaches are not
directly applicable to the discrete structured data; 2) it is less clear how to appropriately measure the
realistism for the generated text comparing with the original ones; 3) the manipulation space of text
is limited, and it is unclear whether generating a new appended sentence is more/less obvious for
human compared with manipulating individual words.

So far, existing work on adversarial text generation either leverage heuristic solutions such as genetic
algorithms (Jin et al., 2019) to search for potential adversarial sentences, or are limited to attacking
specific NLP tasks (Cheng et al., 2018). In addition, targeted attacks have not been achieved by
current attacks for any task. In this paper, we aim to provide more insights towards solving these
challenges by proposing a unified optimization framework AdvCodec to generate adversarial text
against general NLP tasks. In particular, the core component of AdvCodec is a tree based au-
toencoder which converts discrete text tokens into continuous semantic embedding, upon which the

1



Under review as a conference paper at ICLR 2020

adversarial perturbation will be optimized regarding the chosen adversarial target. Finally, a tree
based decoder will decode the generated adversarial continuous embedding vector back to the sen-
tence level based on the tree grammar rules, aiming to both preserve the original semantic meaning
and linguistic coherence. An iterative process can be applied here to ensure the attack success rate.

In addition to the general adversarial text generation framework AdvCodec, this paper also aims to
explore several scientific questions: 1) Since AdvCodec allows the flexibility of manipulating on
either the word or sentence level, which is more attack effective and which way is less noticeable for
human readers? 2) Is it possible to achieve targeted attack for general NLP tasks such as sentiment
classification and QA, given the limited degree of freedom for manipulation? 3) Is it possible to
perform blackbox attack in general NLP tasks? 4) Is BERT secure in practice? 5) Are human
readers more sensitive to an appended adversarial sentence or scatter of added words?

To address the above questions, we explore two types of tree based autoencoders on the word and
sentence level. For each encoding scenario, we generate adversarial text against different senti-
ment classification and QA models. Compared with the state-of-the-art adversarial text generation
methods, our approach achieves both significantly higher attack success rate and targeted attack.
In addition, we perform both whitebox and blackbox settings for each attack to evaluate the model
vulnerabilities. Within each attack setting, we evaluate attack strategies as appending an additional
adversarial sentence or adding scatter of adversarial words to a paragraph, to evaluate the quantita-
tive attack effectiveness. To provide thorough adversarial text quality assessment, we also perform
7 groups of human studies to evaluate the quality of generated adversarial text compared with the
baselines methods, and whether human can still get the ground truth answers for these tasks based
on adversarial text. We find that: 1) both word and sentence level attacks can achieve high attack
success rate, while the sentence level manipulation is even less noticeable for human readers; 2)
various targeted attacks on general NLP tasks are possible (e.g. when attacking QA, we can ensure
the target to be a specific answer or a specific location within a sentence); 3) the transferability based
blackbox attacks are successful in NLP tasks. Transferring adversarial text from stronger models to
weaker ones is more successful; 4) BERT based sentiment classification and QA models are more
vulnerable compared with standard sentiment classifiers; 5) Human readers are more in favor of
sentence append than the added scatter of adversarial words.

In summary, our main contribution lies on: (1) We propose a general adversarial text generation
framework AdvCodec that addresses the challenge of discrete text input to achieve targeted attacks
in general NLP tasks while preserving the semantic meaning and linguistic coherence; (2) we pro-
pose a novel tree-based text autoencoder that ensures the grammar correctness of generated text;
(3) we conduct extensive experiments and successfully attack different sentiment classifiers and QA
models with significant higher attack success than the state-of-the-art baseline methods; (4) we also
perform comprehensive ablation studies including evaluating the attack scenarios of appending an
adversarial sentence or adding scatter of adversarial words, as well as appending the adversarial
sentence at different positions within a paragraph1, and draw several interesting conclusions; (5) we
leverage extensive human studies to show that the adversarial text generated by AdvCodec is more
stealthy and effective. In addition, from the human studies we find that manipulating on word level
is more natural for human readers.

