
Under review as a conference paper at ICLR 2020

LEARNING SPACE PARTITIONS FOR
NEAREST NEIGHBOR SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Space partitions of Rd underlie a vast and important class of fast nearest neighbor search (NNS)
algorithms. Inspired by recent theoretical work on NNS for general metric spaces (Andoni et al.,
2018b;c), we develop a new framework for building space partitions reducing the problem to balanced
graph partitioning followed by supervised classification. We instantiate this general approach with the
KaHIP graph partitioner (Sanders & Schulz, 2013) and neural networks, respectively, to obtain a new
partitioning procedure called Neural Locality-Sensitive Hashing (Neural LSH). On several standard
benchmarks for NNS (Aumüller et al., 2017), our experiments show that the partitions obtained by
Neural LSH consistently outperform partitions found by quantization-based and tree-based methods
as well as classic, data-oblivious LSH.

1 Introduction

The Nearest Neighbor Search (NNS) problem is defined as follows. Given an n-point dataset P in a d-dimensional
Euclidean space Rd, we would like to preprocess P to answer k-nearest neighbor queries quickly. That is, given a query
point q ∈ Rd, we want to find the k data points from P that are closest to q. NNS is a cornerstone of the modern data
analysis and, at the same time, a fundamental geometric data structure problem that led to many exciting theoretical
developments over the past decades. See, e.g., Wang et al. (2016); Andoni et al. (2018a) for an overview.

The main two approaches to constructing efficient NNS data structures are indexing and sketching. The goal of indexing
is to construct a data structure that, given a query point, produces a small subset of P (called candidate set) that
includes the desired neighbors. Such a data structure can be stored on a single machine, or (if the data set is very large)
distributed among multiple machines. In contrast, the goal of sketching is to compute compressed representations of
points to enable computing approximate distances quickly (e.g., compact binary hash codes with the Hamming distance
used as an estimator, see the surveys Wang et al. (2014; 2016)). Indexing and sketching can be (and often are) combined
to maximize the overall performance (Wu et al., 2017; Johnson et al., 2017).

Both indexing and sketching have been the topic of a vast amount of theoretical and empirical literature. In this work,
we consider the indexing problem. In particular, we focus on indexing based on space partitions. The overarching idea
is to build a partition of the ambient space Rd and split the dataset P accordingly. Given a query point q, we identify
the bin containing q and form the resulting list of candidates from the data points residing in the same bin (or, to boost
the accuracy, nearby bins as well). Some of the popular space partitioning methods include locality-sensitive hashing
(LSH) (Lv et al., 2007; Andoni et al., 2015; Dasgupta et al., 2017); quantization-based approaches, where partitions
are obtained via k-means clustering of the dataset (Jégou et al., 2011; Babenko & Lempitsky, 2012); and tree-based
methods such as random-projection trees or PCA trees (Sproull, 1991; Bawa et al., 2005; Dasgupta & Sinha, 2013;
Keivani & Sinha, 2018).

Compared to other indexing methods, space partitions have multiple benefits. First, they are naturally applicable in
distributed settings, as different bins can be stored on different machines (Bahmani et al., 2012; Ni et al., 2017; Li et al.,
2017; Bhaskara & Wijewardena, 2018). Moverover, the computational efficiency of search can be further improved by
using any nearest neighbor search algorithm locally on each machine. Second, partition-based indexing is particularly
suitable for GPUs due to the simple and predictable memory access pattern (Johnson et al., 2017). Finally, partitions
can be combined with cryptographic techniques to yield efficient secure similarity search algorithms (Chen et al., 2019).
Thus, in this paper we focus on designing space partitions that optimize the trade-off between their key metrics: the
number of reported candidates, the fraction of the true nearest neighbors among the candidates, the number of bins, and
the computational efficiency of the point location.
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Recently, there has been a large body of work that studies how modern machine learning techniques (such as neural
networks) can help tackle various classic algorithmic problems (a partial list includes Mousavi et al. (2015); Baldassarre
et al. (2016); Bora et al. (2017); Dai et al. (2017); Metzler et al. (2017); Kraska et al. (2018); Balcan et al. (2018);
Lykouris & Vassilvitskii (2018); Mitzenmacher (2018); Purohit et al. (2018)). Similar methods—under the name “learn
to hash”—have been used to improve the sketching approach to NNS (Wang et al., 2016). However, when it comes
to indexing, while some unsupervised techniques such as PCA or k-means have been successfully applied, the full
power of modern tools like neural networks has not yet been harnessed. This state of affairs naturally leads to the
following general question: Can we employ modern (supervised) machine learning techniques to find good space
partitions for nearest neighbor search?

