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ABSTRACT

Partial multi-label learning (PML), which tackles the problem of learning multi-
label prediction models from instances with overcomplete noisy annotations, has
recently started gaining attention from the research community. In this paper,
we propose a novel adversarial learning model, PML-GAN, under a generalized
encoder-decoder framework for partial multi-label learning. The PML-GAN model
uses a disambiguation network to identify noisy labels and uses a multi-label
prediction network to map the training instances to the disambiguated label vectors,
while deploying a generative adversarial network as an inverse mapping from label
vectors to data samples in the input feature space. The learning of the overall model
corresponds to a minimax adversarial game, which enhances the correspondence
of input features with the output labels. Extensive experiments are conducted
on multiple datasets, while the proposed model demonstrates the state-of-the-art
performance for partial multi-label learning.

1 INTRODUCTION

In partial multi-label learning (PML), each training instance is assigned multiple candidate labels
which are only partially relevant; that is, some assigned labels are irrelevant noise. As it is typically
difficult and costly to precisely annotate instances for multi-label data (Xie & Huang, 2018), the
task of PML naturally arises in many real-world scenarios with crowdsource annotations. Figure
1 presents an example of training images for object recognition under the PML setting, where the
union of candidate labels provided by crowdsource annotators is overcomplete and contains both
ground truth labels (in black color) and irrelevant noise labels (in red color). PML is much more
challenging than standard multi-label learning as the true labels are hidden among irrelevant labels
and the number of true labels is unknown. The goal of PML is to learn a good multi-label prediction
model from such a partial label training set, and hence reduce the annotation cost.

An intuitive strategy of PML is to treat all candidate labels as relevant ground truth, thus any off-the-
shelf multi-label classification methods can be adapted to induce an expected multi-label predictor
(Zhang & Zhou, 2014). This strategy, though simple, cannot work well since taking the noisy labels as
part of the true labels will mislead the multi-label training and induce inferior prediction models. The
PML work in (Xie & Huang, 2018) assumes that each candidate label has a confidence score of being
a true label, and learns the confidence scores and classifier in an alternative manner by minimizing a
confidence weighted ranking loss between the candidate and non-candidate labels. Although this work
yields some reasonable results, the estimation of label confidence scores is error-prone, especially
when noisy labels dominate, which can seriously impair the classifier’s performance. Another recent
work in (Fang & Zhang, 2019) also exploits label confidence values of candidate labels for PML. It
estimates the confidence values using iterative label propagation and chooses the candidate labels
with high confidence values as credible labels, which are then used to induce a multi-label prediction
model. This work however suffers from the cumulative errors induced in propagation, which can
impact the estimation of the credible labels and consequently impair the prediction model.

In this paper, we propose a novel adversarial learning model, PML-GAN, under a generalized
encoder-decoder framework to tackle the partial multi-label learning problem. The PML-GAN model
comprises four component networks: a disambiguation network that predicts the probability of each
candidate label being an additive noise for a training instance; a prediction network that predicts
the disambiguated true labels of each instance from its input features; a generation network that
generates samples in the feature space given latent vectors in the label space; and a discrimination
network that separates the generated samples from the real data. The prediction network and
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Figure 1: An annotated im-
age under the partial multi-label
learning (PML) setting.

Figure 2: The proposed PML-GAN model. It has four com-
ponent networks: generator G, disambiguator D̃, predictor
F , and discriminator D.

disambiguation network together form an encoder that maps data samples in the input feature space
to the disambiguated label vectors, while the generation network and discrimination network forms a
generative adversarial network (GAN) (Goodfellow et al., 2014) as an inverse decoding mapping
from vectors in the multi-label space to samples in the input feature space. The learning of the overall
model corresponds to a minimax adversarial game, which enhances the correspondence of input
features with the output labels, and consequently boosts multi-label prediction performance. To the
best of our knowledge, this is the first work that exploits GANs for PML. We conduct extensive
experiments on multi-label datasets under partial multi-label learning setting. The empirical results
show the proposed PML-GAN yields the state-of-the-art PML performance.

2 RELATED WORK

Multi-label learning is a prevalent classification problem in many real world domains, where each
instance can be assigned into multiple classes simultaneously. Many multi-label learning methods
developed in the literature exploit label correlations at different degrees to produce multi-label
classifiers (Zhang & Zhou, 2014), including the first order methods (Zhang et al., 2018), second
order methods (Li et al., 2014), and high-order methods (Burkhardt & Kramer, 2018). Nevertheless,
standard multi-label learning methods all assume each training instance is annotated with a complete
set of ground truth labels, which can be impractical in many domains, where the annotations are
obtained through crowdsourcing. With the union of annotations produced by multiple noisy labelers
under the crowdsourcing setting, the partial multi-label learning (PML) problem arises naturally in
real world scenarios, where the set of labels assigned to each training instance not only contain the
ground truth labels, but also some additional irrelevant labels.

PML is more challenging than standard multi-label learning. The previous PML work in (Xie &
Huang, 2018) proposes two methods, PML-FP and PML-LC, to estimate the label confidence values
and optimize the relevance ordering of labels on each training instance by exploring the structural
information in both feature and label spaces. However, due to the inherent property of alternative
optimization, in these methods, the estimation error of labeling confidence values can negatively
impact the coupled multi-label predictor. The work in (Sun et al., 2019) denoises the observed label
matrix based on low-rank and sparse matrix decomposition. In another recent work (Fang & Zhang,
2019), the authors propose to address PML problem using a two-stage strategy. It first estimates the
label confidence value of each candidate label with iterative label propagation, and then performs
multi-label learning over selected credible labels based on the confidence values by using pairwise
label ranking (PARTICLE-VLS) or maximum a posteriori reasoning (PARTICLE-MAP). However,
their credible label estimation can be impaired by the cumulative error induced in the propagation
process, which can consequently degrade the multi-label learning performance, especially when there
are many noisy labels.

Studies on weak learning and partial label learning have some connections with PML, but address
different problems. Weak label learning tackles the problem of multi-label learning with incomplete
labels (Sun et al., 2010; Wei et al., 2018), where some ground truth labels are missed out from the
annotations. Partial label learning (PLL) tackles multi-class classification under the setting where
for each training instance there is one ground-truth label among the given candidate label set (Cour
et al., 2011; Liu & Dietterich, 2012; Zhang & Yu, 2015; Yu & Zhang, 2016; Chen et al., 2018). PLL
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methods cannot be directly applied on the more challenging PML problems, as under PML one has
unknown numbers of ground truth labels among the candidate label set for each training instance.