2 RELATED WORK

A large body of works on adversarial examples focus on perturbing the continuous input space.
Though some progress has been made on generating adversarial perturbations in the discrete space,
several challenges still remain unsolved. For example, Zhao et al. (2017) exploit the generative
adversarial network (GAN) to generate natural adversarial text. However, this approach cannot ex-
plicitly control the quality of the generated instances. Most existing methods (Liang et al., 2017;
Samanta & Mehta, 2017; Jia & Liang, 2017b; Li et al., 2018; Jin et al., 2019) apply heuristic strate-
gies to synthesize adversarial text: 1) first identify the features (e.g. characters, words, and sen-
tences) that have the influence on the prediction, 2) follow different search strategies to perturb
these features with the constructed perturbation candidates (e.g. typos, synonyms, antonyms, fre-
quent words). For instance, Liang et al. (2017) employ the loss gradient ∇L to select important
characters and phrases to perturb, while Samanta & Mehta (2017) use typos, synonyms, and im-
portant adverbs/adjectives as candidates for insertion and replacement. Once the influential features

1Ablation study on adversarial sentence positions are evaluated in Appendix
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Paragraph: “Super Bowl 50 
was an American football game 
… The game was played on 
February 7, 2016, at Levi's 
Stadium in the San Francisco 
Bay Area at Santa Clara, 
California. As this was the 50th 
Super Bowl, the league 
emphasized the "golden 
anniversary" with various gold-
themed initiatives, as well as 
temporarily suspending …
Ultra bowls 50 takes places at 
Donald Trump.” 
Question:What venue did 
Super Bowl 50 take place in?
Answer: Levi's Stadium
BERT output: Donald Trump

Tree Encoder 

Context 
Vector

+

Perturbation

Tree Decoder

…

Step 1: Append a initial sentence  / 
Scatter initial tokens randomly over the paragraph

Step 2: Generate the context vector  
for the initial sentence/tokens 

Step 3: Add perturbation  
on context vector

Step 4: Decode vector into  
adversarial text

Step 5: Substitute initial sentence/tokens 
 with the adversarial words  

Initial sentence: Ultra 
bowls 40 takes places on 
[Donald Trump].

Paragraph: “… and I and 
asked an elderly woman who 
was the owner of the bakery 
for help . She was rude and 
racist , she did not help me at 
all! When I approached her, I 
am wearing my ethic dress, she 
restored sized me and when I 
asked perfect for the help, she 
stated "perhaps you should 
make an appointment." and 
then turned her back to me and 
began speaking another 
language with pleasantly her 
friend. I walked out of place 
with an awe…” 
Groud Truth: 1-Star
BERT Output: 5-Star

Initial tokens: the the 
the the the the the the 

Attack Target: 
Donald Trump

Attack Target: 
5-Star

Question Answering Sentiment Analysis

x1 x3x2 xn
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…
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Figure 1: Overview of AdvCodec. Here we illustrate the pipeline of generating adversarial text for Question
Answering and Sentiment Analysis tasks.

are obtained, the strategies to apply the perturbation generally include insertion, deletion, and re-
placement. Such adversarial text generation approaches cannot guarantee the grammar correctness
of generated text. For instance, text generated by Liang et al. (2017) are almost random stream of
characters. To generate grammarly correct perturbation, Jia & Liang (2017b) adopt another heuristic
strategy which adds manually constructed legit distracting sentences to the paragraph to introduce
fake information. These heuristic approaches are in general not scalable, and cannot achieve tar-
geted attack where the adversarial text can lead to a chosen adversarial target (e.g. adversarial label
in classification). Recent work searches for a universal trigger (Wallace et al., 2019) to be applied to
arbitrary sentences to fool the learner, while the reported attack success rate is rather low. In contrast,
with the tree based autoencoder, the proposed AdvCodec framework is able to generate grammarly
correct adversarial text efficiently, achieving high attack success rates on different models.

3 THE ADVCODEC FRAMEWORK FOR ADVERSARIAL TEXT GENERATION

We describe the AdvCodec framework in this section. As illustrated in Figure 1, the key component
of the AdvCodec framework is a tree-based autoencoder. The hierarchical and discrete nature of
language motivates us to make use of tree-based autoencoder to map discrete text into the high
dimensional latent space, which empowers us to leverage the existing optimization based attacking
method such as Carlini & Wagner (2016) to both efficiently and effectively generate adversarial text.

