
Under review as a conference paper at ICLR 2020

LEARNING TIME-AWARE ASSISTANCE FUNCTIONS
FOR NUMERICAL FLUID SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Improving the accuracy of numerical methods remains a central challenge in many
disciplines and is especially important for nonlinear simulation problems. A rep-
resentative example of such problems is fluid flow, which has been thoroughly
studied to arrive at efficient simulations of complex flow phenomena. This paper
presents a data-driven approach that learns to improve the accuracy of numerical
solvers. The proposed method utilizes an advanced numerical scheme with a fine
simulation resolution to acquire reference data. We, then, employ a neural network
that infers a correction to move a coarse thus quickly obtainable result closer to
the reference data. We provide insights into the targeted learning problem with
different learning approaches: fully supervised learning methods with a naive and
an optimized data acquisition as well as an unsupervised learning method with a
differentiable Navier-Stokes solver. While our approach is very general and ap-
plicable to arbitrary partial differential equation models, we specifically highlight
gains in accuracy for fluid flow simulations.

1 INTRODUCTION

Numerical methods are a central component of many disciplines and widely used for solving a
variety of linear and nonlinear problems. One of the long-standing targets is fluid flow, which is
renowned for its great diversity and complexity in terms of dynamics. Studies in computational
fluid dynamics have focused on numerical simulations for such problems and invested huge efforts
in solving spatio-temporal partial differential equations (PDEs) such as the Navier-Stokes equations,
which represent the well-established physical model for fluids.

Traditional methods typically improve accuracy with fine discretizations both in space and time.
While the methods and computing power for numerical simulation have seen advances in recent
years, there is still a pressing need for better efficiency and accuracy. For most practical applications
of computer simulations, we are still far away from fully resolving all necessary scales of nature
around us (Verma et al., 2018; Cummins et al., 2018).

To tackle this problem, we propose a data-driven approach that “assists” a given numerical method
to improve its accuracy. To this end, we introduce a first learning-based approach that puts special
emphasis on the time dimension. We demonstrate two variants to achieve this goal in the context
of fluids: a supervised version with an optimization algorithm for acquisition of temporally con-
strained correction data and an unsupervised version with a differentiable PDE solver that allows us
to autonomously takes into account temporal information when training. We compare advantages
and disadvantages of both approaches, and our experiments show that, using our trained models, the
simulation accuracy of the given solver can be significantly improved. In all cases, our trained mod-
els yield improved dynamics, and the learned assistance function lets a coarse simulation reproduce
the behavior of the reference data more closely. In particular, we demonstrate the improvements of
our approach over ad-hoc learning approaches.

2 RELATED WORK

Data-driven approaches were shown to be highly effective for inferring unknown PDEs and coeffi-
cients of corresponding terms (Brunton et al., 2016). Their capabilities were investigated for differ-
ent problems, among others the Navier-Stokes equations (Rudy et al., 2017; Schaeffer, 2017). Deep

1

Under review as a conference paper at ICLR 2020

learning methods were successfully applied for learning stencils of advection diffusion problems
(Bar-Sinai et al., 2018), to discover PDE formulations (Long et al., 2017), and to analyze families
of Poisson equations (Magill et al., 2018). While identifying governing equations represents an in-
teresting and challenging task, we instead focus on a general method to improve the solutions of
chosen solution spaces.

Due to the complexity and nonlinear nature of fluid dynamics, they remain a challenging problem,
and accordingly data-driven approaches including deep learning have received a lot of attention to
reach an efficient solution for such problems (Kutz, 2017). Particularly, a turbulence modeling has
been a representative objective in this context (Duraisamy et al., 2015; Maulik & San, 2017; Beck
et al., 2018; Mohan et al., 2019). Moreover, both steady (Guo et al., 2016) and unsteady (Morton
et al., 2018) flows as well as multiphase (Gibou et al., 2018) flows have been investigated with deep
learning based approaches. Additionally, the convolutional neural network (CNN) based methods
were studied for airfoil flow problems (Thuerey et al., 2018; Zhang et al., 2018).

For fluid simulation, particularly in the field of computer graphics, data-driven approaches have
been considered as an efficient alternative to replace computationally expensive steps of numerical
processes (Ladický et al., 2015; Tompson et al., 2017). Moreover, deep learning, particularly with
generative adversarial models (Goodfellow, 2016), has been used for efficiently synthesizing de-
tails within coarsely resolved simulations (Chu & Thuerey, 2017; Xie et al., 2018). In addition to
scalar transport and smoke flows, liquid droplets have been efficiently tackled by learning stochastic
models (Um et al., 2018). Due to their capabilities for transforming space-time data into reduced
latent spaces, fluid simulations were processed and re-simulated with neural network (NN) models
(Kim et al., 2019; Prantl et al., 2019). Motivated by the success of previous studies regarding data-
driven approaches in numerical simulations, we aim for enabling the learning of general correction
functions. Our aim differs from methods that synthesize details for low-resolution input data. As
such, our method is orthogonal to super-resolution methods and shares similarities with methods to
identify discontinuities in finite difference solutions (Ray & Hesthaven, 2018). However, we inves-
tigate the problem for challenging two-dimensional flow problems and propose a new approach for
learning the correction bby taking into account temporal dynamics.

