
Under review as a conference paper at ICLR 2020

TEMPORAL DIFFERENCE WEIGHTED ENSEMBLE FOR
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Combining multiple function approximators in machine learning models typically
leads to better performance and robustness compared with a single function. In
reinforcement learning, ensemble algorithms such as an averaging method and a
majority voting method are not always optimal, because each function can learn
fundamentally different optimal trajectories from exploration. In this paper, we
propose a Temporal Difference Weighted (TDW) algorithm, an ensemble method
that adjusts weights of each contribution based on accumulated temporal differ-
ence errors. The advantage of this algorithm is that it improves ensemble per-
formance by reducing weights of Q-functions unfamiliar with current trajectories.
We provide experimental results for Gridworld tasks and Atari tasks that show
significant performance improvements compared with baseline algorithms.

1 INTRODUCTION

Using ensemble methods that combine multiple function approximators can often achieve bet-
ter performance than a single function by reducing the variance of estimation (Dietterich (2000);
Kuncheva (2014)). Ensemble methods are effective in supervised learning, and also reinforce-
ment learning (Wiering & Van Hasselt (2008)). There are two situations where multiple function
approximators are combined: combining and learning multiple functions during training (Freund
& Schapire (1997)) and combining individually trained functions to jointly decide actions during
testing (Breiman (1996)). In this paper, we focus on the second setting of reinforcement learning
wherein each function is trained individually and then combined them to achieve better test perfor-
mance.

Though there is a body of research on ensemble algorithms in reinforcement learning, it is not as
sizeable as the research devoted to ensemble methods for supervised learning. Wiering & Van Has-
selt (2008) investigated many ensemble approaches combining several agents with different value-
based algorithms in Gridworld settings. Faußer & Schwenker (2011; 2015a) have shown that com-
bining value functions approximated by neural networks improves performance greater than using
a single agent. Although previous work dealt with each agent equally contributing to the final out-
put, weighting each contribution based on its accuracy is also a known and accepted approach in
supervised learning (Dietterich (2000)).

However, unlike supervised learning, reinforcement learning agents learn from trajectories result-
ing from exploration, such that each agent learns from slightly different data. This characteristic is
significant in tasks with high-dimensional state-space, where there are several possible optimal tra-
jectories to maximize cumulative rewards. In such a situation, the final joint policy function resulting
from simple averaging or majority voting is not always optimal if each agent learned different opti-
mal trajectories. Furthermore, it is difficult to decide weights of each contribution as it is possible
that agents with poor episode rewards have better performance in specific areas.

In this paper, we propose the temporal difference weighted (TDW) algorithm, an ensemble method
for reinforcement learning. The most important point of this algorithm is that optimal agents are
prioritized to participate in action selection while contributions of agents unfamiliar with the current
trajectory are reduced. To do so in the TDW algorithm, the weights of the contributions at each
Q-function are calculated as softmax probabilities based on accumulated TD errors. Extending an
averaging method and a majority voting method, actions are determined by weighted average or vot-
ing methods according to the weights. The advantage of the TDW algorithm is that arbitrary training

1

Under review as a conference paper at ICLR 2020

algorithms can use this algorithm without any modifications, because the TDW algorithm only cares
about the joint decision problem, which could be easily adopted in competitions and development
works using reinforcement learning. In our experiment, we demonstrate that the TDW retains per-
formance in tabular representation Gridworld tasks with multiple possible trajectories, where simple
ensemble methods are significantly degraded. Second, to demonstrate the effectiveness of our TDW
algorithm in high-dimensional state-space, we also show that our TDW algorithm can achieve better
performance than baseline algorithms in Atari tasks (Bellemare et al. (2013)).

2 RELATED WORK

Ensemble methods that combine multiple function approximators during training rather than eval-
uation have been studied in deep reinforcement learning. Bootstrapped deep Q-network (DQN)
(Osband et al. (2016)) leverages multiple heads that are randomly initialized to improve exploration,
because each head leads to slightly different states. Averaged-DQN (Anschel et al. (2017)) reduces
the variance of a target approximation by calculating an average value of last several learned Q-
networks. Using multiple value functions to reduce variance of target estimation is also utilized in
the policy gradients methods (Fujimoto et al. (2018); Haarnoja et al. (2018)).