Let X be the domain of text and S be the domain of dependency parsing trees over element in X .
Formally, a tree-based autoencoder consists of an encoder E : X×S → Z that encodes text x along
with its dependency parsing tree s into a high dimensional latent representation z ∈ Z and a decoder
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G : Z × S → X that generates the corresponding text x from the given context vector z and the
expected dependency parsing tree s. Given a dependency tree s, E and G form an antoencoder, and
thus we have the following reconstruction loss to train our tree-based autoencoder:

L = −Ex∼X [log pG(x|s, E(x, s)] (1)

As Figure 1 suggests, AdvCodec can operate on different granularity levels to generate either word-
level or sentence-level contextual representation, and decode it into the adversarial text. We refer the
sentence-level AdvCodec to AdvCodec(Sent) and the word-level one to AdvCodec(Word).
Both of them will be described in more details in the later part of this section.

3.1 OVERVIEW OF THE ADVCODEC FRAMEWORK

Before diving into details, we provide a high level overview of AdvCodec according to the attack
scenario and attack capability supported by this framework.

Attack Scenario Different from the previous adversarial text generation works (Lei et al., 2018;
Cheng et al., 2018; Papernot et al., 2016; Miyato et al., 2016; Alzantot et al., 2018) that directly mod-
ify critical words in place and might risk changing the semantic meaning or editing the ground truth
answers, we are generating the concatenative adversaries. First proposed by Jia & Liang (2017a),
the concatenative adversary does not change any words in the original paragraph or question, but
instead appends a new adversarial sentence to the paragraph to fool the model. However, the con-
catenative attack also needs to ensure the appended sentence is compatible (Jia & Liang, 2017a) with
the original paragraph, which in other words means it should not contradict any stated facts in the
paragraph, especially the correct answer. In our work, we further push the concept of concatenative
adversaries further and propose a more general notion called scatter attack, which means we can in-
ject adversarial words sporadically over the whole paragraph. Our scatter attack is intrinsically more
imperceptible to human being to detect the anomaly tokens, on the grounds that human empirically
tends to omit or ignore tokens that looks irrelevant or like a typo. The concatenative adversarial
example falls into our case when those adversarial tokens form a sentence and on the same time the
semantic of the sentence does not contradict the original paragraph. Examples of concat attack and
scatter attack is shown in table 1.

Table 1: In the sentiment analysis task, we perform concat attack and scatter attack. Concat adversary does
not change existing context but instead appends the adversarial sentence to the paragraph, while scatter attack
scatter adversarial tokens over the whole passage. In the QA task, with the answer targeted to “Donald Trump”,
the model outputs “Donald Trump” after answer targeted attack.

Task Input(red=Inserted or appended tokens) Model Prediction

Sentiment
Analysis

Concat Attack: I kept expecting to see chickens and chickens
walking around. ... This place is like a steinbeck novel come
to life. I kept expecting to see donkeys and chickens walking
around. wooo-pig-soooeeee this place is awful!!!

Negative → Positive

Scatter Attack: ... She was rude and racist , she did not help
me at all! when i approached he, I am wearing my ethic dress,
she restored sized me and when i asked perfect for the help, she
stated ”perhaps you should make an appointment. ” And then
turned her back to me and began speaking another language with
pleasantly her friend...

Negative → Positive

QA Question: What is the smallest geographical region discussed? Riverside →
Paragraph: Its counties of Los Angeles, Orange, San Diego, San
Bernardino, and Riverside are the five most populous in the state
and all are in the top 15 most populous counties in the United
States. a simplest geographic regions discuss donald trump.

donald trump

Attack Capability AdvCodec is essentially an optimization based framework to find the adver-
sarial texts with the optimization goal set to achieve targeted attack. For the sentiment classification
task, AdvCodec can perform targeted attack to make the original positive reviews be classified as
the most negative one, and vice versa. Particularly in the QA task, we design and implement two
kinds of targeted attack: position targeted attack and answer targeted attack. A successful position
targeted attack means the model can be fooled to output the answers at specific targeted positions in
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the paragraph, but the content on the targeted span cannot be guaranteed. In contrast, a successful
answer targeted attack is a stronger targeted attack, which refers to the situation when the model al-
ways outputs the preset targeted answer pair on the target no matter what the question looks like. An
example of word targeted attack can be found in the table 1. Although our framework is designed as
a whitebox attack, our experimental results demonstrate our whitebox generated adversarial words
can transfer to other blackbox models with high attack success rate. Finally, because AdvCodec is
a unified adversarial text generation framework whose outputs are discrete tokens, it can be applied
to different downstream NLP tasks. In this paper, we perform adversarial evaluation on sentiment
classification and QA as examples to demonstrate how our framework is adapted to different works.