3 CORRECTING NUMERICAL SIMULATIONS

Numerical methods yield approximations of a smooth function f(x) in a discrete setting with an
approximation error of the form O(hk) where h is the step size of the discretization. Naturally,
higher order methods with larger k are preferable but difficult to arrive at in practice. In our setting,
the motions of fluids can be represented by a series of vector fields v(x) where bold vectors will
denote two- or three-dimensional vector-valued functions in the following. The accuracy of the
fluid motion likewise depends on the discretization error for v. In the following, we will focus
on Cartesian Eulerian representations, meaning axis aligned grids with square cells. Discretizing
functions like v on such a grid yields approximations that scale with the grid spacing h. While
small h can yield accurate representations, the computational requirements typically increase super-
linearly with the number of unknowns, and as such, all practical methods strive for keeping h as
large as possible in order to compute solutions quickly.

Due to the nonlinear nature of flow equations and the inherent truncation errors of numerical
schemes, varying resolutions often lead to very significant differences in solutions. Such differ-
ences are not readily interchangeable across the different resolutions, as especially higher frequency
content can be difficult to represent on a coarse grid. In order to improve the accuracy of a numeri-
cal method, we propose to learn a correction function that compensates for discretization errors on
coarse grids and is representable by a NN. More specifically, we employ a CNN (Krizhevsky et al.,
2012) as the correction should be translation invariant for generalization. We target time-dependent
problems for which we infer a per time step correction. This is particularly challenging as approxi-
mation errors accumulate over time. In this work, we will focus on finite difference approximations
(Strikwerda, 2004).

A discretized representation s of a smooth target function f typically consists of a set of discrete
physical quantities. Together, we call these discrete quantities s a state with which our correction
approach can be formulated as follows:

sn+1 = F (sn) + cn (1)

2

Under review as a conference paper at ICLR 2020

where F denotes a numerical solver for the target function f moving a state sn forward in time to
a new state sn+1. Here, cn denotes the correction function. Note that cn potentially updates only a
part of the full state, e.g., the velocity field v.

We target solutions of the Navier-Stokes equations, which for incompressible Newtonian fluids takes
the form

∂v

∂t
+ v · ∇v = −1

ρ
∇p+ ν∇ · ∇v + g subject to ∇ · v = 0, (2)

where ρ, p, ν, and g denote density, pressure, viscosity, and external forces, respectively. The
constraint,∇ · v = 0, is particularly important as it restricts motions to the space of divergence-free
(i.e., volume preserving) velocities.

3.1 CORRECTION FUNCTION

The natural follow-up question is how to compute and represent the potentially highly nonlinear
correction function of Eq. 1. Thanks to their flexibility and ability to represent nonlinearities, we
use fully convolutional networks as our model for the correction function. A fine discretization,
optionally with advanced numerical schemes, is employed to compute the reference data. Our goal
is, then, to find an optimal approximation of the correction function for the given reference data. We
will first approach this problem in a supervised manner with human intervention and then explain an
improved approach that enables a NN model to learn the target function in an unsupervised manner.

As the velocity v is the key quantity for fluids, we target corrections c of this function in the follow-
ing. However, our approach likewise could be applied to other functions. The correction is applied
additively, i.e., v+c, and should be computed such that this sum matches the reference velocity vR,
i.e., ideally v + c = vR. In practice, we will not aim for an equality but rather match the reference
as closely as possible. As the reference is typically best defined in terms of a fine discretization with
reduced approximation errors, it might have an altogether different resolution. In this case, care
is needed when transferring functions between different discretizations especially when additional
constraints such as physical laws of conservation need to be taken into account. We address this
problem via an optimization and aim for minimizing the distance between representations on both
grids with respect to a suitable metric.

For two different dimensionalities ξ, χ ∈ N with ξ < χ, consider two vector spaces H ∈ Rχ and
L ∈ Rξ that both conserve volume (following Eq. 2), i.e., ∇ · h = 0 for ∀h ∈ H, and ∇ · l = 0
for ∀l ∈ L. Having a finer vector field cH , which contains the necessary information, we aim to
find the closest vector field cL (∈ L) to cH (∈ H). We first describe how to transfer functions
between both spaces in general before explaining how to find those that are particularly amenable
for learning. Consider an interpolation operator W that introduces new data points within a vector
field cL (∈ L), i.e., WcL ∈ Rχ. We, then, strive to minimize the distance between WcL and
cH such that cL can best represent the information of cH without loosing its volume conserving
properties. Thus, we aim for computing cL with

argmin
cL

||WcL − cH ||2 subject to ∇ · cL = 0. (3)

This represents a constrained optimization problem with equality constraints, which we can solve
via Lagrange multipliers λ as follows:

Φ = ||WcL − cH ||2 + (∇ · cL)>λ. (4)

This results in a system of equations as follows:[
W>W −∇
−∇> 0

] [
cL
λ

]
=

[
W>cH

0

]
. (5)

Using the Schur complement, we can simplify this system to speed up calculations:

∇>(W>W)−1∇λ = ∇>(W>W)−1W>cH , (6)

cL = (W>W)−1(W>cH −∇λ). (7)

A NN, then, infers the correction ĉL by minimizing the supervised loss, Lsup =
∑
||ĉL − cL||,

for a pre-computed data set. While this method can efficiently yield divergence-free changes of

3

Under review as a conference paper at ICLR 2020

Solver Model +Solver Model +

Figure 1: Overview of the recurrent training, in which the NN model is coupled with a differentiable
PDE solver. Each unit, shown with dashed-lines, represents one time step, and multiple steps are
unrolled so that the model can take into account temporal information when learning.

resolution, i.e., move a function such as the aforementioned correction from fine to coarse grids,
the solutions obtained in this way are not necessarily optimal for deep learning methods as we will
evaluate in more detail below. Hence, we first introduce an extension that takes into account the
temporal evolution of the correction function.