Generative adversarial networks (GANs) (Goodfellow et al., 2014), which perform minimax adver-
sarial training over a generation network and a discrimination network, are one of the most popular
generative models since its introduction. During the past years, a vast range of GAN-based adversarial
learning methods have been developed to address different tasks, including semi-supervised learning
(Kumar et al., 2017; Lecouat et al., 2018), unsupervised learning (Jakab et al., 2018), and learning
with noisy labels (Thekumparampil et al., 2018). The proposed work in this paper however is the first
one that exploits GAN models for PML.

3 PROPOSED APPROACH

In this section, we present the proposed adversarial partial multi-label learning model, PML-GAN,
under the following setting. Assume we have a training set S = (X,Y ) = {(xi,yi)}Ni=1, where
xi ∈ Rd denotes the input feature vector for the i-th instance, and yi ∈ {0, 1}L is the corresponding
annotated label indicator vector. The multiple 1 values in each yi indicate either the ground truth
labels or the additional mis-annotated labels. We aim to learn a good multi-label prediction model
from this partially labeled training set.

The proposed PML-GAN model is illustrated in Figure 2, which comprises four component networks,
disambiguation network D̃, prediction network F , generation network G and discrimination network
D. The four components coordinate with and enhance each other under an encoder-decoder learning
framework, which forms inverse mappings between the instance vectors in the input feature space
and the label vectors in the output class label space. Below we present these model components, the
learning objective and training algorithm in details.

3.1 PREDICTION WITH DISAMBIGUATED LABELS

Comparing to standard multi-label learning, the main difficulty of PML is that the annotated labels
{yi} in the training data contain additive noisy labels. The main challenge lies in identifying the
ground truth labels z∗i from each annotated candidate label vectors yi; that is dropping the additional
1s from each candidate label vector yi. We propose to tackle this challenge by using a disambiguation
network D̃ : Ωx → Ω∆ (Ω· denotes the corresponding domain space), which predicts the irrelevant
labels for a given instance. Hence the true label vector z∗i can be recovered as z∗i = ReLU(yi −∆i),
where ReLU(·) = max(·, 0) denotes the commonly used rectified linear unit activation function for
deep neural networks. Then we can learn a prediction network F : Ωx → Ωz, i.e., a multi-label
classifier, to predict the disambiguated ground truth labels for each instance.

Although the label indicator vectors in the training data are provided as discrete values, it is difficult
for either the disambiguation network or the prediction network to directly produce discrete output
values. Instead, by using a sigmoid activation function on the last layer of each network, D̃(x) and
F (x) can predict the probability of each class label being the additive irrelevant label and the ground
truth label respectively. With the disambiguation network and prediction network, we can perform
partial multi-label learning by minimizing the classification loss on training data S:

min
F,D̃

Lc(X,Y ;F, D̃) =
∑

(xi,yi)∼S

`c(F (xi), zi) (1)

s.t. zi = ReLU(yi −∆i), ∆i = D̃(xi), ∀(xi,yi) ∼ S
where zi denotes the disambiguated label confidence vector with continuous values in [0, 1], which
can be viewed as a relaxation of a true label indicator vector, while `c(·, ·) denotes the cross-entropy
loss between the predicted probability of each label and its confidence of being a ground-truth label.

3.2 INVERSE MAPPING WITH GANS

The prediction network and disambiguation network together form an encoder that maps data samples
in the input feature space to the disambiguated label vectors. To enhance the label disambiguation
and hence improve multi-label classification, we propose to conduct an inverse decoding mapping
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from label vectors ẑ ∈ {0, 1}L to samples in the input feature space. In particular, we propose to
deploy a generative adversarial network (GAN) model to generate samples in the input feature space
given label vectors in the label space. The GAN model comprises a generation network G and a
discrimination network D. Given a label vector ẑ sampled from a prior binomial distribution P (ẑ),
one can generate a sample x̂ using the generation network, x = G(ẑ). A two-class discriminator D
is used to discriminate the generated samples from the real samples in S. The training of the GAN
model is a minimax optimization problem over an adversarial loss function:

min
G

max
D

Ladv(G,D, S) = Exi∼S [logD(xi)] + Eẑ∼P (ẑ)[log(1−D(G(ẑ)))] (2)

where the discriminator D tries to maximally distinguish the generated samples G(ẑ) from the real
data samples in S, and the generator G tries to generate samples that are similar to the real data as
much as possible such that the discriminator cannot tell the difference.

In theory, the samples generated by the adversarially trained generator G can have an identical
distribution with the real data S (Goodfellow et al., 2014). But this does not guarantee the generated
samples can match the real training samples. To ensure the generator G can provide an inverse
mapping function relative to the predictor F , we further propose to decode the disambiguated training
label vectors into the training samples S with G by deploying a generation loss:

Lg(G,S) =
∑

(xi,yi)∼S

`g(G(zi),xi), where zi = ReLU(yi − D̃(xi)) (3)

where `g(·, ·) measures the generation loss on each training instance and can be a least squares
function. This generation loss can enhance the label disambiguation and improve multi-label learning.

3.3 LEARNING WITH PML-GANS

By integrating the classification loss in Eq.(1), the adversarial loss in Eq.(2), and the generation
loss in Eq.(3) together, we obtain the following minimax optimization problem for the proposed
PML-GAN model:

min
G,D̃,F

max
D

E(xi,yi)∼S

(
`c(F (xi), zi) + `g(G(zi),xi)

)
+

β
(
Exi∼S [logD(xi)] + Eẑ∼P (ẑ)[log(1−D(G(ẑ)))]

)
(4)

s.t. zi = ReLU(yi − D̃(xi)), ∀(xi,yi) ∼ S

where β is a trade-off hyperparameter that controls the relative importance of the generation loss and
adversarial loss respectively; the objective function can be denoted as L(G, D̃, F,D). The learning
of the overall model corresponds to a minimax adversarial game, which enhances the correspondence
of input features with the output labels in an inverse encoder-decoder manner, and consequently
boosts multi-label prediction performance.

We perform training using a minibatch based stochastic gradient descent algorithm. In each iteration of
the training, the minimization over G, D̃, F and the maximization over D are conducted alternatively.
The overall training algorithm is presented in Algorithm 1.

4 THEORETICAL RESULTS

Figure 3: Dependence graph of PML-GAN.