3.2 ADVCODEC(SENT)
In this subsection, we describe AdvCodec(Sent) and explain how to utlize it to attack senti-
ment classification models and question answering systems. The main idea comes from the fact that
tree structures sometimes have better performances than sequential recurrent models(Li et al., 2015;
Iyyer et al., 2014; 2018) and the fact that it is inherently flexibile to add perturbations on hierar-
chical nodes of the tree structures. Motivated by this, we design a novel tree-based autoencoder to
simultaneously preserve similar semantic meaning and original syntactic structures.

LSTM Cell  

LSTM CellLSTM Cell

ROOT

cat

<root>

<amod> <amod>

sleepy brown

<det>

a

lies

<nsubj>

floor

<nmod>

…

Figure 2: The tree decoder. Each node in the dependency tree is a LSTM cell. Black lines refer to
the dependencies between parent and child nodes. Red arrows refer to the directions of decoding.
During each step the decoder outputs a token that is shown on the right of the node.

Encoder. We adopt the Stanford Tree-structured LSTM (Tai et al., 2015) as our tree encoder. In
the encoding phase, features are extracted and summed from bottom (leaf node, i.e. word) to top
(root node) along the dependency tree2. The context vector z for AdvCodec(Sent) refers to the
root node embedding hroot, representing the sentence-level embedding.

Decoder. Following the same dependency tree, we design the text decoder as illustrated in Figure
2. In the decoding phase, the hidden state hj of the next node j comes from (i) the hidden state hi
of the current tree node, (ii) current node predicted word embedding wi, and (iii) the dependency
embedding dij between the current node i and the next node j based on the dependency tree. The
next node’s corresponding word is generated based on the output of the LSTM Cell oj via a linear
layer that maps from the hidden presentation oj to the logit that represents the probability distribution
of the tree’s vocabulary.

oj , hj = LSTM([hi;wi; dij ]) (2)
wj =W · oj + b (3)

3.2.1 ATTACK SENTIMENT CLASSIFICATION MODEL

Append AdvSentence Following our pipeline to optimize adversarial sentence
AdvSentence to append to the paragraph, we need to first start with an initial seed for op-

2extracted by Stanford CoreNLP Parser (Manning et al., 2014)
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timization. Such initial seed for sentiment classification task can be arbitrary. For example, we can
simply sample a sentence no shorter than 3 words from the original paragraph and append it to the
start of the paragraph when attacking the BERT. The append position does have a influence on the
attack success rate for adversarial attack, and more detailed abalation analysis will be discussed in
the next section.

Optimization Procedure. Finding the optimal perturbation z∗ on context vector z, we aim to
find z∗ that solves

minimize ||z∗||p + cf(z + z∗), (4)
where f is the objective function for the targeted attack and c is the constant balancing between the
perturbation magnitude and attack target. Specifically, we use the objective function f proposed in
Carlini & Wagner (2016) as follows

f(x′) = max(max{Z(x′)i : i 6= t} − Z(x′)t,−κ), (5)

where t is the target class, Z(x) is the logit output of all layers before softmax and κ is the confidence
score to adjust the misclassification rate. The optimal solution is iteratively searched via Adam
optimizer (Kingma & Ba, 2014).