3.2 TEMPORAL REGULARIZATION OF CORRECTIONS

The vector fields we target are obtained from a numerical simulation. Here, the underlying flow
equations are solved for a finite number of steps from an initial condition. The simulation produces
a series of states, which represent the spatio-temporal changes of fluid volume and velocity. Given
the setup as described so far, we can acquire the correction of a basic numerical simulation by
running the same simulation with a reduced step size in space and time to reduce approximation
errors. In addition, we can employ more accurate numerical schemes for the reference as we will
demonstrate below. Having both the basic simulation velocity field vB and the reference simulation
velocity field vR, we can compute the correction vector field cL via Eq. 7 for cH = vR −WvB .

As our aim is to find a learned representation of the corrections, a crucial aspect to consider is the
sensitivity (Murphy et al., 2004) of the targeted function (i.e., the correction) with respect to the
data at hand, i.e., in our case, the state of a coarse simulation. Here, we observe that the correction
vector fields vary strongly in time even for smooth changes of the basic simulation. That means the
correction function has a very nonlinear and difficult to learn relationship with the observable data
in a simulation.

In order to address this difficulty, here, we introduce supervision in data acquisition by employing a
temporal regularization that makes the correction function learnable without sacrificing its correct-
ing properties. As we are dealing with continuous models, we know that the flow motion changes
smoothly in time if it is resolved finely enough. As our solution changes in space as well as time, a
learned function has to be able to represent spatial as well as temporal changes of the target function
correctly. We focus on the inference of per-time step corrections, and thus it is especially important
to obtain correction functions that change smoothly over time (spatial regularization could poten-
tially also be incorporated during learning implicitly or explicitly). Consequently, we regularize our
correction vector fields such that they change smoothly in time by penalizing temporal change of the
correction vector field. These are given by dcL/dt, which we minimize together with the transfer
from fine to coarse discretizations:

argmin
cL

(
||WcL − cH ||2 + β||dcL

dt
||2
)

subject to ∇ · cL = 0. (8)

Here, β is the regularization coefficient. This yields a new system of equations as follows:[
W>W + β 2

∆tI −∇
−∇> 0

] [
cL
λ

]
=

[
W>cH + β 2

∆tc
n−1
L

0

]
, (9)

where ∆t is the timestep size, I is the identity matrix, and the superscript n − 1 of cL denotes the
state at the previous step in time. We used the β = 0 in the following experiments and found it
effective for both the correction accuracy and training.

3.3 UNSUPERVISED LEARNING WITH DIFFERENTIABLE PHYSICS

So far, we have described how to acquire a learnable data set obtained with human support for in-
troducing temporal regularization. The NN can, then, learn the corrections given the low-resolution
input simulations, i.e., minimizes the error of inferred corrections. This naturally requires special

4

Under review as a conference paper at ICLR 2020

(a) Initial setup (b) Basic simulation (c) Reference simulation (d) Corrected simulation

Figure 2: Rising smoke. (a) The initial size of a smoke volume is randomized in two simulations.
After 1,000 steps, the same initial setup results in significant differences between (b) the basic simu-
lation and (c) the reference simulation. Moreover, the small variations in the initial volume result in
very different density configurations. (d) The basic version is assisted by the ground truth correction
from Eq. 9 without NN inference.

care in terms of choosing right amount of temporal regularization, which in practice is strongly
problem dependent. To reduce the reliance on human intervention, we propose a training approach
with which the model can directly learn the target function by recurrently observing the temporal
dynamics of the physical model as illustrated in Fig. 1. The recurrent training can be achieved via
differentiable physics solvers that allow for a back-propagation of gradients through the discretized
physical model. In this way, we can let a NN learn the sought-after correction function in an un-
supervised manner. As we will demonstrate below, the main advantage of this approach is that the
NN experiences how corrections influence the evolution of the dynamics and receive gradients in
order to improve inference accuracy. In the following, we employ a differentiable Navier-Stokes
solver from concurrent work (anonymous, 2020). This solver builds on the automatic differentiation
of a machine learning framework to compute analytic derivatives and augments them with custom
derivatives where built-in derivatives would be inefficient. This setup allows for straightforward
integration of solver functionality with machine learning models and enables end-to-end training in
recurrent settings.