1.1 Our contribution

In this paper we address the aforementioned challenge and present a new framework for finding high-quality space
partitions of Rd. Our approach consists of three major steps:

1. Build the k-NN graph G of the dataset by connecting each data point to k nearest neighbors;
2. Find a balanced partition P of the graph G into m parts of nearly-equal size such that the number of edges between

different parts is as small as possible;
3. Obtain a partition of Rd by training a classifier on the data points with labels being the parts of the partition P found

in the second step.

See Figure 1 for illustration. The new algorithm directly optimizes the performance of the partition-based nearest
neighbor data structure. Indeed, if a query is chosen as a uniformly random data point, then the average k-NN accuracy
is exactly equal to the fraction of edges of the k-NN graph G whose endpoints are separated by the partition P . This
generalizes to out-of-sample queries provided that the query and dataset distributions are close, and the test accuracy of
the trained classifier is high.

At the same time, our approach is directly related to and inspired by recent theoretical work (Andoni et al., 2018b;c) on
NNS for general metric spaces. In particular, using the framework of (Andoni et al., 2018b;c), we prove that, under mild
conditions on the dataset P , the k-NN graph of P can be partitioned with a hyperplane into two parts of comparable
size such that only few edges get split by the hyperplane. This gives a partial theoretical justification of our method.

The new framework is very flexible and uses partitioning and learning in a black-box way. This allows us to plug
various models (linear models, neural networks, etc.) and explore the trade-off between the quality and the algorithmic
efficiency of the resulting partitions. We emphasize the importance of balanced partitions for the indexing problem,
where all bins contain roughly the same number of data points. This property is crucial in the distributed setting, since
we naturally would like to assign a similar number of points to each machine. Furthermore, balanced partitions allow
tighter control of the number of candidates simply by varying the number of retrieved parts. Note that a priori, it is
unclear how to partition Rd so as to induce balanced bins of a given dataset. Here the combinatorial portion of our
approach is particularly useful, as balanced graph partitioning is a well-studied problem, and our supervised extension
to Rd naturally preserves the balance by virtue of attaining high training accuracy.

We speculate that the new method might be potentially useful for solving the NNS problem for non-Euclidean metrics,
such as the edit distance (Zhang & Zhang, 2017) or optimal transport distance (Kusner et al., 2015). Indeed, for any
metric space, one can compute the k-NN graph and then partition it. The only step that needs to be adjusted to the
specific metric at hand is the learning step.

Let us finally put forward the challenge of scaling our method up to billion-sized or even larger datasets. For such scale,
one needs to build an approximate k-NN graph as well as using graph partitioning algorithms that are faster than KaHIP.
We leave this exciting direction to future work. For the current experiments (datasets of size 106 points), preprocessing
takes several hours. Another important challenge is to obtain NNS algorithms based on the above partitioning with
provable guarantees in terms of approximation and running time. However, we expect it to be difficult, in particular,
since all the current state-of-the-art NNS algorithms lack such guarantees (e.g., k-means-based (Jégou et al., 2011) or
graph methods (Malkov & Yashunin, 2018), see also (Aumüller et al., 2017) for a recent SOTA survey).

Evaluation We instantiate our framework with the KaHIP algorithm (Sanders & Schulz, 2013) for the graph partitioning
step, and either linear models or small-size neural networks for the learning step. We evaluate it on several standard
benchmarks for NNS (Aumüller et al., 2017) and conclude that in terms of quality of the resulting partitions, it
consistently outperforms quantization-based and tree-based partitioning procedures, while maintaining comparable
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(a) Dataset (b) k-NN graph together with
a balanced partition

(c) Learned partition

Figure 1: Stages of our framework

algorithmic efficiency. In the high accuracy regime, our framework yields partitions that lead to processing up to 2.3×
fewer candidates than the strongest baseline.

As a baseline method we use k-means clustering (Jégou et al., 2011). It produces a partition of the dataset into k bins,
in a way that naturally extends to all of Rd, by assigning a query point q to its nearest centroid. (More generally, for
multi-probe querying, we can rank the bins by the distance of their centroids to q). This simple scheme yields very
high-quality results for indexing. Besides k-means, we evaluate LSH (Andoni et al., 2015), ITQ (Gong et al., 2013),
PCA tree (Sproull, 1991), RP tree (Dasgupta & Sinha, 2013), and Neural Catalyzer (Sablayrolles et al., 2019).