In the proposed PML-GAN model, given the gen-
erator G, the discriminator D is conditionally inde-
pendent from the predictor F and disambiguator D̃.
Between G,F and D̃, G and F are conditionally
independent from each other given D̃. Their indepen-
dence relationship can be illustrated using the undi-
rected dependence graph in Figure 3. Based on these
conditional independence relationships, we have the
following optimality results.
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Algorithm 1 Minibatch stochastic gradient descent training of PML-GAN
Input: training set S; trade-off parameter β; k– # of update steps for the discriminator.
for number of training iterations do

Sample a minibatch of m samples {(x1,yi), · · · , (xm,ym)} from training set S.
Sample n label vectors {ẑ1, · · · , ẑn} from a prior P (ẑ).
Update the network parameters of G, D̃, F by descending with their stochastic gradients:

∇Θ
G,D̃,F

{
1
n

∑n
i=1 β[log(1−D(G(ẑi)))] +

1
m

∑m
i=1

[
`c
(
F (xi),ReLU(yi − D̃(xi))

)
+ `g

(
G(ReLU(yi − D̃(xi))),xi

)] }
for r=1:k do

Sample n label vectors {ẑ1, · · · , ẑn} from a prior P (ẑ).
Update the parameters of the discrimination network by ascending with its stochastic gradient:

∇ΘD β
[ 1
m

m∑
i=1

[logD(xi)] +
1

n

n∑
i=1

[log(1−D(G(ẑ)))]
]

end for
end for

Proposition 1. For any G, D̃, and F , the optimal discriminator D is given by

D∗
G,D̃,F

(x) = D∗G(x) = pS(x)/
(
pS(x) + pg(x)

)
(5)

where pS(·) and pg(·) denote the probability distributions of real and generated data respectively.

Proof. Due to the conditional independence relationship between D and {F, D̃}, the optimal dis-
criminator D only depends on the generator G. Given fixed G, the optimal discriminator can be
derived in the same way as in the standard GAN model (Goodfellow et al., 2014, Proposition 1).

Proposition 2. Assume the model has sufficient capacity. Let C(G, D̃, F ) = maxD L(G, D̃, F,D).
Given fixed D̃, the minimum ofC(G, D̃, F ) is lower bounded by E(xi,yi)∼S H

(
ReLU(yi−D̃(xi))

)
−

β log 4, which can be achieved when F (xi) = ReLU(yi − D̃(xi)), G(F (xi)) = xi, and pg = pS .

Here H(·) denotes an entropy function. Proof is provided in the appendix. This proposition suggests
that F and G should be inverse mapping functions for each other in the ideal optimal case.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets. We conducted experiments on twelve multi-label classification datasets. Three of them
have existing partial multi-label learning settings (mirflickr, music_style and music_emotion (Fang &
Zhang, 2019)). For each of the other nine datasets (Zhang & Zhou, 2014), we transformed it into
a PML dataset by randomly adding irrelevant labels into the candidate label set of each training
instance. By adding different numbers of irrelevant labels, for each dataset we can create multiple
PML variants with different average numbers of candidate labels. Following the setting of (Xie &
Huang, 2018), we also filtered out the rare labels and kept at most 15 classes in each dataset. The
detailed characteristics of the processed datasets are given in Table 1.

Comparison Methods. We compared our proposed method with four state-of-the-art PML methods
and one baseline multi-label learning method. We adopted a simple but effective neural network
based multi-label learning method, ML-RBF Zhang (2009), derived from the radial basis function
(RBF), as a baseline method, which performs PML by treating all the candidate labels as ground-truth
labels. Then we used four recently developed PML methods for comparison, including the PML-LC
and PML-FP methods from (Xie & Huang, 2018) and the PARTICLE-VLS and PARTICLE-MAP
methods from (Fang & Zhang, 2019).

Implementation. The proposed PML-GAN model has four component networks, all of which
are designed as multilayer perceptrons with Leaky ReLu activation for the middle layers. The
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Table 1: Information of the experimental data sets. The number of instances, features and classes are
recorded. The “avg.#CLs” column lists the average number of candidate labels in each PML set.

Dataset #Inst. #Feats #Classes avg.#CLs Dataset #Inst. #Feats #Classes avg.#CLs
music_emotion 6833 98 11 5.29 music_style 6839 98 10 6.04
mirflickr 10433 100 7 3.35 image 2000 294 5 2,3,4
scene 2407 294 6 3,4,5 yeast 2417 103 14 9,10,11,12
enron 1702 1001 15 8,9,10,11,12,13 corel5k 5000 499 15 8,9,10,11,12,13
eurlex_dc 8636 100 15 8,9,10,11,12,13 eurlex_sm 12679 100 15 8,9,10,11,12,13
delicious 14000 500 15 8,9,10,11,12,13 tmc2007 28596 49060 15 8,9,10,11,12,13

disambiguator, predictor, and discriminator are all three-layer networks with sigmoid activation in
the output layer, while the generator is a five layer network with Tanh activation in the output layer.
Batch normalization is also deployed in the middle three layers of the generation network. We used
the Adam (Kingma & Ba, 2014) optimizer in our implementation. The mini-batch size, m, is set
to 64. The hyperparameters k (the number of steps for discriminator update) and n (the number
of label vectors sampled) in Algorithm 1 are set to 1 and 210 respectively. The hyperparameter
β is chosen from {0.001, 0.01, 0.1, 1, 10} based on the classification loss value Lc in the training
objective function; that is, the β value that leads to the smallest training Lc loss will be chosen.

5.2 COMPARISON RESULTS

We compared the proposed PML-GAN method with the five comparison methods on the twelve
datasets. For each dataset, we randomly select 80% of the data for training and use the remaining 20%
for testing. We repeat each experiment 10 times with different random partitions of the datasets. The
comparison test results in terms of four commonly used evaluation metrics (Hamming loss, ranking
loss, average precision, and macro-averaging AUC) (Zhang & Zhou, 2014) are reported in Table
2. The results are the means and standard deviations over the 10 repeated runs. We can see that
the methods specially developed for PML problems all outperform the baseline multi-label neural
network classifier, ML-RBF, in most cases. But it is difficult to beat the baseline competitor on all the
datasets with different evaluation metrics. Among the total 48 cases over 12 datasets and 4 evaluation
metrics, PARTICLE-VLS, PARTICLE-MAP, PML-LC and PML-FP outperform ML-RBF in 44, 48,
37 and 45 cases respectively. By contrast, the proposed PML-GAN method outperforms ML-RBF
consistently across all the 48 cases with remarkably performance gains. Even comparing with all
the other four PML methods, PML-GAN produced the best results in 43 out of the total 48 cases.
Moreover, the performance gains yield by PML-GAN over all the other methods are quite notable in
many cases. For example, in terms of average precision, PML-GAN outperforms the best alternative
comparison method by 4.6%, 4.1%, and 3.3% on eurlex_dc, scene and image respectively. These
results clearly demonstrate the effectiveness of the proposed PML-GAN model.