In contrast, there has been research focused on joint decision making in reinforcement learning.
Using multiple agents to jointly select an action achieves better performance than a single agent
(Wiering & Van Hasselt (2008); Faußer & Schwenker (2015a; 2011)). However, such joint decision
making has been limited to relatively small tasks such as Gridworld and Maze. Therefore, it is
not known whether joint decision making with deep neural networks can improve performance in
high-dimensional state-space tasks such as Atari 2600 (Bellemare et al. (2013)).

Our method is not the first one to use TD errors in combining multiple agents. Ring & Schaul
(2011) proposes a module selection mechanism that chooses the module with smallest TD errors to
learn current states, which will eventually assign each module to a small area of a large task. As
a joint decision making method, a selective ensemble method is proposed to eliminate agents with
less confidence at the current state by measuring TD errors (Faußer & Schwenker (2015b)), which
is the closest approach to our method. This selection drops all outputs whose TD errors exceeds a
threshold, which can be viewed as a hard version of our method that uses a softmax of all weighted
outputs instead of elimination. The threshold is not intuitively determined. Because the range of TD
errors varies by tasks and reward settings, setting the threshold requires sensitive tuning.

3 BACKGROUND

3.1 REINFORCEMENT LEARNING

We formulate standard reinforcement learning setting as follows. At time t, an agent receives a state
st ∈ S, and takes an action at ∈ A based on a policy function at = π(st). The next state st+1 is
given to the agent along with a reward rt+1. The return is defined as a discounted cumulative reward
Rt =

∑T
i=t γ

i−tr(si, ai), where γ ∈ [1, 0] is a discount factor. The true value of taking an action
at at a state st is described as follows:

Qπ(st, at) = E[Rt|st, at]
where Qπ(st, at) is an action-value under the policy π. The optimal value is Q∗(st, at) =
maxπ Qπ(st, at). With such an optimal Q-function, optimal actions can be determined based on
the highest action-values at each state.

DQN (Mnih et al. (2015)) is a deep reinforcement learning method that approximates an optimal Q-
function with deep neural networks. The Q-function Q(st, at|θ) with a parameter θ is approximated
by a Q-learning style update (Watkins & Dayan (1992)). The parameter θ is learned to minimize
squared temporal difference errors.

L(θ) = Est,at,rt+1,st+1
[(Q(st, at|θ)− yt)2] (1)

where yt = rt+1 + γmaxaQ(st+1, a|θ′) with a target network parameter θ′. The target network
parameter θ′ is synchronized to the parameter θ in a certain interval. DQN also introduces use of
the experience replay (Lin (1992)), which randomly samples past state transitions from the replay
buffer to compute the squared TD error (1).

2

Under review as a conference paper at ICLR 2020

・・・ ・・・ G ・・・ ・・・

・・・ ・・・ x S ・・・ ・・・

LL

Figure 1: Example Gridworld with two optimal paths. S denotes an initial state. G denotes a goal
state with a reward of +1. Gray areas denote walls.

3.2 ENSEMBLE METHODS

Assume there are N sets of Q-function Q(s, a|θi). The final policy π(st) is determined by combin-
ing theN Q-functions. We formulate two baseline methods commonly used in ensemble algorithms:
Average policy and Majority Voting (MV) policy (Faußer & Schwenker (2011; 2015a); Kuncheva
(2014)).

Majority Voting (MV) policy is an approach to decide the action based on greedy selection according
to the formula:

π(st) = argmax
a

N∑
i

vi(st, a) (2)

where vi(s, a) is a binary function that outputs 1 for the most valued action and 0 for others:

vi(s, a) =

{
1 (a = argmaxa′ Q(s, a′|θi))
0 (otherwise)

(3)

Contributions of each function to the final output are completely equal.

Average policy is a method that averages all the outputs of the Q-functions, and the action is greedily
determined:

π(st) = argmax
a

1

N

N∑
i

Q(st, a|θi) (4)

Averaging outputs from multiple approximated functions reduces variance of prediction. Unlike
MV policy, Average policy leverages all estimated values as well as the highest values.