1.2 Related work

On the empirical side, currently the fastest indexing techniques for the NNS problem are graph-based (Malkov &
Yashunin, 2018). The high-level idea is to construct a graph on the dataset (it can be the k-NN graph, but other
constructions are also possible), and then for each query perform a walk, which eventually converges to the nearest
neighbor. Although very fast, graph-based approaches have suboptimal “locality of reference”, which makes them less
suitable for several modern architectures. For instance, this is the case when the algorithm is run on a GPU (Johnson
et al., 2017), or when the data is stored in external memory (Sun et al., 2014) or in a distributed manner (Bahmani et al.,
2012; Ni et al., 2017). Moreover, graph-based indexing requires many rounds of adaptive access to the dataset, whereas
partition-based indexing accesses the dataset in one shot. This is crucial, for example, for nearest neighbor search over
encrypted data (Chen et al., 2019). These benefits justify further study of partition-based methods.

Machine learning techniques are particularly useful for the sketching approach, leading to a vast body of research
under the label “learning to hash” (Wang et al., 2014; 2016). In particular, several recent works employed neural
networks to obtain high-quality sketches (Liong et al., 2015; Sablayrolles et al., 2019). The fundamental difference
from our work is that sketching is designed to speed up linear scans over the dataset, by reducing the cost of distance
evaluation, while indexing is designed for sublinear time searches, by reducing the number of distance evaluations. We
note that while sketches are not designed for indexing, they can be used for that purpose, since a b-bit hashing scheme
induces a partition of Rd into 2b parts. Nonetheless, our experiments show that partitions induced by these methods
(such as Iterative Quantization (Gong et al., 2013)) are not well-suited for indexing, and underperform compared to
quantization-based indexing, as well as to our methods.

We highlight in particular the recent work of Sablayrolles et al. (2019), which uses neural networks to learn a mapping
f : Rd → Rd′ that improves the geometry of the dataset and the queries to facilitate subsequent sketching. It is natural
to ask whether the same family of maps can be applied to enhance the quality of partitions for indexing. However, as
our experiments show, in the high accuracy regime the maps learned using the algorithm of Sablayrolles et al. (2019)
consistently degrade the quality of partitions.

Finally, we mention that here is some prior work on learning space partitions: Cayton & Dasgupta (2007); Ram & Gray
(2013); Li et al. (2011). However, all these algorithms learn hyperplane partitions into two parts (then applying them
recursively). Our method, on the other hand, is much more flexible, since neural networks allow us to learn a much
richer class of partitions.
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2 Our method

Given a dataset P ⊆ Rd of n points, and a number of bins m > 0, our goal is to find a partitionR of Rd into m bins
with the following properties:

1. Balanced: The number of data points in each bin is not much larger than n/m.
2. Locality sensitive: For a typical query point q ∈ Rd, most of its nearest neighbors belong to the same bin ofR. We

assume that queries and data points come from similar distributions.
3. Simple: The partition should admit a compact description and, moreover, the point location process should be

computationally efficient. For example, we might look for a space partition induced by hyperplanes.

Formally, we want the partition R that minimizes the loss Eq

[∑
p∈Nk(q)

1R(p)6=R(q)

]
s.t. ∀p∈P |R(p)| ≤ (1 +

η)(n/m), where q is sampled from the query distribution, Nk(q) ⊂ P is the set of its k nearest neighbors in P , η > 0
is a balance parameter, andR(p) denotes the part ofR that contains p.

First, suppose that the query is chosen as a uniformly random data point, q ∼ P . Let G be the k-NN graph of P ,
whose vertices are the data points, and each vertex is connected to its k nearest neighbors. Then the above problem
boils down to partitioning vertices of the graph G into m bins such that each bin contains roughly n/m vertices, and
the number of edges crossing between different bins is as small as possible (see Figure 1(b)). This balanced graph
partitioning problem is extremely well-studied, and there are available combinatorial partitioning solvers that produce
very high-quality solutions. In our implementation, we use the open-source solver KaHIP (Sanders & Schulz, 2013),
which is based on a sophisticated local search.

More generally, we need to handle out-of-sample queries, i.e., which are not contained in P . Let R̃ denote the partition
of G (equivalently, of the dataset P ) found by the graph partitioner. To convert R̃ into a solution to our problem, we
need to extend it to a partitionR of the whole space Rd that would work well for query points. In order to accomplish
this, we train a model that, given a query point q ∈ Rd, predicts which of the m bins of R̃ the point q belongs to (see
Figure 1(c)). We use the dataset P as a training set, and the partition R̃ as the labels – i.e., each data point is labeled
with the ID of the bin of R̃ containing it. The geometric intuition for this learning step is that – even though the partition
R̃ is obtained by combinatorial means, and in principle might consist of ill-behaved subsets of Rd – in most practical
scenarios, we actually expect it to be close to being induced by a simple partition of the ambient space. For example, if
the dataset is fairly well-distributed on the unit sphere, and the number of bins is m = 2, a balanced cut of G should be
close to a hyperplane.