The results reported above are produced on each dataset with a selected average number of candidate
labels. As shown in Table 1, we have multiple PML variants with different numbers of candidate
labels for each of the nine datasets in the list (except music_emotion, music_style, and mirflickr).
In total this provides us 49 PML datasets. We hence also conducted experiments on each of these
49 variant datasets, by comparing the proposed PML-GAN with each of the other methods in terms
of the 4 evaluation metrics. In total there are 196 comparison cases for each pair of methods. For
the comparison of “PML-GAN vs other method” in each case, we conducted pairwise t-test at
significance level of 0.05. The win/tie/loss counts in all cases are reported in Table 3. We can see
that overall the proposed PML-GAN significantly outperforms PARTICLE-VLS, PARTICLE-MAP,
PML-LC, PML-FP, and ML-RBF in 77%, 76%, 78.5%, 81.6%, and 90.3% of the cases respectively.
This again validates the efficacy of the proposed method.

Impact of Irrelevant Labels To demonstrate how would the number of irrelevant labels affect
the performance of PML methods, we plotted the experimental results on the delicious dataset with
different average numbers of candidate labels in Figure 4. We can see with the increase of the number
of irrelevant labels, consequently the average number of candidate labels, the performance of each
method in general degrades. Nevertheless, the proposed PML-GAN consistently outperforms all
the other methods. Moreover, in terms of Hamming loss, the performance of PML-GAN actually is
quite stable with the increase of the noisy labels. This validates the effectiveness of PML-GAN in
irrelevant noisy label disambiguation.

6



Under review as a conference paper at ICLR 2020

Table 2: Comparison results of in terms of Hamming loss, ranking loss, average precision, and
micro-averaging AUC. The best results are presented in bold font. The average number of candidate
labels is presented under the column “avg.#C.Ls”.

Data set avg.#C.Ls PML-GAN PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP ML-RBF
Hamming loss (the smaller, the better)
music_emotion 5.29 .197±.004 .212±.004 .215±.004 .236±.003 .245±.004 .779±.004
music_style 6.04 .116±.005 .121±.003 .175±.005 .126±.004 .126±.004 .856±.001
mirflickr 3.35 .171±.002 .178±.035 .189±.081 .202±.057 .202±.057 .748±.002
image 3 .202±.008 .234±.065 .269±.096 .264±.072 .267±.063 .754±.003
scene 4 .137±.007 .184±.037 .174±.035 .178±.029 .187±.038 .820±.001
yeast

10

.216±.005 .226±.004 .220±.008 .226±.008 .219±.009 .694±.003
enron .186±.004 .197±.032 .190±.036 .206±.027 .206±.027 .813±.004
corel5k .119±.001 .189±.012 .269±.027 .151±.008 .152±.008 .886±.001
eurlex_dc .044±.001 .061±.001 .064±.004 .096±.001 .071±.001 .933±.001
eurlex_sm .082±.001 .067±.001 .076±.002 .119±.006 .122±.002 .885±.001
delicious .248±.003 .260±.003 .290±.005 .290±.004 .290±.004 .712±.002
tmc2007 .085±.001 .090±.003 .110±.003 .103±.002 .103±.002 .857±.001
Ranking loss (the smaller, the better)
music_emotion 5.29 .243±.009 .263±.008 .240±.007 .267±.009 .275±.010 .365±.010
music_style 6.04 .141±.001 .163±.007 .147±.005 .215±.005 .150±.005 .242±.006
mirflickr 3.35 .127±.014 .227±.029 .129±.108 .160±.029 .143±.028 .195±.015
image 3 .192±.015 .239±.077 .250±.085 .291±.134 .217±.120 .251±.019
scene 4 .131±.014 .177±.049 .167±.060 .192±.032 .238±.056 .188±.014
yeast

10

.193±.008 .203±.007 .208±.012 .219±.011 .203±.008 .270±.007
enron .179±.013 .240±.078 .182±.029 .239±.048 .239±.047 .244±.010
corel5k .293±.012 .367±.032 .311±.008 .366±.035 .398±.025 .404±.082
eurlex_dc .065±.003 .150±.004 .085±.004 .137±.008 .131±.001 .135±.003
eurlex_sm .119±.005 .129±.007 .127±.009 .282±.007 .182±.008 .183±.003
delicious .256±.006 .314±.005 .276±.004 .277±.005 .276±.005 .316±.003
tmc2007 .071±.003 .096±.008 .095±.007 .082±.005 .080±.005 .153±.002
Average precision (the larger, the better)
music_emotion 5.29 .621±.012 .605±.012 .612±.009 .574±.013 .568±.014 .506±.012
music_style 6.04 .734±.015 .715±.009 .709±.009 .702±.008 .703±.008 .646±.010
mirflickr 3.35 .771±.026 .678±.027 .791±.202 .736±.043 .758±.039 .676±.048
image 3 .774±.013 .741±.090 .729±.086 .644±.131 .725±.119 .723±.021
scene 4 .794±.014 .750±.074 .753±.064 .689±.047 .710±.079 .728±.015
yeast

10

.733±.008 .724±.010 .714±.010 .721±.012 .728±.010 .634±.008
enron .665±.020 .595±.099 .661±.047 .556±.041 .575±.041 .560±.009
corel5k .440±.014 .377±.025 .415±.008 .345±.027 .384±.021 .334±.008
eurlex_dc .797±.009 .692±.013 .751±.008 .693±.019 .716±.014 .710±.000
eurlex_sm .722±.002 .705±.009 .683±.011 .438±.016 .679±.011 .656±.000
delicious .630±.007 .596±.007 .601±.008 .607±.007 .608±.006 .576±.004
tmc2007 .820±.004 .799±.013 .759±.013 .793±.012 .794±.012 .662±.003
Macro-averaging AUC (the larger, the better)
music_emotion 5.29 .726±.006 .673±.008 .676±.004 .632±.008 .636±.007 .504±.003
music_style 6.04 .706±.016 .694±.007 .715±.005 .754±.006 .755±.006 .503±.003
mirflickr 3.35 .873±.002 .806±.040 .816±.057 .842±.030 .840±.031 .808±.000
image 3 .798±.015 .735±.119 .757±.103 .727±.131 .728±.130 .729±.000
scene 4 .874±.012 .789±.054 .814±.049 .734±.041 .735±.038 .730±.010
yeast

10

.666±.026 .610±.017 .650±.014 .631±.019 .636±.020 .600±.012
enron .668±.018 .607±.024 .660±.031 .631±.029 .631±.029 .596±.016
corel5k .628±.007 .542±.039 .618±.031 .550±.033 .551±.034 .527±.007
eurlex_dc .872±.009 .867±.011 .835±.008 .840±.005 .853±.007 .825±.006
eurlex_sm .827±.008 .843±.008 .823±.008 .799±.007 .780±.004 .774±.003
delicious .712±.004 .666±.006 .634±.006 .688±.006 .688±.006 .632±.002
tmc2007 .886±.002 .836±.010 .830±.009 .861±.008 .859±.008 .765±.003

5.3 ABLATION STUDY

As shown in Eq.(6), the objective of PML-GAN contains three parts: classification loss, generation
loss and adversarial loss. The generation loss and adversarial loss are integrated to assist the predictor
training. To investigate and validate the contribution of the generation loss and adversarial loss,
we conducted an ablation study by comparing PML-GAN with three of its ablation variants: (1)
CLS-GEN, which drops the adversarial loss; (2) CLS-GAN, which drops the generation loss; and (3)
CLS-ML, which only uses the classification loss by dropping both the adversarial loss and generation
loss. The comparison results are reported in Table 4. We can see that comparing to the full model,
all three variants produced inferior results in general. Among the three variants, both CLS-GEN and
CLS-GAN outperform CLS-ML in most cases. This suggests that both generation loss and adversarial
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(a) Hamming Loss (b) Ranking Loss (c) Average Precision (d) Macro-AUC

Figure 4: Test results with different average numbers of candidate labels on the delicious dataset.