Denoting the discretized physical model as Fm, we can define our loss asLun =
∑m
i ||(Fm(st0+i)+

cL)−Mst0+i
H ||2, where the notation of the NN inference for cL is omitted for brevity, M is a sam-

pling operator to make the spatial discretizations consistent, and m denotes the number of recurrent
steps. Above, each loss evaluation starts at time t0. Note that a state st0+i depends on all i− 1 pre-
vious states, and thus requires a back-propagation of the gradients through i− 1 solver evaluations.
In contrast to the supervised approach, we can directly evaluate the difference between the corrected
simulation result, as provided by the unsupervised loss formulation, and the reference state sH . In
practice, this can be achieved without explicitly preparing for learnable input-output pairs, which are
acquired using our optimization for training. Once sequences of reference simulations are collected,
we can directly use the sequences by selecting an initial frame t0, which is downsampled to the ba-
sic solver’s resolution and fed to the architecture as an initial input. During each recurrent step, the
intermediate results are evaluated via the differentiable solver and the current state of the correction
model. These intermediate results are compared with the given consecutive reference frames, and
the model can update its weights accordingly. With this setup, the model can directly learn from
simulation results that have experienced inferred corrections via the unrolled recurrent steps, each
of which incorporates the physics solver.

4 EXPERIMENTS

To acquire our data sets, we generate a set of simulation sequences, which are started from ran-
domized initial setups according to the given parameters. These sequences are used for obtaining
pairs of input and correction velocity fields to training our NN. Anonymized and time-stamped sup-
plemental material for our submission can be downloaded at https://www.dropbox.com/sh/
bl2xmrtc2loot14/AADChTpswLYmy7Yq PG1zfXka?dl=0.

4.1 SUPERVISED CORRECTION OF RISING SMOKE

This example encompasses a volume of hot smoke rising from the bottom of an enclosed container.
The motion of the smoke volume is driven by buoyancy forces computed from the density field

5

https://www.dropbox.com/sh/bl2xmrtc2loot14/AADChTpswLYmy7Yq_PG1zfXka?dl=0
https://www.dropbox.com/sh/bl2xmrtc2loot14/AADChTpswLYmy7Yq_PG1zfXka?dl=0

Under review as a conference paper at ICLR 2020

Basic model Ground truth Our model
(a) Test A

Basic model Ground truth Our model
(b) Test B

Figure 3: Corrected rising smoke simulation. Our model is applied to two test cases A and B. After
correcting 400 steps, the density fields are compared among the basic method, ground truth, and
corrected method (our model). (See Fig. 11 in Appx. A.2 for more comparisons.)

using the Boussinesq model. We randomize the initial size of the smoke volume. Fig. 2 shows
two selected randomized initial setups at the left most. Additionally, two different results of the
reference and basic simulations after 1,000 simulation steps are shown in the subsequent columns,
respectively. It is worth noting that the reference simulations are significantly different from the
basic ones, moreover, the small variations in the initial setup result in significant differences even
after short periods of time. We use a regular MacCormack scheme (Selle et al., 2008) for the basic
simulation and the more accurate and compute-intensive advection-reflection scheme (Zehnder et al.,
2018) for the reference. The grid resolution of the basic simulation is 32×64, and a four times finer
grid is used for the reference.

In the following, we denote the basic version corrected by the full correction function computed
with Eq. 9 as the “ground truth” version. The coarse version naturally cannot exactly represent the
high-resolution reference, and as such, we consider the corrected version without NN inference as
the “ground truth” version we are aiming for with our model. The ground truth of our selected two
simulations is shown at the right most in Fig. 2.

We train our model using the data collected from the 20 simulations; each simulation performs
1,000 steps, thus we collected 20,000 samples in total. From each simulation, we extract pairs
of input features xL and a correction vector field vL. For the input features, we can use mul-
tiple channels depending on the complexity of our target function. From a pilot test, we exper-
imentally found that nine channels, i.e., three subsequent states give best results for our prob-
lem (see Fig. 10 in Appx. A.2). These consist of the velocity and density fields, i.e., xL =
{vn−2

L ,vn−1
L ,vnL, ρ

n−2
L , ρn−1

L , ρnL}. We randomly split the data into a training data set of 95% and
a validation data set of 5%. We use network model A (see Appx. A.1 and Fig. 9a) and train for 200
epochs with a batch size of 32. We use the Lsup loss and an Adam optimizer (Kingma & Ba, 2014)
with an adaptive learning rate starting at 0.001.

0 100 200 300 400 500
Step

1.0

1.2

1.4

1.6

1.8

2.0

E
rr

or
of

de
ns

ity

Ground truth
Basic model
Ours (supervised)

(a) Density

0 100 200 300 400 500
Step

1.00

1.05

1.10

1.15

E
rr

or
of

ve
lo

ci
ty

u

Ground truth
Basic model
Ours (supervised)

(b) Velocity u
Figure 4: Relative errors of the rising
smoke correction model. The trained
model corrects the velocity field for 500
steps. Relative errors in (a) density and
(b) velocity with respect to reference are
shown for Test A from Fig. 3.

We test the trained model within two simulations that are
not part of the training data set. A selected frame for
these tests is shown in Fig. 3, which visualizes the density
fields. Our model produces significantly closer results to
the ground truth than the basic simulation. Since the error
accumulates over time, differences become more appar-
ent in later frames. Nevertheless, we find that, despite the
large number of nonlinear simulation steps, the inferred
correction field manages to move the solution close to the
desired state. The average errors in both density and ve-
locity fields are shown in Fig. 4. Here, we show relative
errors with respect to ground truth correction. The errors
show that our supervised model corrects the simulations
very well; errors stay very close to the ground truth values and start to slightly deviate only after 400
steps of simulation.