The choice of model to train depends on the desired properties of the output partition R. For instance, if we are
interested in a hyperplane partition, we can train a linear model using SVM or regression. In this paper, we instantiate
the learning step with both linear models and small-sized neural networks. Here, there is natural tension between the
size of the model we train and the accuracy of the resulting classifier, and hence the quality of the partition we produce.
A larger model yields better NNS accuracy, at the expense of computational efficiency. We discuss this in Section 3.

Multi-probe querying Given a query point q, the trained model can be used to assign it to a bin of a partitionR, and
search for nearest neighbors within the data points in that part. In order to achieve high search accuracy, we actually
train the model to predict several bins for a given query point, which are likely to contain nearest neighbors. For neural
networks, this can be done naturally by taking several largest outputs of the last layer. By searching through more bins
(in the order of preference predicted by the model) we can achieve better accuracy, allowing for a trade-off between
computational resources and accuracy.

Hierarchical partitions When the required number of binsm is large, in order to improve the efficiency of the resulting
partition, it pays off to produce it in a hierarchical manner. Namely, we first find a partition of Rd into m1 bins, then
recursively partition each of the bins into m2 bins, and so on, repeating the partitioning for L levels. The total number
of bins in the overall partition is m = m1 ·m2 · . . .mL. See Figure 7 in the appendix for illustration. The advantage of
such a hierarchical partition is that it is much simpler to navigate than a one-shot partition with m bins.

Neural LSH with soft labels In the primary instantiation of our framework, we set the supervised learning component
to a a neural network with a small number of layers and constrained hidden dimensions (the exact parameters are
specified in the next section). In order to support effective multi-probe querying, we need to infer not just the bin that
contains the query point, but rather a distribution over bins that are likely to contain this point and its neighbors. A
T -probe candidate list is then formed from all data points in the T most likely bins. In order to accomplish this, we
use soft labels for data points generated as follows. For S ≥ 1 and a data point p, the soft label P = (p1, p2, . . . , pm) is
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a distribution over the bin containing a point chosen uniformly at random among S nearest neighbors of p (including p
itself). Now, for a predicted distribution Q = (q1, q2, . . . , qm), we seek to minimize the KL divergence between P and
Q:

∑m
i=1 pi log

pi

qi
. Intuitively, soft labels help guide the neural network with information about multiple bin ranking.

S is a hyperparameter that needs to be tuned; we study its setting in the appendix (cf. Figure 5b).

3 Sparse hyperplane-induced cuts in k-NN graphs

We state and prove a theorem that shows, under certain mild assumptions, that the k-NN graph of a dataset P ⊆ Rd can
be partitioned by a hyperplane such that the induced cut is sparse (i.e., has few crossing edges while the sizes of two
parts are similar). The theorem is based on the framework of (Andoni et al., 2018b;c) and uses spectral techniques.

We start with some notation. Let Nk(p) be the set of k nearest neighbors of p in P . The degree of p in the k-NN graph
is deg(p) = |Nk(p) ∪ {p′ ∈ P | p ∈ Nk(p

′)}|. Let D be the distribution over the dataset P , where a point p ∈ P is
sampled with probability proportional to its degree deg(p). Let Dclose be the distribution over pairs (p, p′) ∈ P × P ,
where p ∈ P is uniformly random, and p′ is a uniformly random element ofNk(p). Denote α = E(p,p′)∈Dclose

[‖p−p′‖22]
and β = Ex1∼D,x2∼D[‖p1 − p2‖22]. We will proceed assuming that α (typical distance between a data point and its
nearest neighbors) is noticeably smaller than β (typical distance between two independent data points).

The following theorem implies, informally speaking, that if α � β, then there exists a hyperplane which splits the
dataset into two parts of not too different size while separating only few pairs of (p, p′), where p′ is one of the k nearest
neighbors of p. For the proof of the theorem, see Appendix D.