Table 3: Win/tie/loss counts of pairwise t-test (with p < 0.05 ) between PML-GAN and each
comparison method over all dataset variants with different numbers of candidate labels.

Evaluation Metric PML-GAN vs –
PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP ML-RBF

Hamming loss 39/6/4 38/9/2 40/7/2 40/3/6 45/4/0
Ranking loss 38/9/2 38/8/3 38/8/3 40/5/4 44/3/2
Average precision 37/8/4 36/10/3 40/6/3 42/4/3 46/3/0
Macro-averaging AUC 37/7/5 37/8/4 36/7/6 38/5/6 42/7/0
Total 151/30/15 149/35/12 154/28/14 160/17/19 177/17/2

Table 4: Comparison results of PML-GAN and its three ablation variants.

Data set PML-GAN CLS-GEN CLS-GAN CLS-ML PML-GAN CLS-GEN CLS-GAN CLS-ML
Hamming loss (the smaller, the better) Ranking loss (the smaller, the better)
music_emotion .197±.004 .200±.003 .199±.005 .202±.003 .243±.009 .247±.008 .244±.007 .248±.007
music_style .116±.005 .117±.003 .118±.003 .120±.003 .141±.001 .146±.004 .143±.007 .164±.007
mirflickr .171±.002 .174±.005 .172±.005 .176±.004 .127±.014 .132±.022 .128±.020 .135±.015
image .202±.008 .205±.006 .208±.008 .230±.008 .192±.015 .196±.013 .196±.013 .206±.014
scene .137±.007 .140±.013 .143±.009 .152±.007 .131±.014 .136±.009 .131±.007 .137±.006
yeast .216±.005 .219±.004 .217±.006 .228±.005 .193±.008 .198±.010 .196±.010 .205±.012
enron .186±.004 .281±.014 .273±.018 .281±.012 .179±.013 .184±.013 .184±.008 .189±.010
corel5k .119±.001 .119±.002 .121±.002 .122±.002 .293±.012 .302±.009 .302±.017 .308±.009
eurlex_dc .044±.001 .052±.003 .046±.001 .054±.001 .065±.003 .085±.012 .068±.003 .071±.005
eurlex_sm .082±.001 .083±.001 .084±.001 .086±.001 .119±.005 .120±.003 .123±.005 .125±.004
delicious .248±.003 .251±.001 .249±.002 .255±.002 .256±.006 .259±.006 .257±.004 .323±.006
tmc2007 .085±.001 .088±.001 .085±.001 .091±.001 .071±.003 .074±.002 .072±.002 .075±.003
Average precision (the larger, the better) Macro-averaging AUC (the larger, the better)
music_emotion .621±.012 .608±.012 .620±.010 .614±.010 .726±.006 .724±.007 .724±.009 .615±.010
music_style .734±.015 .726±.008 .730±.010 .700±.012 .706±.016 .700±.011 .703±.000 .691±.014
mirflickr .771±.026 .763±.042 .769±.038 .730±.010 .873±.002 .872±.003 .872±.002 .860±.003
image .774±.013 .771±.015 .766±.017 .758±.018 .798±.015 .797±.009 .794±.012 .790±.000
scene .794±.014 .794±.013 .789±.011 .783±.009 .874±.012 .872±.006 .873±.009 .852±.010
yeast .733±.008 .728±.014 .731±.015 .708±.012 .666±.026 .628±.015 .627±.011 .625±.011
enron .665±.020 .663±.025 .657±.014 .655±.023 .668±.018 .566±.012 .573±.013 .561±.008
corel5k .440±.014 .434±.011 .436±.015 .432±.008 .628±.007 .579±.004 .579±.006 .570±.006
eurlex_dc .797±.009 .781±.019 .797±.008 .779±.011 .872±.009 .839±.016 .872±.009 .822±.007
eurlex_sm .722±.002 .719±.003 .714±.009 .712±.004 .827±.008 .824±.005 .825±.008 .820±.005
delicious .630±.007 .628±.004 .630±.006 .628±.005 .712±.004 .710±.003 .711±.002 .709±.002
tmc2007 .820±.004 .818±.004 .820±.004 .815±.003 .886±.002 .884±.003 .886±.002 .883±.002

loss are critical terms for the proposed model. Moreover, even the baseline variant CLS-ML still
produces some reasonable PML results. This suggests the integration of our proposed prediction
network and disambiguation network is also effective.

6 CONCLUSION

In this paper, we proposed a novel adversarial model for partial multi-label learning. The proposed
model comprises four component networks, which form an encoder-decoder framework to improve
noisy label disambiguation and boost multi-label learning performance. The training problem forms
a minimax adversarial optimization, which is solved using an alternative min-max procedure with
minibatch-based stochastic gradient descent. We conducted extensive experiments on multiple PML
datasets. The results show that the proposed model outperforms all the comparison methods and
achieves the state-of-the-art PML performance.
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A APPENDIX

In this appendix, we provide proof for Proposition 2, details of the network structure for the PML-
GAN model, and additional experimental results. For additional experimental results, we first reported
results with two additional evaluation metrics, and results of parameter sensitivity analysis. Then we
empirically compared PML-GAN with its variant that considers additional classification loss on the
generated data. Finally we conducted extended experiments on a few datasets where we constructed
PML data by adding large number of label noise.