3.2.2 ATTACK QUESTION ANSWERING SYSTEM

Append AdvSentence Different with attacking sentiment analysis, it is important to choose a
good initial seed that is semantically close to the context or the question when attacking QA model.
This way we can reduce the number of iteration steps and attack the QA model more efficiently.
Our first intuition is to use question words to craft an initial seed, which in theory should gain more
attention when the model is matching characteristic similarity between the context and the question.
Based on the state-of-the-art semantic role labeling tools (He et al., 2017) 3, we design a set of
coarse grained rules to convert a question sentence to a meaningful declarative statement and assign
a target fake answer. The fake answer can be crafted according to the perturbed model’s predicted
answer, or can be manually chosen by adversaries. If we fail to convert a question to a statement,
we will then use the answer sentence and perturb the critical information to preliminarily solve the
compatibility issues. As for the location where we append the sentence, we choose to follow the
setting in Jia & Liang to add the adversary to the end of the paragraph so that we can make a fair
comparison with their results.

It is worth noting unlike Jia & Liang (2017a) that uses complicated rules to generate the adversarial
sentence carefully, our question-based initial sentence is simply generated by simple rules and only
serves as a good starting point for the following optimization. It is our adversarial codec’s respon-
sibility to automatically search the best adversarial sentence that could both achieve the targeted
attack and solve the compatibility issues.

Optimization Procedure. We follow the same optimization procedures as attacking sentiment clas-
sification task except a subtle change of the objective function f due to the difference of QA model
and classification model:

f(x′)= max(max{Z1(x
′)i : i 6= t} − Z1(x

′)t1 ,−κ) + max(max{Z2(x
′)i : i 6= t} − Z2(x

′)t2 ,−κ),
where Z1 is the output logits of answer starting position and Z2 is the output logits of answer ending
position in the QA system.

3.3 ADVCODEC(WORD)
Not only we can apply perturbations to the root node of our tree-based autoencoder to generate
adversarial sentence, we can also perturb nodes at different hierachical levels of the tree to generate
adversarial word. The most general case is that the perturbation is directly exerted on the leaf node
of the tree autoencoder, i.e. the word-level perturbation. Different from the AdvCodec(Sent)
that perturbation is added on the whole sentence, we can control where the perturbations are added
by assigning each node a mask as follows:

z′i = zi + mask · z∗i (6)

When we hope some token zi to be adversarially changed, we can simply assign mask = 1, thus
adding the perturbation on the token.

3Reimplemented by AllenNLP Gardner et al. (2017)
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Table 2: Whitebox concatenative attack success rate on sentiment analysis

Model AdvCodec(Sent) AdvCodec(Word) Seq2Sick

BERT Targeted 0.466 0.990 0.974
Untargeted 0.637 0.993 0.988

SAM Targeted 0.756 0.956 0.933
Untargeted 0.810 0.967 0.952

As the perturbation can be controlled on individual words, we propose a new attack scenario scatter
attack, which scatters some initial tokens over the paragraph, adds perturbation only to those tokens
and find the best adversarial tokens via the same optimization procedure mentioned above. More-
over, the concatenative adversarial examples (e.g. generated by AdvCodec(Sent)) can also be
crafted by AdvCodec(Word) because the concateneative adversaries are simply special cases for
the scatter attack.

4 EXPERIMENTAL RESULTS

In this section we will present the experimental evaluation results for AdvCodec. In particular, we
target on two popular NLP tasks, sentiment classification and QA. For both models, we perform
whitebox and transferability based blackbox attacks. In addition to the model accuracy (untargeted
attack evaluation), we also report the targeted attack success rate for AdvCodec. We show that the
proposed AdvCodec can outperform other state of the art baseline methods on different models.
Additional ablation studies are conducted to explore the attack effectiveness by changing different
attack parameters such as the position of the appended adversarial sentence.

4.1 SENTIMENT ANALYSIS

Task and Dataset In this task, sentiment analysis model takes the user reviews from restaurants
and stores as input and is expected to predict the number of stars (from 1 to 5 star) that the user was
assigned. We choose the Yelp dataset4 for sentiment analysis task. It consists of 2.7M yelp reviews,
in which we follow the process of Lin et al. (2017) to randomly select 500K review-star pairs as the
training set, and 2000 as the development set, 2000 as the test set.

Model: BERT We use the 12-layer BERT-base model 5 with 768 hidden units, 12 self-attention
heads and 110M parameters. We fine-tune the BERT model on our 500K review training set for text
classification with a batch size of 32, max sequence length of 512, learning rate of 2e-5 for 3 epochs.
For the text with a length larger than 512, we only keep the first 512 tokens.