4.2 NAIVE CORRECTION

We now evaluate the effect of the proposed optimization approach to compute the correction func-
tion on the learning process. In our context, a straightforward, i.e., “naive”, way to get a correction
is to directly downsample the reference correction (i.e., cH) to the target domain. We find that this

6

Under review as a conference paper at ICLR 2020

correction function produces comparable ground truth results for the rising smoke, and hence, we
can train a network in a supervised manner with this downsampled correction data. Fig. 5a shows
an example. Here, we directly apply a regularized and a “naive” correction function without involv-
ing the learning step. This figure highlights that both versions yield almost identical results and,
hence, the regularization also retains the important characteristics of the high-resolution reference.
Apart from omitting our optimization step, i.e., providing an unregularized set of target data for the
supervised training, all steps are performed as described above.

(a) Corrected

0 50 100 150 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

L
os

s

Training (naive)
Validation (naive)
Training (ours)
Validation (ours)

(b) Training (c) Ours (d) Naive
Figure 5: Comparison between the naive and our model.

Figs. 5b–5d show the results of train-
ing with both versions. The “naive”
NN model converges to a much
higher overall level of error, and the
resulting function approximation is
unusable in practice. The inference
errors quickly cause the basic simu-
lation to deteriorate and become un-
stable. This behavior contrasts with to our approach where the temporal regularization makes it
possible to accurately represent the correction function with the CNN. We also demonstrate that our
approach generalizes to other problems in the context of fluid flows. See Appx. A.3 for a liquid
stream example.

We have shown that the smooth changes of a correction field with respect to smoothly changing in-
puts are crucial for successfully learning the correction function. Despite obtaining gains in accuracy
from the correction function, it requires manual input to make the correction function amenable to
learning via suitable temporal regularization. In the following, we will show how our unsupervised
learning approach alleviates this difficulty.

4.3 LEARNING WITH A DIFFERENTIABLE PDE SOLVER

We start with a test for the reference data that presents relatively smooth motions close to the basic
simulation. Hence, we first test the correction from a low-resolution to a high-resolution simulations
with the same standard numerical scheme for both versions. In this test, we use a semi-Lagrangian
advection (Stam, 1999), and the reference data is generated for 100 steps from 20 randomized initial
sizes of the smoke volume, i.e., 2,000 samples in total. It is worth noting that the actual amount of
samples the NN model sees is much larger, because the intermediate output states from the recurrent
iterations are likewise seen by the model. These states vary over the course of the training steps
since the applied correction function changes.

Fig. 6 shows the evaluation of our trained model. It is apparent that our model with 48 recurrent steps
yields a model that successfully removes the majority of the errors as shown on the left of Fig. 6.
The graphs of Fig. 6a show velocity errors relative to the ground truth version for each of three
models trained with different numbers of recurrent steps. Here, we can see that, with more recurrent
steps, the model has a higher chance to learn the correction function for long term accuracy. Fig. 6b
shows errors of inferences for the given 100 ground truth steps, where the ground truth correction is
evaluated via the difference between the solver result and the downsampled reference data. These
graphs demonstrate that the model with 48 recurrent steps yields the best long term accuracy despite

Basic model Reference 48 rec. steps

0 20 40 60 80 100
Step

0

2

4

6

8

E
rr

or

48 rec. steps
16 rec. steps
8 rec. steps
Basic model

(a) Velocity

0 20 40 60 80 100
Step

0.5

1.0

1.5

E
rr

or

48 rec. steps
16 rec. steps
8 rec. steps

(b) Correction

Figure 6: Analysis of the corrected simulations for rising smoke. Example frames after 80 timesteps
for the following versions are shown: basic, reference, and our model. Our model is trained with 48
recurrent steps as in Fig. 1. The trained model, then, corrects the velocity field for 100 steps. The
L2 errors in (a) velocity and (b) correction are measured from the ground truth at every step. (See
Fig. 12 in Appx. A.2 for more results.)

7

Under review as a conference paper at ICLR 2020

containing larger per step differences with respect to ground truth corrections. This indicates that,
by looking ahead more steps from the solver, the model learns to anticipate the future dynamics
and corrects the target function accordingly instead of relying on the seemingly ideal corrections for
each time step.

0 100 200 300 400 500
Step

0.6

0.8

1.0

1.2

1.4

E
rr

or
of

de
ns

ity

Ground truth
Ours (supervised)
Ours (unsupervised)

(a) Density

0 100 200 300 400 500
Step

0.9

1.0

1.1

E
rr

or
of

ve
lo

ci
ty

u

Ground truth
Ours (supervised)
Ours (unsupervised)

(b) Velocity u
Figure 7: Relative errors of both super-
vised and unsupervised models. Rela-
tive errors in (a) density and (b) velocity
with respect to reference are shown for
Test A from Fig. 8.