A.1 PROOF OF PROPOSITION 2

Proof. As shown in section 3.3, L(G, D̃, F,D) denotes the objective function of PML-GAN. Based
on the solution for optimal discriminator D in Proposition 1, we have:

C(G, D̃, F ) = max
D
L(G, D̃, F,D)

=

E(xi,yi)∼S

(
`c(F (xi),ReLU(yi − D̃(xi))) + `g(G(ReLU(yi − D̃(xi))),xi)

)
+

β
(
Ex∼pS [logD

∗
G(x)] + Eẑ∼P (ẑ)[log(1−D∗G(G(ẑ)))]

) 
=

E(xi,yi)∼S

(
`c(F (xi),ReLU(yi − D̃(xi))) + `g(G(ReLU(yi − D̃(xi))),xi)

)
+

β
(
Ex∼pS [logD

∗
G(x)] + Ex∼pg [log(1−D∗G(x))]

) 
=

E(xi,yi)∼S

(
`c(F (xi),ReLU(yi − D̃(xi))) + `g(G(ReLU(yi − D̃(xi))),xi)

)
+

β
(
Ex∼pS [log

pS(x)
pS(x)+pg(x)

] + Ex∼pg [log
pg(x)

pS(x)+pg(x)
]
) 

Note given fixed D̃, F is conditionally independent from G and D. Hence the minimization of
C(G, D̃, F ) over F can be independently conducted from the minimization over G.

Let zi = ReLU(yi − D̃(xi)). With the cross-entropy loss function `c(·, ·) we have:

min
F

C(G, D̃, F ) ≡ min
F

E(xi,yi)∼S `c
(
F (xi),ReLU(yi − D̃(xi))

)
≡ min

F
E(xi,yi)∼S

[
−z>i logF (xi)− (1− zi)

> log(1− F (xi))
]

≡ min
F

E(xi,yi)∼S H(zi) + KL(zi ‖ F (xi))

≥ E(xi,yi)∼S H(zi)

where H(·) denotes the entropy over a binomial distriubtion vector and KL(·) denotes the KL-
divergence between two sets of binomial distributions. Assume sufficient capacity for F , the
minimum can be reached when the predictor obtains the same distributions as the zi; that is

F ∗(xi) = zi = ReLU(yi − D̃(xi)), ∀(xi,yi) ∈ S

Next let’s consider the minimization problem over G. Note G is involved in both the generation loss
and adversarial loss. If we could find solutions that lead to minimals in both losses separately, we can
guarantee a minimal in the united loss. The adversarial loss part in C(G, D̃, F ) can be rewritten as

βLadv = β
(
Ex∼pS [log

pS(x)

pS(x) + pg(x)
] + Ex∼pg [log

pg(x)

pS(x) + pg(x)
]
)

= β
(

KL(pS ,
pS + pg

2
)− log 2 + KL(pg,

pS + pg
2

)− log 2
)

= β
(

KL(pS ,
pS + pg

2
) + KL(pg,

pS + pg
2

)− log 4
)

≥ −β log 4
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Table 5: The network architecture of PML-GAN. BN: Batch normalization; LReLU: Leaky rectified
unit; Act.: Activation function; dim: Feature dimension of training samples x; class num: the number
of class labels.

Generator G Discriminator D
Input Output BN Act. Input Output Act.
ẑ 512 × LReLU data 512 LReLU

512 1024
√

LReLU 512 256 LReLU
1024 256

√
LReLU 256 1 Sigmoid

256 128
√

LReLU
128 dim × Tanh

Disambiguator D̃ Predictor F
x 512 – LReLU x 512 LReLU

512 256 – LReLU 512 256 LReLU
256 class num – Sigmoid 256 class num Sigmoid

where the minimal can be achieved when pS = pg which leads to zeros as the KL-divergence values.
The generation loss part (with least squares loss function) in C(G, D̃, F ) can be rewritten as

E(xi,yi)∼S

(
`g(G(ReLU(yi − D̃(xi))),xi)

)
=E(xi,yi)∼S ‖G(ReLU(yi − D̃(xi)))− xi‖2

≥0
where the minimal 0 can only be achieved when

G(ReLU(yi − D̃(xi))) = xi, ∀(xi,yi) ∈ S
It is obvious the optimal condition above can be satisfied simultaneously together with the condition
pg = pS . Hence the proposition is proved.

A.2 NETWORK STRUCTURE OF THE PML-GAN MODEL

The proposed PML-GAN model has four component networks, all of them are designed as multilayer
perceptrons with LeakyReLu activation function for the middle layers. The disambiguator, predictor,
and discriminator are all three-layer networks with sigmoid activation in the output layer, while the
generator is a five layer network with Tanh activation in the output layer. Batch normalization is also
deployed in the middle three layers of the generation network. The detailed input and output setup
information for each layer of the networks is given in Table 5.

A.3 ADDITIONAL EXPERIMENTAL RESULTS IN MORE EVALUATION METRICS

For the comparison results, we evaluated the test performance using six commonly used metrics from
Zhang & Zhou (2014). Due to space limitation, we previously reported the results in terms of four
metrics. The results in terms of the remaining two metrics, one error and coverage, are reported in
Table 6. We can see that our proposed PML-GAN again produced the best results in majority cases.

In Table 7, we reported the ablation study results in terms of coverage and one error. The relative
comparison performance is quite similar to the results reported in the paper. It suggests the component
networks in our model are necessary and useful.

A.4 PARAMETER SENSITIVITY ANALYSIS

We also conducted experiments on the eurlex_dc data set to study the impact of the trade-off
hyperparameter β on the performance of PML-GAN. We repeated the experiments in the same setting
as before with different β values from the range {0.001, 0.01, 0.1, 1, 10}. Note a larger β provides
larger weight to the adversarial loss.

Figure 5 reports the average test results over 10 runs for different β values. We can see when β is
very small, the performance is poor. With the increase of β, the performance improves. This suggests
the adversarial loss is important. When β = 0.1 the best result is obtained. When β is too large,
performance degrades as the adversarial loss dominates. This makes sense since the adversarial loss
is expected to help the classification model, rather than dominating the learning.
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Table 6: Comparison results for PML-GAN and the other methods in terms of two additional metrics:
coverage and one error. The best results are in bold font.