Theorem 3.1. There exists a hyperplane H = {x ∈ Rd | 〈a, x〉 = b} such that the following holds. Let P = P1 ∪ P2

be the partition of P induced by H: P1 = {p ∈ P | 〈a, p〉 ≤ b}, P2 = {p ∈ P | 〈a, p〉 > b}. Then, one has:

Pr(p,p′)∼Dclose
[p and p′ are separated by H]

min{Prp∼D[p ∈ P1],Prp∼D[p ∈ P2]}
≤

√
2α

β
. (1)

4 Experiments

Datasets For the experimental evaluation, we use three standard ANN benchmarks (Aumüller et al., 2017): SIFT
(image descriptors, 1M 128-dimensional points), GloVe (word embeddings (Pennington et al., 2014), approximately
1.2M 100-dimensional points, normalized), and MNIST (images of digits, 60K 784-dimensional points). All three
datasets come with 10 000 query points, which are used for evaluation. We include the results for SIFT and GloVe in
the main text, and MNIST in Appendix A.

Evaluation metrics We mainly investigate the trade-off between the number of candidates generated for a query point,
and the k-NN accuracy, defined as the fraction of its k nearest neighbors that are among those candidates. The number
of candidates determines the processing time of an individual query. Over the entire query set, we report both the
average as well as the 0.95-th quantile of the number of candidates. The former measures the throughput1 of the data
structure, while the latter measures its latency.2 We focus on parameter regimes that yield k-NN accuracy of at least
0.75, in the setting k = 10. Additional results with broader regimes of accuracy and of k are included in the appendix.

Our methods We evaluate two variants of our method, with two different choices of the supervised learning component:

• Neural LSH: In this variant we use small neural networks. We compare this method with k-means clustering,
Iterative Quantization (ITQ) (Gong et al., 2013), Cross-polytope LSH (Andoni et al., 2015), and Neural Cat-
alyzer (Sablayrolles et al., 2019) composed over k-means clustering. We evaluate partitions into 16 bins and 256
bins. We test both one-level (non-hierarchical) and two-level (hierarchical) partitions. Queries are multi-probe.

• Regression LSH: This variant uses logistic regression as the supervised learning component and, as a result,
produces very simple partitions induced by hyperplanes. We compare this method with PCA trees (Sproull, 1991;
Kumar et al., 2008; Abdullah et al., 2014), random projection trees (Dasgupta & Sinha, 2013), and recursive
bisections using 2-means clustering. We build trees of hierarchical bisections of depth up to 10 (thus total number of
leaves up to 1024). The query procedure descends a single root-to-leaf path and returns the candidates in that leaf.
1Number of queries per second.
2Maximum time per query, modulo a small fraction of outliers.
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4.1 Implementation details

Neural LSH uses a fixed neural network architecture for the top-level partition, and a fixed architecture for all second-
level partitions. Both architectures consist of several blocks, where each block is a fully-connected layer + batch
normalization (Ioffe & Szegedy, 2015) + ReLU activations. The final block is followed by a fully-connected layer and a
softmax layer. The resulting network predicts a distribution over the bins of the partition. The only difference between
the top-level network the second-level network architecture is their number of blocks (b) and the size of their hidden
layers (s). In the top-level network we use b = 3 and s = 512. In the second-level networks we use b = 2 and s = 390.
To reduce overfitting, we use dropout with probability 0.1 during training. The networks are trained using the Adam
optimizer (Kingma & Ba, 2015) for under 20 epochs on both levels. We reduce the learning rate multiplicatively at
regular intervals. The weights are initialized with Glorot initialization (Glorot & Bengio, 2010). To tune soft labels, we
try different values of S between 1 and 120.

We evaluate two settings for the number of bins in each level, m = 16 and m = 256 (leading to a total number of
bins of the total number of bins in the two-level experiments are 162 = 256 and 2562 = 65 536, respectively). In the
two-level setting with m = 256 the bottom level of Neural LSH uses k-means instead of a neural network, to avoid
overfitting when the number of points per bin is tiny. The other configurations (two-levels with m = 16 and one-level
with either m = 16 or m = 256) we use Neural LSH at all levels.

4.2 Comparison with multi-bin methods

Figure 2 shows the empirical comparison of Neural LSH with k-means clustering, ITQ, Cross-polytope LSH, and
Neural Catalyzer composed over k-means clustering. It turns out that k-means is the strongest among these baselines.3
The points depicted in Figure 2 are those that attain accuracy ≥ 0.75. In the appendix (Figure 10) we include the full
accuracy range for all methods.