3.3 AVERAGING Q-FUNCTIONS ON MULTIPLE OPTIMAL TRAJECTORIES

To consider the case wherein combining Q-functions leads to non-optimal policies, we setup the
Gridworld shown in Figure 1, and consider averaging two Q-functions for simplicity. This Grid-
world exactly has exactly two optimal trajectories: a clockwise direction and a counter-clockwise
direction. We assume that one of the Q-functions is optimal, but the other is only optimal for counter-
clockwise direction due to insufficient exploration, which is a common scenario in high-dimensional
state-space. At state x depicted in Figure 1, averaged action-values are as follows:

Q(x, aright) =
1

2
(Q∗(x, aright) +Qright(x, aright))

Q(x, aleft) =
1

2
(Q∗(x, aleft) +Qright(x, aleft))

where Q∗(s, a) is the optimal Q-function and Qright(s, a) is the biased Q-function. To satisfy
Q(x, aleft) > Q(x, aright), the learned Q∗(s, a) and Qright(s, a) should be as follows:

Q∗(x, aleft)−Q∗(x, aright) = γ2L(1− γ2) > Qright(x, aright)−Qright(x, aleft) (5)
Note that Qright(x, aright) > Qright(x, aleft) can be true as Qright(x, aleft) is smaller than the
optimal value if TD errors of clockwise direction are not sufficiently propagated. As the action
gap between Q∗(x, aright) and Q∗(x, aleft) becomes smaller with the larger L, the possibility that
action aright is chosen in the larger environment increases. Making contributions of the biased Q-
function small is one possible solution for selecting optimal actions as it is difficult to make values
of incorrect actions small without oracles. However, weighting Q-functions based on evaluation
performance is not an optimal method when each Q-function achieves the same performance through
different trajectories. Therefore, each Q-function should be locally weighted for the current state.

3

Under review as a conference paper at ICLR 2020

4 TEMPORAL DIFFERENCE WEIGHTED ENSEMBLE

In this section, we explain the TDW ensemble algorithm that adjusts weights of contributions based
on accumulated TD errors. The TDW algorithm is especially powerful in the situation described in
Section 3.3 and high-dimensional state-space. Section 4.1 describes the error accumulation mecha-
nism. Section 4.2 introduces joint action selection using the weights computed with the accumulated
errors.

4.1 ACCUMULATING TD ERRORS

We consider that a squared TD error δit = (Q(st, at|θi) − rt+1 − γmaxaQ(st+1, a|θi))2 funda-
mentally consists of two kinds of errors:

δit = δi,pt + δi,ut (6)

where δp is a prediction error of approximated function, and δu is an error at states where the agent
rarely experienced. In a tabular-based value function, δp will be near 0 at frequently visited states.
In contrast, δu will be extremely large at less visited states with both a tabular-based value function
and a function approximator because TD errors are not sufficiently propagated such a state. There
are two causes of unfamiliar states: (1) states are difficult to visit due to hard exploration, and (2)
states are not optimal to the agent according to learned state transitions. For combining multiple
agents at a joint decision, the second case is noteworthy because each agent may be optimized at
different optimal trajectories. Thus, some of the agents will produce larger δu when they face such
states as a result of an ensemble, and contributions of less confident agents can be reduced based on
the TD error δu.

To measure uncertainty of less confident agents, we define uit as a uncertainty of an agent:

uit = δit−1 + αuit−1 (7)

where α ∈ [0, 1] is a constant factor decaying the uncertainty at a previous step. With a large α, the
uncertainty ui is extremely large during unfamiliar trajectories, which makes it possible to easily
distinguish confident agents from the others. However, a trade-off arises when prediction error δp is
accumulated for a long horizon, which increases correlation between agents.

4.2 ACTION SELECTION

To reduce contributions of less confident agents, each contribution at joint decision is weighted based
on uncertainty uit. Using the uncertainty uit, a weight wit of each agent is calculated as a probability
by the softmax function:

wit =
e−u

i
t∑N

j e
−uj

t

(8)

When the agent has a small uncertainty value uit, the weight wit becomes large.

We consider two weighted ensemble methods corresponding to the Average policy and the MV
policy based on the weights wit. As a counterpart of the Average policy, our TDW Average policy is
as follows:

π(st) = argmax
a

N∑
i

uitQ(st, a|θi) (9)

For the MV policy, TDW Voting policy is as follows:

π(st) = argmax
a

N∑
i

uitvi(st, a) (10)

Unlike the averaging method, because TDW Voting policy directly uses probabilities calculated by
(8), the correlation between agents can be increased significantly with large decay factor α, leading
to worse performance. Although these weighted ensemble algorithms are simple enough to extend
to arbitrary ensemble methods, we leave more advanced applications for future work so that we may
demonstrate the effectiveness of our approach in a simpler setting. The complete TDW ensemble
algorithm is described in Algorithm 1.