Data set avg.#C.Ls PML-GAN PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP ML-RBF
Coverage (the smaller, the better)
music_emotion 5.29 .407±.008 .413±.007 .396±.007 .428±.010 .434±.010 .508±.006
music_style 6.04 .202±.011 .208±.006 .205±.007 .203±.008 .203±.008 .305±.006
mirflickr 3.35 .227±.010 .270±.079 .227±.057 .234±.073 .233±.074 .258±.002
image 3 .211±.014 .227±.079 .263±.085 .305±.109 .298±.095 .249±.015
scene 4 .124±.010 .144±.054 .190±.050 .180±.033 .214±.045 .167±.012
yeast

10

.502±.014 .506±.010 .528±.003 .524±.016 .495±.016 .583±.007
enron .402±.015 .457±.116 .369±.075 .496±.089 .496±.088 .458±.017
corel5k .384±.011 .541±.022 .393±.017 .497±.042 .489±.035 .492±.009
eurlex_dc .063±.003 .136±.003 .082±.004 .318±.017 .162±.015 .117±.003
eurlex_sm .172±.006 .192±.009 .183±.012 .403±.009 .408±.009 .243±.005
delicious .564±.008 .603±.004 .584±.004 .591±.005 .590±.005 .610±.004
tmc2007 .181±.006 .205±.008 .214±.011 .196±.007 .194±.008 .283±.003
One error (the smaller, the better)
music_emotion 5.29 .444±.027 .473±.016 .475±.018 .556±.028 .540±.027 .587±.019
music_style 6.04 .346±.022 .374±.005 .399±.019 .409±.013 .408±.013 .385±.006
mirflickr 3.35 .337±.059 .165±.150 .229±.306 .300±.129 .298±.121 .338±.002
image 3 .340±.020 .369±.134 .387±.147 .542±.191 .549±.174 .398±.034
scene 4 .329±.020 .340±.078 .349±.082 .497±.089 .523±.118 .428±.022
yeast

10

.250±.019 .248±.019 .252±.018 .257±.017 .263±.027 .408±.023
enron .307±.039 .411±.101 .351±.040 .494±.039 .498±.038 .495±.019
corel5k .697±.020 .835±.025 .721±.035 .784±.029 .787±.024 .809±.015
eurlex_dc .305±.016 .390±.016 .374±.014 .707±.014 .518±.011 .342±.008
eurlex_sm .341±.003 .350±.014 .360±.015 .506±.031 .542±.018 .340±.005
delicious .372±.012 .366±.015 .414±.018 .401±.015 .399±.013 .450±.009
tmc2007 .200±.005 .194±.029 .267±.018 .235±.019 .236±.019 .388±.006

Table 7: Comparison of PML-GAN with its ablation variants in terms of coverage and one error. The
best results are in bold font.

Data set PML-GAN CLS-GEN CLS-GAN CLS-ML PML-GAN CLS-GEN CLS-GAN CLS-ML
Coverage (the smaller, the better) One error (the smaller, the better)
music_emotion .407±.008 .410±.008 .408±.006 .410±.005 .444±.027 .460±.022 .446±.000 .463±.024
music_style .202±.011 .204±.004 .204±.008 .207±.008 .346±.022 .359±.014 .351±.017 .361±.017
mirflickr .227±.010 .230±.017 .227±.014 .242±.013 .337±.059 .388±.092 .370±.085 .405±.094
image .211±.014 .214±.011 .212±.011 .220±.011 .340±.020 .344±.023 .360±.032 .368±.024
scene .124±.010 .127±.008 .125±.006 .128±.010 .329±.020 .331±.023 .341±.022 .348±.018
yeast .502±.014 .509±.016 .507±.013 .509±.023 .250±.019 .260±.027 .251±.029 .254±.024
enron .402±.015 .410±.019 .408±.016 .414±.015 .307±.039 .309±.029 .321±.027 .333±.028
corel5k .384±.011 .394±.008 .396±.017 .399±.011 .697±.020 .699±.017 .698±.020 .700±.016
eurlex_dc .063±.003 .082±.011 .063±.003 .085±.005 .305±.016 .312±.024 .307±.013 .312±.017
eurlex_sm .172±.006 .174±.004 .176±.005 .178±.004 .341±.003 .343±.007 .350±.015 .351±.007
delicious .564±.008 .566±.008 .564±.006 .628±.005 .372±.012 .373±.010 .373±.008 .375±.011
tmc2007 .181±.006 .184±.004 .181±.004 .185±.004 .200±.005 .201±.005 .203±.007 .205±.004

A.5 VARIANT OF PML-GAN WITH CLASSIFICATION LOSS ON GENERATED DATA

The classification loss in the PML-GAN model of Eq.(6) takes the real data into account, as that is
the primary concern of PML. A natural extension is to consider an auxiliary classification loss on the
generated data as well. This extension leads to the following variant of PML-GAN, which we denote
as PML-GAN′:

min
G,D̃,F

max
D

E(xi,yi)∼S

(
`c(F (xi), zi) + `g(G(zi),xi)

)
+ αEẑ∼P (ẑ)`c(F (G(ẑ)), ẑ) +

β
(
Exi∼S [logD(xi)] + Eẑ∼P (ẑ)[log(1−D(G(ẑ)))]

)
(6)

s.t. zi = ReLU(yi − D̃(xi)), ∀(xi,yi) ∼ S

where α and β are trade-off hyperparameters. For the parameter selection of PML-GAN′, both α and
β are chosen from {0.001, 0.01, 0.1, 1, 10} based on the classification loss value Lc on the real data
in the training objective function.
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(a) Hamming Loss (b) Ranking Loss (c) Average Precision (d) Macro-AUC

Figure 5: Test performance with different β values on the eurlex_dc data set.

The comparison results between PML-GAN and PML-GAN′ are reported in Table 8. We can see
that PML-GAN′ has similar performance with PML-GAN, and the difference between their results
are very small in most cases. To statistically compare PML-GAN with PML-GAN′, we conducted
pairwise t-test at significance level of 0.05 over all the 49 PML variant datasets in terms of the 4
evaluation metrics. The win/tie/loss counts in all 196 cases are reported in Table 9. We can see that
overall the PML-GAN′ ties with PML-GAN in 99.5% cases. This suggests that an addition auxiliary
classification loss on the generated data cannot improve PML-GAN, which makes sense given the
goal is to learn a good classification model on the sufficient real data. Meanwhile, the additional
hyperparameter α of PML-GAN′ induces much higher computational cost due to additional parameter
selection. Overall, PML-GAN is a more suitable choice than PML-GAN′.

Table 8: Comparison results for PML-GAN and PML-GAN′ in terms of six evaluation metrics. The
best results are presented in bold font. The average number of candidate labels is presented under
column “avg.#C.Ls”.