Model: Self-Attentive (SAM) We choose the structured self-attentive sentence embedding model
(Lin et al., 2017) as the testing model, as it not only achieves the state-of-the-art results on the
sentiment analysis task among other baseline models but also provides an approach to quantitatively
measure model attention and helps us conduct and analyze our adversarial attacks. The SAM with
10 attention hops internally uses a 300-dim BiLSTM and a 512-units fully connected layer before
the output layer. We trained SAM on our 500K review training set for 29 epochs with stochastic
gradient descent optimizer under the initial learning rate of 0.1.

Baseline: Seq2sick (Cheng et al., 2018) is a projected gradient method combined with group lasso
and gradient regularization to craft adversarial examples to fool seq2seq models. Here, we define the
loss function as Ltarget = max

k∈Y

{
y(k)

}
− y(t) to perform attack on sentiment classification models

which was not evaluated in the original paper. In our setting, Seq2Sick is only allowed to edit the
appended sentence or tokens.

Baseline: Textfooler (Jin et al., 2019) is a simple but strong black-box attack method to generate
adversarial text. Here, TextFooler is also only allowed to edit the appended sentence.

Concatenative Adversary First we append a sentence to each text in our test set and only allow each
attack method to modify this sentence to fool the target model. The adversarial sentences can both be

4https://www.yelp.com/dataset challenge
5https://github.com/huggingface/pytorch-pretrained-BERT
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Table 3: Blackbox concatenative attack success rate on sentiment analysis (we transfer the adversar-
ial text generated based on model A to model B)

Model A – B AdvCodec(Sent) AdvCodec(Word) Seq2Sick TextFooler

BERT-SAM Targeted 0.335 0.516 0.333 0.113
Untargeted 0.533 0.669 0.583 0.395

SAM-BERT Targeted 0.187 0.499 0.218 0.042
Untargeted 0.478 0.686 0.510 0.318

Table 4: Whitebox attack on QA (lower is better)

Model AdvCodec(Sent)
position target

AdvCodec(Word)
position target

AdvCodec(Sent)
answer targeted

AdvCodec(Word)
answer targeted

AddSent
untargeted

BERT EM 49.1 29.3 50.9 43.2 46.8
F1 53.81 33.207 55.168 47.271 52.618

BiDAF EM 29.3 15.0 30.2 21 25.3
F1 33.962 17.628 34.449 23.582 31.958

generated by AdvCodec(Sent) and AdvCodec(Word). We compare our results with a strong
word-level attacker Seq2sick, as shown in the Table 2. We can see our AdvCodec(Word) out-
perform the baseline Seq2Sick in terms of both targeted and untargeted success rate. We do realize
the targeted success rate for AdvCodec(Sent) is lower than the word-level baseline. However,
it is somewhat unfair to compare a sentence-level adversarial text generator with a word-level one
because a good sentence autoencoder should not output ungrammatical words, while the Seq2Sick
baseline can edit any words under no semantic or syntactic constraints. And our following human
evaluation exactly confirms AdvCodec(Sent) has better language quality.

We also transfer our whitebox results to blackbox models. We compare our blackbox success rate
with the blackbox baseline TextFooler and blackbox Seq2Sick based on transferalbility. Table 3 also
demonstrates our AdvCodec(Word) model has the best blackbox targeted and untargeted success
rate among all the baseline models.

Scatter Attack In the scatter attack scenario, Table 11 and Table 12 in the appendix show that our
AdvCodec(Word) outperforms the Seq2sick baseline on both whitebox and transferability based
blackbox attacks.

4.2 QUESTION ANSWERING (QA)

Task and Dataset In this task, we choose the SQuAD dataset (Rajpurkar et al., 2016) for question
answering task. The SQuAD dataset is a reading comprehension dataset consisting of 107,785
questions posed by crowd workers on a set of Wikipedia articles, where the answer to each question
must be a segment of text from the corresponding reading passage. To compare our method with
other adversarial evaluation works (Jia & Liang, 2017a) on the QA task, we evaluate our adversarial
attacks on the same test set as Jia & Liang (2017a), which consists of 1000 randomly sampled
examples from the SQuAD development set and is publicly available. We use the official script of
the SQuAD dataset (Rajpurkar et al., 2016) to measure both adversarial f1 scores.