In all settings considered, Neural LSH yields consistently better partitions than k-means.4 Depending on the setting,
k-means requires significantly more candidates to achieve the same accuracy:

• Up to 117% more for the average number of candidates for GloVe;
• Up to 130% more for the 0.95-quantiles of candidates for GloVe;
• Up to 18% more for the average number of candidates for SIFT;
• Up to 34% more for the 0.95-quantiles of candidates for SIFT;

Figure 8 in the appendix lists the largest multiplicative advantage in the number of candidates of Neural LSH compared
to k-means, for accuracy values of at least 0.85. Specifically, for every configuration of k-means, we compute the ratio
between the number of candidates in that configuration and the number of candidates of Neural LSH in its optimal
configuration, among those that attained at least the same accuracy as that k-means configuration.

We also note that in all settings except two-level partitioning with m = 256,5 Neural LSH produces partitions for which
the 0.95-quantiles for the number of candidates are very close to the average number of candidates, which indicates
very little variance between query times over different query points. In contrast, the respective gap in the partitions
produced by k-means is much larger, since unlike Neural LSH, it does not directly favor balanced partitions. This
implies that Neural LSH might be particularly suitable for latency-critical NNS applications.

Model sizes. The largest model size learned by Neural LSH is equivalent to storing about ≈ 5700 points for SIFT,
or ≈ 7100 points for GloVe.This is considerably larger than k-means with k ≤ 256, which stores at most 256 points.
Nonetheless, we believe the larger model size is acceptable for Neural LSH, for the following reasons. First, in most of
the NNS applications, especially for the distributed setting, the bottleneck in the high accuracy regime is the memory
accesses needed to retrieve candidates and the further processing (such as distance computations, exact or approximate).
The model size is not a hindrance as long as does not exceed certain reasonable limits (e.g., it should fit into a CPU

3It is important to note that ITQ is not designed to produce space partitions; as explained in Section 1, it does so as a side-effect.
Simiarly, Neural Catalyzer is not designed to enhance partitions. The comparison is intended to show that they do not outperform
indexing techniques despite being outside their intended application.

4We note that two-level partitioning with m = 256 is the best performing configuration of k-means, for both SIFT and GloVe, in
terms of the minimum number of candidates that attains 0.9 accuracy. Thus we evaluate this baseline at its optimal performance.

5As mentioned earlier, in this setting Neural LSH uses k-means at the second level, due to the large overall number of bins
compared to the size of the datasets. This explains why the gap between the average and the 0.95-quantile number of candidates of
Neural LSH is larger for this setting.
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(a) GloVe, one level, 16 bins (b) SIFT, one level, 16 bins

(c) GloVe, one level, 256 bins (d) SIFT, one level, 256 bins

(e) GloVe, two levels, 16 bins (f) SIFT, two levels, 16 bins

(g) GloVe, two levels, 256 bins, k-means at 2nd level (h) SIFT, two levels, 256 bins, k-means at 2nd level

Figure 2: Comparison of Neural LSH with k-means; x-axis is the number of candidates, y-axis is the 10-NN accuracy
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cache). Neural LSH significantly reduces the memory access cost, while increasing the model size by an acceptable
amount. Second, we have observed that the quality of the Neural LSH partitions is not too sensitive to decreasing the
sizes the hidden layers. The model sizes we report are, for the sake of concreteness, the largest ones that still lead to
improved performance. Larger models do not increase the accuracy, and sometimes decrease it due to overfitting.

4.3 Comparison with tree-based methods

Next we compare binary decision trees, where in each tree node a hyperplane is used to determine which of the two
subtrees to descend into. We generate hyperplanes with the following methods: Regression LSH, cutting the dataset
into two equal halves along the top PCA direction (Sproull, 1991; Kumar et al., 2008), 2-means clustering, and random
projections of the centered dataset (Dasgupta & Sinha, 2013; Keivani & Sinha, 2018). We build trees of depth up to 10,
which correspond to hierarchical partitions with the up to 210 = 1024 bins. Results for GloVe and SIFT are summarized
in Figure 9 (see appendix). For random projections, we run each configuration 30 times and average the results.

For GloVe, Regression LSH significantly outperforms 2-means, while for SIFT, Regression LSH essentially matches
2-means in terms of the average number of candidates, but shows a noticeable advantage in terms of the 0.95-percentiles.
In both instances, Regression LSH significantly outperforms PCA tree, and all of the above methods dramatically
improve upon random projections.

Note, however, that random projections have an additional benefit: in order to boost search accuracy, one can simply
repeat the sampling process several times and generate an ensemble of decision trees instead of a single tree. This
allows making each individual tree relatively deep, which decreases the overall number of candidates, trading space
for query time. Other considered approaches (Regression LSH, 2-means, PCA tree) are inherently deterministic, and
boosting their accuracy requires more care: for instance, one can use partitioning into blocks as in Jégou et al. (2011),
or alternative approaches like Keivani & Sinha (2018). Since we focus on individual partitions and not ensembles, we
leave this issue out of the scope.