Data set avg.#C.Ls PML-GAN PML-GAN′ PML-GAN PML-GAN′

Hamming loss (the smaller, the better) Ranking loss (the smaller, the better)
music_emotion 5.29 .197±.004 .200±.003 .243±.009 .239±.009
music_style 6.04 .116±.005 .115±.002 .141±.001 .145±.006
mirflickr 3.35 .171±.002 .171±.004 .127±.014 .122±.025
image 3 .202±.008 .200±.008 .192±.015 .191±.010
scene 4 .137±.007 .133±.007 .131±.014 .119±.008
yeast

10

.216±.005 .216±.005 .193±.008 .194±.007
enron .186±.004 .186±.004 .179±.013 .178±.012
corel5k .119±.001 .113±.001 .293±.012 .298±.014
eurlex_dc .044±.001 .044±.001 .065±.003 .064±.006
eurlex_sm .082±.001 .082±.001 .119±.005 .119±.007
delicious .248±.003 .248±.003 .256±.006 .257±.005
tmc2007 .085±.001 .086±.001 .071±.003 .069±.003

Average precision (the larger, the better) Macro-averaging AUC (the larger, the better)
music_emotion 5.29 .621±.012 .621±.014 .726±.006 .722±.006
music_style 6.04 .734±.015 .728±.009 .706±.016 .731±.009
mirflickr 3.35 .771±.026 .781±.046 .873±.002 .871±.003
image 3 .774±.013 .775±.012 .798±.015 .790±.010
scene 4 .794±.014 .808±.009 .874±.012 .882±.008
yeast

10

.733±.008 .735±.009 .666±.026 .666±.026
enron .665±.020 .670±.024 .668±.018 .668±.018
corel5k .440±.014 .435±.013 .628±.007 .628±.007
eurlex_dc .797±.009 .800±.012 .872±.009 .882±.007
eurlex_sm .722±.002 .720±.010 .827±.008 .831±.005
delicious .630±.007 .630±.006 .712±.004 .711±.003
tmc2007 .820±.004 .820±.004 .886±.002 .886±.002

Table 9: Win/tie/loss counts of pairwise t-test (with p < 0.05 ) about PML-GAN vs PML-GAN′ over all
49 PML variant datasets with different numbers of candidate labels.

Hamming loss Ranking loss Average precision Macro-averaging Total
0/49/0 0/49/0 0/49/0 00/48/1 0/195/1
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Table 10: Characteristics of the multi-label experimental datasets.

Dataset #Inst. #Feature #Classes Domain
CAL500 500 68 174 music
emotions 593 72 6 music
image 2000 294 5 images
scene 2407 294 6 images
tmc2007 28596 49060 22 text

Table 11: Comparison of PML-GAN with the comparison methods. The best results are presented in
bold font.

Dataset PML-GAN PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP ML-RBF
Hamming loss (the smaller, the better)
CAL500 .143±.002 .150±.005 .154±.004 .161±.005 .161±.005 .230±.014
emotions .228±.028 .226±.026 .234±.024 .244±.033 .241±.033 .323±.037
image .122±.005 .226±.056 .252±.093 .238±.048 .261±.052 .252±.003
scene .130±.005 .132±.037 .133±.028 .146±.031 .161±.037 .220±.002
tmc2007 .079±.001 .080±.003 .082±.003 .079±.002 .080±.002 .109±.001
Ranking loss (the smaller, the better)
CAL500 .190±.003 .193±.014 .230±.017 .195±.009 .195±.009 .200±.010
emotions .178±.013 .232±.031 .181±.023 .200±.029 .206±.025 .236±.028
image .087±.010 .093±.015 .103±.013 .111±.020 .128±.023 .198±.012
scene .082±.005 .096±.007 .123±.010 .130±.015 .152±.020 .141±.007
tmc2007 .045±.001 .059±.008 .055±.005 .051±.006 .051±.007 .056±.002
Average precision (the larger, the better)
CAL500 .499±.008 .464±.019 .460±.020 .481±.016 .480±.015 .453±.017
emotions .789±.018 .764±.025 .780±.026 .778±.023 .777±.030 .770±.034
image .848±.012 .787±.062 .777±.082 .787±.086 .755±.090 .770±.012
scene .855±.008 .810±.081 .802±.055 .752±.059 .717±.075 .753±.010
tmc2007 .826±.002 .814±.022 .804±.017 .813±.016 .814±.016 .798±.003
Macro-averaging AUC (the larger, the better)
CAL500 .521±.014 .519±.011 .514±.010 .540±.009 .543±.010 .480±.012
emotions .822±.008 .758±.021 .775±.030 .810±.023 .810±.026 .762±.020
image .919±.010 .841±.131 .806±.104 .866±.119 .871±.117 .806±.008
scene .920±.006 .836±.045 .831±.075 .810±.029 .795±.024 .824±.045
tmc2007 .908±.002 .877±.007 .881±.005 .893±.010 .893±.011 .872±.004
Coverage (the smaller, the better)
CAL500 .803±.014 .864±.005 .866±.007 .809±.025 .808±.025 .878±.004
emotions .315±.011 .343±.048 .316±.034 .320±.033 .332±.031 .330±.003
image .089±.009 .134±.022 .146±.020 .211±.063 .218±.073 .214±.011
scene .083±.005 .098±.011 .103±.015 .100±.031 .117±.041 .107±.008
tmc2007 .127±.001 .143±.008 .145±.008 .140±.010 .139±.010 .145±.002
One error (the smaller, the better)
CAL500 .140±.036 .156±.027 .170±.020 .125±.023 .133±.023 .160±.021
emotions .281±.031 .276±.038 .316±.034 .339±.035 .330±.036 .343±.030
image .252±.019 .305±.094 .319±.147 .378±.138 .336±.133 .347±.018
scene .243±.012 .277±.012 .275±.081 .303±.098 .347±.117 .334±.017
tmc2007 .196±.004 .197±.031 .196±.026 .209±.024 .208±.025 .220±.005

A.6 EXTENDED EXPERIMENTS

To further validate the effectiveness of the proposed approach, we conducted an extended experiment
on five datasets by adding a large portion of label noise into the true labels. Specifically, for each
dataset with a total of C class labels, we created the PML data in the following way: For each training
instance, if it has k true labels, we randomly select min(k,C−k) irrelevant labels to add and form its
candidate label set. When k ≤ C/2, the number of irrelevant noisy labels is identical to the number
of relevant true labels; when k > C/2, the whole label set is used as the candidate label set.

In this setting, we performed experiments on five data sets with the different sizes of class labels. The
number of instances, number of classes and domain for each dataset are illustrated in Table 10. We
compared the proposed PML-GAN method with the five comparison methods on the five datasets.
For each dataset, we randomly select 80% of the data for training and use the remaining 20% for
testing. We repeat each experiment 10 times with different random partitions of the datasets. The
comparison test results in terms of six commonly used evaluation metrics (hamming loss, ranking loss,
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average precision, macro-averaging AUC, coverage, one error) Zhang & Zhou (2014) are reported in
Table 11. We can see that the proposed PML-GAN outperforms the comparison methods in general.
Specifically, among the 30 cases over 5 datasets and 6 evaluation metrics, the proposed approach
outperforms PARTICLE-VLS, PARTICLE-MAP, PML-LC, PML-FP and ML-RBF in 28, 29, 28,
29, 30 cases respectively. Moreover, the performance gains yield by the proposed approach over
all the other methods are quite notable. For example, in terms of average precision, the proposed
approach outperforms the best alternative comparison method by 6.1% and 4.5% on image and scene
respectively. These results again validated the effectiveness of the proposed approach.
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