Next, we test our model in a more complex settings us-
ing the reference data used in Sec. 4.1. Fig. 8 shows the
corrected results of our unsupervised model, which was
again trained with 48 recurrent steps, and relative errors
are given in Fig. 7. It is worth noting that, within the first
ca. 300 steps, the unsupervised model learns even more
accurate corrections than the target ground truth version.
This illustrates that the model can learn from the gradients
provided over the course of the many timesteps by the
differentiable solver to find a correction function that per-
forms better than the carefully precomputed supervised
version. On the other hand, we also see that the gains
disappear over the course of very long sequences (more than ca. 500 steps). Presumably, the un-
supervised model would need to be trained with more recurrent steps to learn to anticipate very
long-term changes.

5 DISCUSSION AND CONCLUSION

A key benefit of our approach is the gain in performance resulting from our trained models. A
correction velocity field for a given input is inferred only on the basic simulation grid, i.e., the low-
resolution grid. This inference happens for each solving step to assist the underlying numerical
solver and only requires a fixed O(n) cost for n degrees of freedom. For example, for our rising
smoke test, a simulation involving the trained NN model took ca. 20 seconds for 1,000 steps whereas
its corresponding high-resolution counterpart took ca. 104 seconds to compute. See Table 1 in
Appx. A.4 for more details.

At training time, the unsupervised learning approach leads to significantly longer training times
since each recurrent step of the architecture can require evaluating a complex numerical procedure.
A potential remedy and interesting topic for future work would be to use larger timestep size in the
solver such that the model could directly learn the correction for longer horizons. As the excellent
performance of the unsupervised model for the initial stages of our simulations suggests, this is a
very promising avenue.

To summarize, we introduced a novel approach that assists numerical methods by learning a correc-
tion function to improve the accuracy of the solution. We demonstrated that taking into account the
temporal information is crucial for our goal and an optimization step can ensure that sequences of
corrections can be learned accurately by a NN model. The model successfully improves the accu-
racy for previously unseen PDE solves. Additionally, an unsupervised training via a differentiable
solver can be employed to further improve the learned correction for time spans that do not strongly
exceed the number of steps seen during training. Despite focusing on fluids, we envision that our
approach can be applied to a variety of other application domains that involve numerical methods for
spatio-temporal problems, from plasma physics Lewis & Miller (1984) to climate modeling Randall
et al. (2007).

Ground truth Supervised Unsupervised Reference
(a) Test A

Ground truth Supervised Unsupervised Reference
(b) Test B

Figure 8: Corrected rising smoke simulations. Both supervised and unsupervised models are applied
to two test cases A and B. After correcting 200 steps, the corrected density fields are compared with
respect to the ground truth and the reference.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, and others. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. http://tensorflow.org/.

anonymous. Learning to control PDEs with differentiable physics. submitted to ICLR, 2020.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Data-driven discretization:
a method for systematic coarse graining of partial differential equations. arXiv:1808.04930, 2018.

Andrea D. Beck, David G. Flad, and Claus-Dieter Munz. Deep neural networks for data-
driven turbulence models. CoRR, abs/1806.04482, 2018. URL http://arxiv.org/abs/
1806.04482.

J.U. Brackbill, D.B. Kothe, and H.M. Ruppel. FLIP: A low-dissipation, particle-in-cell method for
fluid flow. Computer Physics Communications, 48(1):25–38, January 1988. ISSN 0010-4655.
doi: 10.1016/0010-4655(88)90020-3.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016.

Mengyu Chu and Nils Thuerey. Data-driven synthesis of smoke flows with CNN-based feature
descriptors. ACM Trans. Graph., 36(4):69:1–69:14, July 2017. ISSN 0730-0301. doi: 10.1145/
3072959.3073643.

Cathal Cummins, Madeleine Seale, Alice Macente, Daniele Certini, Enrico Mastropaolo, Ig-
nazio Maria Viola, and Naomi Nakayama. A separated vortex ring underlies the flight of the
dandelion. Nature, 562(7727):414, 2018.

Karthikeyan Duraisamy, Ze J. Zhang, and Anand Pratap Singh. New Approaches in Turbulence and
Transition Modeling Using Data-driven Techniques. 2015. doi: 10.2514/6.2015-1284.

Frederic Gibou, David Hyde, and Ron Fedkiw. Sharp interface approaches and deep learning tech-
niques for multiphase flows. Journal of Computational Physics, May 2018. ISSN 0021-9991.
doi: 10.1016/j.jcp.2018.05.031.

Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv:1701.00160 [cs],
December 2016.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow
approximation. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pp. 481–490, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939738. URL http://
doi.acm.org.eaccess.ub.tum.de/10.1145/2939672.2939738.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv:1512.03385 [cs], December 2015.

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. Computer
Graphics Forum, 2019. ISSN 1467-8659. doi: 10.1111/cgf.13619.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980
[cs], December 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.),
Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc.,
2012.

J. Nathan Kutz. Deep learning in fluid dynamics. Journal of Fluid Mechanics, 814:14, 2017. doi:
10.1017/jfm.2016.803.

9

http://arxiv.org/abs/1806.04482
http://arxiv.org/abs/1806.04482
http://doi.acm.org.eaccess.ub.tum.de/10.1145/2939672.2939738
http://doi.acm.org.eaccess.ub.tum.de/10.1145/2939672.2939738

Under review as a conference paper at ICLR 2020

Lubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. Data-
driven fluid simulations using regression forests. ACM Trans. Graph., 34(6):199:1–199:9, Octo-
ber 2015. ISSN 0730-0301. doi: 10.1145/2816795.2818129.