4

Under review as a conference paper at ICLR 2020

Algorithm 1 Temporal Difference Weighted Ensemble
Require: α: a constant decay factor
Require: θ1...θN : trained parameters

Initialize u10 = 0, ..., uN0 = 0.
for t = 1, 2, . . . , T do

Receive state st and reward rt.
for i = 1, 2, . . . , N do

Calculate uit via (7).
end for
for i = 1, 2, . . . , N do

Calculate wit via (8).
end for
Select action at via (9) or (10).

end for

5 EXPERIMENTS

In this section, we describe the experiments performed on the Gridworld tasks in Section 5.1 and
Atari tasks (Bellemare et al. (2013)) in Section 5.2. To build the trained Q-functions, we used
the table-based Q-learning algorithm (Watkins & Dayan (1992)) and DQN (Mnih et al. (2015))
with a standard model, respectively. In each experiment, we evaluated our algorithm to address
performance improvements from there baselines as well as the effects of selecting the decay factor
α.

5.1 GRIDWORLD

5.1.1 EXPERIMENTAL SETUP

We first evaluated the TDW algorithms with a tabular representation scenario to show their effec-
tiveness in the situation described in Section 3.3. We built two Gridworld environments as shown
in Figure 2. Each environment is designed to induce bias of learned trajectories by setting multiple
slits. As a result of exploration, once an agent gets through one of the slits to the goal, the agent is
easily biased to aim for the same slit due to the max operator of Q-learning.

The state-representation is a discrete index of a table with size of 13 × 13. There are four actions
corresponding to steps of up, down, left and right. If a wall exists where the agent tries to move, the
next state remains the same as the current state. The agent always starts from S depicted in Figure
2. At every timestep, the agent receives a reward of −0.1 or +100 at goal states. The agent starts a
new episode if either the agent arrives at the goal states or the timestep reaches 100 steps.

We trained N = 10 agents with different random seeds for ε-greedy exploration with ε = 0.3.
Each training continues until 1M steps have been simulated. We set the learning rate to 0.01 and
γ = 0.95. After training, we evaluated TDW ensemble algorithms for 20K episodes. As baselines,
we also evaluate each single agent as well as ensemble methods of Average policy and MV policy
for 20K episodes each.

5.1.2 RESULTS

The evaluation results on the Gridworld environments are shown in Table 1. Four-slit Gridworld is
significantly more difficult than Two-slit Gridworld because each Q-function is not only horizontally
biased, but also vertically biased. In both the Two-slit Gridworld and Four-slit Gridworld environ-
ments, the TDW ensemble methods achieve better performance than their corresponding Average
policy and the MV policy baselines. Additionally, the results of both of the Average policy and
the MV policy were worse than the single models. It should be noted that Average policy degrades
original performance more than MV policy.

For the selection of the decay factor α, a larger α tends to increase performance in TDW Average
policy. In contrast, the larger α leads to poor performance in TDW Voting policy especially in Four-
slit Gridworld. We believe that the large α significantly reduces contributions of most Q-functions,

5

Under review as a conference paper at ICLR 2020

S

G

(a) Two-slit Gridworld

G

S

G

(b) Four-slit Gridworld

Figure 2: Gridworld environments. S denotes initial states. G denotes goals with +100 reward.
Gray areas represents walls.

Table 1: Results for Gridworld tasks. The algorithms of best mean episode rewards are highlighted
in bold font. The numbers in brackets show ranks based on significant difference computed with
Welch’s t-test (p < 0.05). The results of Single (mean) are the episode reward averaged over all
single Q-functions.