Additional experiments. In the appendix we inlclude several additional experiments: (i) We evaluate the 50-NN
accuracy of Neural LSH when the partitioning step is run on either the 10-NN or the 50-NN graph.6 Both settings
outperform k-means, and the gap between using the 10-NN and 50-NN graphs is negligible, which indicates the
robustness of Neural LSH. (ii) We study the effect of tuning the size of soft labels S. We show that setting S to be at
least 15 is immensely beneficial compared to S = 1, but beyond that we start observing diminishing returns.

5 Conclusions and future directions

We presented a new technique for finding partitions of Rd which support high-performance indexing for sublinear-time
NNS. It proceeds in two major steps: (1) We perform a combinatorial balanced partitioning of the k-NN graph of the
dataset; (2) We extend the resulting partition to the whole ambient space Rd by using supervised classification (such
as logistic regression, neural networks, etc.). Our experiments show that the new approach consistently outperforms
quantization-based and tree-based partitions. There is a number of exciting open problems we would like to highlight:

• Can we use our approach for NNS over non-Euclidean geometries, such as the edit distance (Zhang & Zhang, 2017)
or the optimal transport distance (Kusner et al., 2015)? The graph partitioning step directly carries through, but the
learning step may need to be adjusted.

• Can we jointly optimize a graph partition and a classifier at the same time? By making the two components aware
of each other, we expect the quality of the resulting partition of Rd to improve.

• Can our approach be extended to learning several high-quality partitions that complement each other? Such an
ensemble might be useful to trade query time for memory usage (Andoni et al., 2017).

• Can we use machine learning techniques to improve graph-based indexing techniques (Malkov & Yashunin, 2018)
for NNS? (This is in contrast to partition-based indexing, as done in this work).

• Our framework is an example of combinatorial tools aiding “continuous” learning techniques. A more open-ended
question is whether other problems can benefit from such symbiosis.

6Neural LSH can solve k-NNS by partitioning the k′-NN graph, for any k, k′; they do not have to be equal.
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A Results for MNIST

We include experimental results for the MNIST dataset, where all the experiments are performed exactly in the same
way as for SIFT and GloVe. Consistent with the trend we observed for SIFT and GloVe, Neural LSH consistently
outperforms k-means (see Figure 3) both in terms of average number of candidates and especially in terms of the 0.95-th
quantiles. We also compare Regression LSH with recursive 2-means, as well as PCA tree and random projections (see
Figure 4), where Regression LSH consistently outperforms the other methods.

B Additional experiments

Here we describe three additional experiments that we referred to in the end of Section 4 in a greater detail.

First, we compare Neural LSH and k-means for k = 50 (instead of the default setting of k = 10). Moreover, we
consider two variants of Neural LSH. In one of them, we use the 50-NN graph for partitioning, but for the other variant
we use merely the 10-NN graph. Figure 5a compares these three algorithms on GloVe for 16 bins reporting average
numbers of candidates. From this plot, we can see that for k = 50, Neural LSH convincingly outperforms k-means, and
whether we use 10-NN or 50-NN graph matters very little.

Second, we study the effect of varying S (the soft labels parameter) for Neural LSH on GloVe for 256 bins. See
Figure 5b where we report the average number of candidates. As we can see from the plot, the setting S = 15 yields
much better results compared to the vanilla case of S = 1. However, increasing S beyond 15 brings diminishing returns
on the overall accuracy.
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Figure 3: MNIST, comparison of Neural LSH with k-means; x-axis is the number of candidates, y-axis is the 10-NN
accuracy.
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Figure 4: Comparison of decision trees built from hyperplanes; x-axis is the number of candidates, y-axis is the 10-NN
accuracy
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Figure 5: Effect of various hyperparameters
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Figure 6: Comparison of k-means and Catalyzer + k-means

Finally, we compare vanilla k-means with k-means run after applying a Neural Catalyzer map (Sablayrolles et al.,
2019). The goal is to check whether the Neural Catalyzer, which has been designed to boost up the performance of
sketching methods for NNS by adjusting the input geometry, could also improve the quality of space partitions for NNS.
See Figure 6 for the comparison on GloVe and SIFT with 16 bins. On both datasets (especially SIFT), Neural Catalyzer
in fact degrades the quality of the partitions. We observed a similar trend for other numbers of bins than the setting
reported here. These findings support our observation that while both indexing and sketching for NNS can benefit from
learning-based enhancements, they are fundamentally different approaches and require different specialized techniques.