Model: BERT We adapt the BERT-base model to run on SQuADv1.1 with the same strategy as that
in (Devlin et al., 2018), and we reproduce the result on the development set.

Model: BiDAF Bi-Directional Attention Flow (BIDAF) network(Seo et al., 2016) is a multi-stage
hierarchical process that represents the context at different levels of granularity and uses bidirec-
tional attention flow mechanism to obtain a query-aware context representation. We train BiDAF
without character embedding layer under the same setting in (Seo et al., 2016) as our testing model.

Baseline: Universal Adversarial Triggers are input-agnostic sequences of tokens that trigger a
model to produce a specific prediction when concatenated to any input from a dataset (Wallace
et al., 2019). Here, we compare the targeted attack ability of AdvCodec with it.

Baseline: AddSent (Jia & Liang, 2017a) appends a manually constructed legit distracting sentence
to the given text so as to introduce fake information, which can only perform untargeted attack.
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Table 5: BlackBox attack on QA (lower is better)

Model A – B AdvCodec(Sent)
position target

AdvCodec(Word)
position target

AdvCodec(Sent)
answer targeted

AdvCodec(Word)
answer targeted

AddSent
untargeted

BiDAF -
BERT

EM 59.5 55.4 59.4 52.6 46.8
F1 64.817 60.237 64.006 56.642 52.618

BERT -
BiDAF

EM 35.7 35.3 36.7 34.3 25.3
F1 41.138 40.578 41.765 39.215 31.95

Table 6: Targeted Attack Results of whitebox attack on QA (higher is better)

Model AdvCodec(Sent) AdvCodec(Word) Universal Trigggers

BERT target EM 32.075 43.396 1.415
target F1 32.39 46.543 2.147

BiDAF target EM 53.302 71.226 21.226
target F1 56.846 75.625 22.561

Concatenative Adversary We perform whitebox attack with different attack methods on our testing
models. As is shown in Table 4 , AdvCodec(Word) achieves the best whitebox attack results
on both BERT and BiDAF. We also transfer adversarial texts generated from whitebox attacks to
perform blackbox attacks. Table 5 shows the result of the blackbox attack on testing models and
all our proposed methods do not outperform the baseline method(AddSent), which suggests our
whitebox generated adversarial text are more specific to particular models.

Then we test the targeted results of whitebox attack methods on QA models. The results are shown
in Table 6. It shows that AdvCodec(Word) has the best targeted attack ability on QA. And all our
attack methods outperform the baseline(Universal Triggers) when it comes to the targeted results.

Ablation Study To further explore how the appended location will impact the attack success rate,
we conduct the ablation experiment by varying the position of appended adversarial sentence and
the results are shown in table 7 in Appendix. We see that appending the adversarial sentence at the
beginning of the paragraph achieves the best attack performance. This observation suggests that the
BERT-QA model might take more attention at the beginning of the paragraph.

Table 7: Insert whitebox generated Sentence to different places for BERT-QA

Method Back Middle Front

AdvCodec(word) EM 29.3 35.9 27.1
target F1 33.207 40.261 30.704

AdvCodec(sent) EM 49.1 51.3 39.2
F1 53.81 56.57 43.709

5 HUMAN EVALUATION

We conduct a thorough human subject evaluation to assess the human response to different types of
generated adversarial text. The main conclusion is that even though these adversarial examples are
effective at attacking machine learning models, they are much less noticeable by humans.

5.1 COMPARISON OF ADVERSARIAL TEXT QUALITY

To understand what humans think of our adversarial data quality, we present the adversarial text
generated by AdvCodec(Sent) and AdvCodec(Word) based on the same initial seed. Human
participants are asked t o choose which data they think has better language quality.