Method Two-slit Gridworld Four-slit Gridworld
Single (mean) 97.43 98.07

Average 77.72 (6) -9.57 (6)
TDW Average (α = 0.0) 89.04 (5) 73.77 (5)
TDW Average (α = 0.2) 96.90 (2-4) 85.73 (1-4)
TDW Average (α = 0.4) 96.94 (2-4) 85.98 (1-4)
TDW Average (α = 0.6) 96.94 (2-4) 86.22 (1-4)
TDW Average (α = 0.8) 97.00 (1) 86.14 (1-4)

Majority Voting 96.49 (6) 36.51 (6)
TDW Voting (α = 0.0) 97.43 (1-5) 94.32 (1-4)
TDW Voting (α = 0.2) 97.44 (1-5) 94.57 (1-4)
TDW Voting (α = 0.4) 97.43 (1-5) 94.45 (1-4)
TDW Voting (α = 0.6) 97.43 (1-5) 94.42 (1-4)
TDW Voting (α = 0.8) 97.43 (1-5) 94.15 (5)

which would ignore votes of actions that would be the best in equal voting. In contrast, TDW
Average policy leverages values of all actions, exploiting all contributions to select the best action.

5.2 ATARI

5.2.1 EXPERIMENTAL SETUP

To demonstrate effectiveness in high-dimensional state-space, we evaluated TDW algorithm in Atari
tasks. We trained DQN agents across 6 Atari tasks (Asterix, Beamrider, Breakout, Enduro, MsPac-
man and SpaceInvaders) through OpenAI Gym (Brockman et al. (2016)). At each task, N = 10
agents were trained with different random seeds for neural network initialization, exploration and
environments in order to vary the learned Q-function. The training continued until 10M steps (40M
game frames) with frame skipping and termination on loss of life enabled. The ε of exploration is
linearly decayed from 1.0 to 0.1 through 1M steps. The hyperparameters of neural networks are
same as (Mnih et al. (2015)).

After training, evaluation was conducted with each Q-function, TDW Average policy, TDW Voting
policy and the two baselines. We additionally evaluated weighted versions of the baselines whose
Q-functions were weighted based on their evaluation performance. The evaluation continued for
1000 episodes with ε = 0.05.

5.2.2 RESULTS

The experimental results are shown in Table 2. Interestingly, both of Average policy and MV policy
improved performance from mean performance of single agents, though the simple ensemble algo-
rithms had not been investigated well in the domain of deep reinforcement learning. In the games
of Asterix, Beamrider, Breakout and Enduro, the TDW algorithms achieve additional performance

6

Under review as a conference paper at ICLR 2020

Table 2: Evaluation results for the Atari tasks. The results of algorithms with the best mean episode
rewards are highlighted in boldface. The numbers in brackets show ranks based on significant dif-
ference computed with Welch’s t-test (p < 0.05). The results of Single (best) are the mean episode
rewards of the best Q-functions.

Method Asterix Beamrider Breakout Enduro MsPacman SpaceInvaders
Single (mean) 3465.74 6616.89 307.99 582.38 1695.27 830.07
Single (best) 4022.90 8046.62 366.18 817.73 1776.74 1103.93

Average 6835.15 (1-3) 11695.67 (5-6) 404.21 (3-4) 1400.98 (4) 1734.89 (3-4) 989.19 (5)
Weighted Average 3950.10 (7) 8126.58 (7) 364.22 (6) 793.06 (7) 1852.79 (1) 1092.32 (1-2)

TDW Average (α = 0.0) 6691.90 (4) 10128.44 (5-6) 418.05 (2) 1441.50 (2) 1815.54 (2) 1076.21 (3-4)
TDW Average (α = 0.2) 6911.10 (1-2) 12878.37 (1-2) 403.43 (3-4) 1445.44 (1) 1711.20 (3-4) 1030.01 (3-4)
TDW Average (α = 0.4) 6409.20 (5-6) 11516.25 (3-5) 362.21 (7) 1330.12 (5-6) 1698.05 (4-5) 986.95 (6)
TDW Average (α = 0.6) 6907.55 (2-3) 11386.13 (3-4) 380.12 (5) 1415.18 (3) 1685.76 (6) 1124.90 (1-2)
TDW Average (α = 0.8) 6472.25 (5-6) 12661.50 (1-2) 420.14 (1) 1316.30 (5-6) 1668.54 (7) 902.91 (7)

Majority Voting 4586.85 (6) 9945.25 (6) 344.30 (4) 1204.10 (2) 1542.78 (4) 889.38 (7)
Weighted Voting 4087.15 (7) 8064.10 (7) 364.91 (3) 799.96 (7) 1767.05 (1) 1097.84 (1)