C Additional implementation details

We slightly modify the KaHIP partitioner to make it more efficient on the k-NN graphs. Namely, we introduce a hard
threshold of 2000 on the number of iterations for the local search part of the algorithm, which speeds up the partitioning
dramatically, while barely affecting the quality of the resulting partitions.

D Proof of Theorem 3.1

Proof. Consider an undirected graph G = (V,E), where the set of vertices V is P , and the (multi-)set of edges contains
an edge (p, p′) for every p′ ∈ Nk(p). The graph contains n vertices and kn edges, and some of the edges might be
double (if p′ ∈ Nk(p) and p ∈ Nk(p

′) at the same time). Let AG be the symmetric adjacency matrix of G normalized
by 2kn (so that the sum of all the entries equals to 1, thus giving a probability distribution over P × P , which can
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R0
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P1 P2 P3 P4 P5 P6 P7 P8 P9

Figure 7: Hierarchical partition into 9 bins with m1 = m2 = 3. Ri’s are partitions, Pj’s are the bins of the dataset.
Multi-probe query procedure, which descends into 2 bins, may visit the bins marked in bold.

GloVe SIFT
Averages 0.95-quantiles Averages 0.95-quantiles

One level 16 bins 1.745 2.125 1.031 1.240
256 bins 1.491 1.752 1.047 1.348

Two levels 16 bins 2.176 2.308 1.113 1.306
256 bins 1.241 1.154 1.182 1.192

Figure 8: Largest ratio between the number of candidates for Neural LSH and k-means over the settings where both
attain the same target 10-NN accuracy, over accuracies of at least 0.85. See details in Section 4.2.
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Figure 9: Comparison of decision trees built from hyperplanes: the left plot is GloVe, the right plot corresponds to
SIFT; x-axis is the number of candidates, y-axis is the 10-NN accuracy
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(a) GloVe, one level, 16 bins (b) SIFT, one level, 16 bins

(c) GloVe, one level, 256 bins (d) SIFT, one level, 256 bins

(e) GloVe, two levels, 16 bins (f) SIFT, two levels, 16 bins

(g) GloVe, two levels, 256 bins, k-means at 2nd level (h) SIFT, two levels, 256 bins, k-means at 2nd level

Figure 10: Comparison of Neural LSH with k-means; x-axis is the number of candidates, y-axis is the 10-NN accuracy
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be seen to be equal to Dclose). The rows and columns of AG can naturally be indexed by the points of P . Denote
ρG(p) =

∑
p′(AG)p,p′ . It is immediate to check that ρG yields a distribution over P , which can be seen to be equal to

D. Denote DG = diag(ρG). Denote LG = DG −AG the Laplacian of AG. Due to the equivalence of ρG and D and
AG and Dclose, we have:

α

β
=

∑
p,p′∈P (AG)p,p′ · ‖p− p′‖22∑

p1,p2∈P ρG(p1)ρG(p2) · ‖p1 − p2‖
2
2

. (2)

By considering all possible coordinate projections and using additivity of ‖ · ‖22 over coordinates, we conclude that
there exists a coordinate i∗ ∈ [d] such that:∑

p,p′∈P (AG)p,p′ · (pi∗ − p′i∗)2∑
p1,p2∈P ρG(p1)ρG(p2) · ((p1)i∗ − (p2)i∗)2

≤ α

β
. (3)

Define a vector y ∈ RY by yp = pi∗ . We can rewrite the left-hand side of (3) as:

ytLGy

yt(DG − ρGρtG)y
=
ỹtLGỹ

ỹtDGỹ
≤ α

β
,

where ỹ is obtained from y by increasing all the entries by the same amount so that the resulting vector is orthogonal to
ρG. Now by the Cheeger’s inequality (Chung, 1996), we conclude that there exists a threshold y0 ∈ R such that:∑

p1,p2:ỹp1
≤y0,ỹp2

>y0
(AG)p1,p2

min{
∑

p:ỹp≤y0
ρG(p),

∑
p:ỹp>y0

ρG(p)}
≤

√
2 · ỹ

tLGỹ

ỹtDGỹ
≤

√
2α

β
. (4)

One can trace back all the definitions and observe that the set {p ∈ P : ỹp ≤ y0} is induced by an (axis-aligned)
hyperplane, and the left-hand side of (4) is nothing else but the left-hand side of (1).
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