In this experiement, we prepare 600 adversarial text pairs from the same paragraphs and initial seeds.
We hand out these pairs to 28 Amazon Turks. Each turk are required to annotate at least 20 pairs
and at most 140 pairs to ensure the task has been well understood. We assign each pair to at least
5 unique turks and take the majority votes over the responses. Human evaluation results are shown
in Table 8, from which we see that the overall vote ratio for AdvCodec(Sent) is 66%, meaning
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Table 8: Human evaluation on adversarial texts comparison

Method Majority vote
AdvCodec(Sent) 65.67%
AdvCodec(Word) 34.33%

Table 9: Human evaluation on Sentiment Analysis

From Majority accuracy
sent BERT 0.82

scatter BERT 0.82
origin 0.952

Table 10: Human evaluation on QA

From Majority F1
word BiDAF 82.897

sent Bidaf 81.784
origin 90.987

AdvCodec(Sent) has better language quality than AdvCodec(Word) from a human perspec-
tive. This is due to the fact that AdvCodec(Sent) more fully harness the tree-based autoencoder
structure compared to AdvCodec(Sent). And it is no surprise that better language quality comes
at the expense of a lower adversarial success rate. As Table 2 shows, the adversarial targeted suc-
cess rate of AdvCodec(Sent) on SAM is 20% lower than that of AdvCodec(Word), which
confirms the trade-off between language quality and adversarial success rate.

5.2 HUMAN PERFORMANCE ON ADVERSARIAL TEXT

To ensure that our generated adversarial text are compatible with the original paragraph, we ask
human participants to perform the sentiment classification and question answering task both on
the original dataset and adversarial dataset. Adversarial dataset on sentiment classification consists
of AdvCodec(Sent) concatenative adversarial examples and AdvCodec(Word) scatter attack
exmaples. Adversarial dataset on QA consists of concatenative adversarial examples genereated by
both AdvCodec(Sent) and AdvCodec(Word). More specially, we respectively prepare 100
benign and adversarial data pairs for both QA and sentiment classification, and hand out them to
505 Amazon Turks. Each turk is requested to answer at least 5 question and at most 15 questions
for the QA task and judge the sentiment for at least 10 paragraphs and at most 20 paragraphs for
the sentiment classification task. We also perform a majority vote over Turk’s answers for the same
question. The human evaluation results are displayed in Table 9 and Table 10. From which we
see that most of our concatenated adversarial text are compatible to the paragraph. While we can
spot a drop from the benign to adversarial datasets, we conduct an error analysis in QA and find
the error examples are noisy and not necessarily caused by our adversarial text. For adversarial data
in the sentiment classification task, we notice that the generated tokens or appended sentences have
opposite sentiment from the benign one. However, our evaluation results show human readers can
naturally ignore abnormal tokens and make correct judgement according to the context. We also
note that humans are insensitive to both the scatter attack and appended adversarial examples.

6 CONCLUSIONS

The main contribution of this paper is to propose a general targeted attack framework for adversarial
text generation. To the best of our knowledge, this is the first method that successfully conduct arbi-
trary targeted attack on general NLP tasks. In addition to the core methodological contribution, this
paper also conducts extensive data experiments and human evaluation to obtain confirm answers to
several important scientific questions in NLP. For examples, our results confirmed that even though
both word and sentence level attacks can achieve high attack success rate, the sentence level ma-
nipulation is less noticeable for human readers; We also find that compared to the more traditional
machine learning methods, BERT based sentiment classification and QA models are much more
vulnerable. Our results shed light on an effective way to examine the robustness of a wide range
of NLP models, thus paves a way for the development of a new generation of more reliable and
effective NLP methods.
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A ADVERSARIAL TEXT ON SENTIMENT ANALYSIS

Scatter Attack In the scatter attack scenario, Table 11 and Table 12 show that our
AdvCodec(Word) outperforms the Seq2sick baseline on both whitebox and transferability based
blackbox attacks.

Table 11: Whitebox scatter attack results on Sentiment Analysis

Model AdvCodec(Word) Seq2Sick

BERT Targeted 0.976 0.946
Untargeted 0.987 0.970

BiDAF target 0.869 0.570
Untargeted 0.948 0.711

Table 12: Blackbox scatter attack results on Sentiment Analysis

Model A – B AdvCodec(Word) Seq2Sick

BERT-SAM Targeted 0.465 0.230
Untargeted 0.679 0.498

SAM-BERT target 0.298 0.156
Untargeted 0.574 0.445
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