TDW Voting (α = 0.0) 6669.60 (1-2) 11322.70 (1-2) 340.21 (5) 1149.08 (5) 1651.31 (3) 1038.13 (2)
TDW Voting (α = 0.2) 5565.75 (5) 10982.07 (1-2) 370.18 (2) 1208.00 (1) 1457.43 (5) 928.29 (6)
TDW Voting (α = 0.4) 6210.80 (2-3) 10790.61 (3) 298.14 (7) 1163.06 (3-4) 1693.65 (2) 1014.99 (3)
TDW Voting (α = 0.6) 5972.80 (4) 10426.07 (4) 336.81 (6) 1172.65 (3-4) 1392.62 (7) 968.90 (4)
TDW Voting (α = 0.8) 6303.35 (1-3) 10352.76 (5) 410.29 (1) 1141.04 (6) 1410.55 (6) 934.24 (5)

A B

(a) Entropy

A

B

(b) Sample frames and weights

Figure 3: (a) Plots of entropies during a sample episode in Breakout. The x-axis represents episode
steps. The y-axis represents negative entropies of the weights. (b) Bar graphs next to the game
frames show the corresponding weights with the Q-function index on the x-axis. White arrows on
the game frames show the ball positions and past trajectory.

improvements as compared with the non-weighted and weighted baselines. Even in MsPacman and
SpaceInvaders, the TDW algorithms perform significantly better than non-weighted baselines and
the best single models. In most of the cases, the globally weighted ensemble baselines performed
worse than non-weighted versions. We believe this is because these globally weighted ensemble
methods will ignore local performance, which is significant in high-dimensional state-space because
it is difficult to cover all possible states with single models. The TDW algorithms with small α tend
to achieve better performance than those with a large α, which suggests that a significantly large α
can increase correlation between Q-functions and reduce contributions of less confident Q-functions.

To analyze changes of weights through an episode, we plot entropies during a sample episode on
Breakout (TDW Average policy, α = 0.8) in Figure 3(a). If an entropy is low (high in negative
scale), some of Q-functions have large weights, while others have extremely small weights. Extreme
low entropies are observed when the ball comes closely to the pad as shown in Figure 3(b) where the
value should be close to 0 for the non-optimal actions because missing the ball immediately ends its
life. It is easy for sufficiently learned Q-functions to estimate such a terminal state so that the entropy
becomes low due to the gap between optimal Q-functions for the current states and the others. The
entropies tend to be low during latter steps as there are many variations of the remaining blocks.
In contrast to Breakout where living long leads to higher scores, in SpaceInvaders we observe that
the low entropies appear at dodging beams rather than shooting invaders, because shooting beams

7

Under review as a conference paper at ICLR 2020

0.0 0.5 1.0 1.5 2.0
entropy

1e1

1e2

1e3

1e4

1e5 0.0
0.2
0.4
0.6
0.8

(a) Asterix

0.0 0.5 1.0 1.5 2.0
entropy

1e1

1e2

1e3

1e4

1e5 0.0
0.2
0.4
0.6
0.8

(b) BeamRider

0.0 0.5 1.0 1.5 2.0
entropy

1e1

1e2

1e3

1e4

1e5 0.0
0.2
0.4
0.6
0.8

(c) Breakout

0.0 0.5 1.0 1.5 2.0
entropy

1e1

1e2

1e3

1e4

1e5 0.0
0.2
0.4
0.6
0.8

(d) Enduro

0.0 0.5 1.0 1.5 2.0
entropy

1e1

1e2

1e3

1e4

1e5 0.0
0.2
0.4
0.6
0.8

(e) MsPacman

0.0 0.5 1.0 1.5 2.0
entropy

1e1

1e2

1e3

1e4

1e5 0.0
0.2
0.4
0.6
0.8

(f) SpaceInvaders

Figure 4: Plots of the number of observations with a certain entropy through 100K evaluation steps
(TDW Average policy). x-axis represents entropy values with 20 bins. y-axis represents correspond-
ing numbers in log scale.

requires long-term value prediction which does not induce large TD errors. Therefore, performance
improvements on SpaceInvaders are not significantly better than weighted baselines.

To analyze correlation between the decay factor α and entropies, plots of the number of observations
with a certain entropy are shown in Figure 4. In most games, higher decay factors increase the
presence of low entropy states and decreases the presence of high entropy states. In the games with
frequent reward occurences such as Enduro and MsPacman, there are more low-entropy observations
than BeamRider and SpaceInvaders, where reward occurences are less frequent. Especially with
regards to MsPacman, we believe that the TDW Average policy with larger α values results in
worse performance because the agent frequently receives positive rewards at almost every timestep,
which often induces prediction error δp, and increases uncertainty in all Q-functions. Thus, globally
weighted ensemble methods achieve better performance than TDW algorithms because it is difficult
to consistently accumulate uncertainties on MsPacman.

6 CONCLUSION

In this paper, we have introduced the TDW algorithm: an ensemble method that accumulates tempo-
ral difference errors as an uncertainties in order to adjust weights of each Q-function, improving per-
formance especially in high-dimensional state-space or situations where there are multiple optimal
trajectories. We have shown performance evaluations in Gridworld tasks and Atari tasks, wherein
the TDW algorithms have achieved significantly better performance than non-weighted algorithms
and globally weighted algorithms. However, it is difficult to correctly measure uncertainties with
frequent reward occurrences because the intrinsic prediction errors are also accumulated. Thus,
these types of games did not realize the same performance improvements.

In future work, we intend to investigate an extension of this work into continuous action-space tasks
because only the joint decision problem of Q-functions is considered in this paper. We believe a
similar algorithm can extend a conventional ensemble method (Huang et al. (2017)) of Deep De-
terministic Policy Gradients (Lillicrap et al. (2015)) by measuring uncertainties of pairs of a policy
function and a Q-function. We will also consider a separate path, developing an algorithm that mea-
sures uncertainties without rewards because reward information is not always available especially in
the case of real world application.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 176–185. JMLR. org, 2017.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on multi-
ple classifier systems, pp. 1–15. Springer, 2000.

Stefan Faußer and Friedhelm Schwenker. Ensemble methods for reinforcement learning with
function approximation. In International Workshop on Multiple Classifier Systems, pp. 56–65.
Springer, 2011.

Stefan Faußer and Friedhelm Schwenker. Neural network ensembles in reinforcement learning.
Neural Processing Letters, 41(1):55–69, 2015a.

Stefan Faußer and Friedhelm Schwenker. Selective neural network ensembles in reinforcement
learning: taking the advantage of many agents. Neurocomputing, 169:350–357, 2015b.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Zhewei Huang, Shuchang Zhou, BoEr Zhuang, and Xinyu Zhou. Learning to run with actor-critic
ensemble. arXiv preprint arXiv:1712.08987, 2017.

Ludmila I Kuncheva. Combining pattern classifiers: methods and algorithms. John Wiley & Sons,
2014.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pp. 4026–4034, 2016.

Mark B Ring and Tom Schaul. Q-error as a selection mechanism in modular reinforcement-learning
systems. In Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Marco A Wiering and Hado Van Hasselt. Ensemble algorithms in reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(4):930–936, 2008.

9

Under review as a conference paper at ICLR 2020

A Q-FUNCTION TABLES OBTAINED ON GRIDWORLDS

table 1
0

20

40

60

80

100

table 2
0

20

40

60

80

100

table 3
0

20

40

60

80

100

table 4
0

20

40

60

80

100

table 5
0

20

40

60

80

100

table 6
0

20

40

60

80

100

table 7
0

20

40

60

80

100

table 8
0

20

40

60

80

100

table 9
0

20

40

60

80

100

table 10
0

20

40

60

80

100

Figure 5: Learned table-based Q values at Two-slit Grid World. Each cell corresponds to state s,
and its color represents a value of maxaQ(s, a).

table 1
0

20

40

60

80

100

table 2
0

20

40

60

80

100

table 3
0

20

40

60

80

100

table 4
0

20

40

60

80

100

table 5
0

20

40

60

80

100

table 6
0

20

40

60

80

100

table 7
0

20

40

60

80

100

table 8
0

20

40

60

80

100

table 9
0

20

40

60

80

100

table 10
0

20

40

60

80

100

Figure 6: Learned table-based Q values at Four-slit Grid World. Each cell corresponds to state s,
and its color represents a value of maxaQ(s, a).

10

	Introduction
	Related Work
	Background
	Reinforcement Learning
	Ensemble Methods
	Averaging Q-functions on Multiple Optimal Trajectories

	Temporal Difference Weighted Ensemble
	Accumulating TD Errors
	Action Selection

	Experiments
	Gridworld
	Experimental Setup
	Results

	Atari
	Experimental Setup
	Results

	Conclusion
	Q-function tables obtained on Gridworlds