Elmer Eugene Lewis and Warren F Miller. Computational methods of neutron transport. 1984.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning PDEs from data.
arXiv:1710.09668, 2017.

Martin Magill, Faisal Qureshi, and Hendrick de Haan. Neural networks trained to solve dif-
ferential equations learn general representations. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 31, pp. 4071–4081. Curran Associates, Inc., 2018. URL
http://papers.nips.cc/paper/7662-neural-networks-trained-to-
solve-differential-equations-learn-general-representations.pdf.

R. Maulik and O. San. A neural network approach for the blind deconvolution of turbulent
flows. Journal of Fluid Mechanics, 831:151181, Oct 2017. ISSN 1469-7645. doi: 10.1017/
jfm.2017.637. URL http://dx.doi.org/10.1017/jfm.2017.637.

Arvind Mohan, Don Daniel, Michael Chertkov, and Daniel Livescu. Compressed convolutional
LSTM: An efficient deep learning framework to model high fidelity 3d turbulence, 2019.

Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden. Deep
dynamical modeling and control of unsteady fluid flows. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31, pp. 9258–9268. Curran Associates, Inc., 2018.
URL http://papers.nips.cc/paper/8138-deep-dynamical-modeling-and-
control-of-unsteady-fluid-flows.pdf.

James M Murphy, David MH Sexton, David N Barnett, Gareth S Jones, Mark J Webb, Matthew
Collins, and David A Stainforth. Quantification of modelling uncertainties in a large ensemble of
climate change simulations. Nature, 430(7001):768, 2004.

Lukas Prantl, Boris Bonev, and Nils Thuerey. Generating liquid simulations with deformation-
aware neural networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyeGBj09Fm.

David A Randall, Richard A Wood, Sandrine Bony, Robert Colman, Thierry Fichefet, John Fyfe,
Vladimir Kattsov, Andrew Pitman, Jagadish Shukla, Jayaraman Srinivasan, et al. Climate models
and their evaluation. In Report of the IPCC (FAR), pp. 589–662. Cambridge University Press,
2007.

Deep Ray and Jan S. Hesthaven. An artificial neural network as a troubled-cell indicator. Jour-
nal of Computational Physics, 367:166191, Aug 2018. ISSN 0021-9991. doi: 10.1016/
j.jcp.2018.04.029. URL http://dx.doi.org/10.1016/j.jcp.2018.04.029.

Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven discovery
of partial differential equations. Science Advances, 3(4), 2017. doi: 10.1126/sciadv.1602614.
URL https://advances.sciencemag.org/content/3/4/e1602614.

Hayden Schaeffer. Learning partial differential equations via data discovery and sparse optimiza-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473
(2197):20160446, 2017. doi: 10.1098/rspa.2016.0446.

Andrew Selle, Ronald Fedkiw, ByungMoon Kim, Yingjie Liu, and Jarek Rossignac. An uncon-
ditionally stable maccormack method. Journal of Scientific Computing, 35(2-3):350–371, June
2008. ISSN 0885-7474, 1573-7691. doi: 10.1007/s10915-007-9166-4.

Jos Stam. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’99, pp. 121–128, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co. ISBN 0-201-48560-5. doi: 10.1145/311535.311548.

10

http://papers.nips.cc/paper/7662-neural-networks-trained-to-solve-differential-equations-learn-general-representations.pdf
http://papers.nips.cc/paper/7662-neural-networks-trained-to-solve-differential-equations-learn-general-representations.pdf
http://dx.doi.org/10.1017/jfm.2017.637
http://papers.nips.cc/paper/8138-deep-dynamical-modeling-and-control-of-unsteady-fluid-flows.pdf
http://papers.nips.cc/paper/8138-deep-dynamical-modeling-and-control-of-unsteady-fluid-flows.pdf
https://openreview.net/forum?id=HyeGBj09Fm
http://dx.doi.org/10.1016/j.jcp.2018.04.029
https://advances.sciencemag.org/content/3/4/e1602614

Under review as a conference paper at ICLR 2020

John C Strikwerda. Finite difference schemes and partial differential equations, volume 88. Siam,
2004.

Nils Thuerey, Konstantin Weissenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for
reynolds-averaged navier-stokes simulations of airfoil flows, 2018.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
fluid simulation with convolutional networks. In Proceedings of Machine Learning Research, pp.
3424–3433, July 2017.

Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid splash modeling with neural networks. Computer
Graphics Forum, 37(8):171–182, December 2018. ISSN 1467-8659. doi: 10.1111/cgf.13522.

Siddhartha Verma, Guido Novati, and Petros Koumoutsakos. Efficient collective swimming by
harnessing vortices through deep reinforcement learning. Proceedings of the National Academy
of Sciences, 115(23):5849–5854, 2018.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. tempoGAN: A temporally coherent, volumet-
ric gan for super-resolution fluid flow. arXiv:1801.09710 [cs], January 2018.

Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. An advection-reflection solver for
detail-preserving fluid simulation. ACM Trans. Graph., 37(4):85:1–85:8, July 2018. ISSN 0730-
0301. doi: 10.1145/3197517.3201324.

Yao Zhang, Woong Je Sung, and Dimitri N. Mavris. Application of convolutional neural network
to predict airfoil lift coefficient. 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, Jan 2018. doi: 10.2514/6.2018-1903. URL http://dx.doi.org/
10.2514/6.2018-1903.

11

http://dx.doi.org/10.2514/6.2018-1903
http://dx.doi.org/10.2514/6.2018-1903

Under review as a conference paper at ICLR 2020

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

3
x
3

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

3
x
3

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

6
4

3
x
3

c
o
n
v
,

6
4

5
x
5

c
o
n
v
,

6
4

3
x
3

c
o
n
v
,

6
4

5
x
5

c
o
n
v
,

3
2

3
x
3

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

3
x
3

c
o
n
v
,

3
2

3
x
3

c
o
n
v
,

2

+ + + + + +

(a) Model A

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

3
2

5
x
5

c
o
n
v
,

2

+ + + + +

(b) Model B

Figure 9: NN architectures. Two models that are used in our experiments are presented. The blue and
magenta colors indicate the ReLU and LeakyReLU activation functions, respectively. The curved
lines indicate skip connections; the dotted lines show an additional 1×1 convolution, which makes
the number of channels same when adding.

A APPENDIX

A.1 NEURAL NETWORK MODEL

For the NN architecture to represent the correction function cn of Eq. 1, we use a fully convolutional
network with residual blocks (He et al., 2015). The two network models, which are used for our ex-
periments, are shown in Fig. 9. The models A and B consist of 405K and 265K training parameters,
respectively. Hence, we use the model B for setups with a smaller amount of training data. Our
models are implemented using the TensorFlow framework (Abadi et al., 2015).

A.2 RISING SMOKE EXPERIMENTS

In order to decide an effective input feature for a NN model, we compare two models trained with
different numbers of input channel. Fig. 10 shows the errors of inferred correction between two
models and indicates that the model trained with three subsequent states (i.e., k = 3) performs
slightly better particularly for longer steps. Nevertheless, we observe that the difference is negligible.

0 200 400 600 800 1000
Step

0

2

4

6

8

E
rr

or
of

ve
lo

ci
ty

u

Our model (k = 3)
Our model (k = 1)

Velocity u

0 200 400 600 800 1000
Step

0.0

2.5

5.0

7.5

10.0

12.5

E
rr

or
of

ve
lo

ci
ty

v

Our model (k = 3)
Our model (k = 1)

Velocity v

Figure 10: Comparison of errors in inferred correction between two supervised models with different
numbers of input channels. Here, k denotes the number of subsequent states used for the input.

12

Under review as a conference paper at ICLR 2020

Basic model Ground truth Our model
(a) After 200 steps

Basic model Ground truth Our model
(b) After 400 steps

Basic model Ground truth Our model
(c) After 800 steps

Figure 11: Corrected rising smoke simulation. Our supervised model is applied to two test cases
shown at each row. At three selected steps, the density fields are visualized among the basic method,
ground truth, and corrected method (our model).

Basic model 8 rec. steps 16 rec. steps 48 rec. steps Reference
Test A

Basic model 8 rec. steps 16 rec. steps 48 rec. steps Reference
Test B

0 20 40 60 80 100
Step

0

2

4

6

8

E
rr

or

48 rec. steps
16 rec. steps
8 rec. steps
Basic model

Test A

0 20 40 60 80 100
Step

0

5

10

15

E
rr

or

48 rec. steps
16 rec. steps
8 rec. steps
Basic model

Test B
(a) Error in velocity

0 20 40 60 80 100
Step

0.5

1.0

1.5

E
rr

or

48 rec. steps
16 rec. steps
8 rec. steps

Test A

0 20 40 60 80 100
Step

1

2

3

E
rr

or

48 rec. steps
16 rec. steps
8 rec. steps

Test B
(b) Error in inferred correction

Figure 12: Two test simulations for the rising smoke example. After individual training with differ-
ent numbers (i.e., 8, 16, and 48) of recurrent steps, each model is applied to two test setups, test A
and B. The images at the top row show the density visualization after 80 steps. The graphs in (a)
compare the corrected velocity fields, and those in (b) show the errors of inferences for the given
input steps.

A.3 LIQUID STREAM WITH STEP OBSTACLES

As an extension of our method to other types of fluid simulations, we target a liquid stream flowing
over a backward facing step. To make the setup slightly more complex, we introduce a second step
on the right side of the domain. Height and width of both steps are randomized to generate data sets.
We note that Lagrangian approaches, i.e., particle-based discretizations, form an important class of
fluid-related problems and our approach also generalizes to such approaches via an auxiliary grid.
This example demonstrates how to use our method in conjunction with the methods such as the fluid
implicit particle algorithm (Brackbill et al., 1988). In this method, the flow motion is transferred to
a helper grid in every simulation step and follow the remaining steps as explained before. Fig. 13
shows this setup for two different initial conditions. Here, the color indicates the direction of velocity
such that it highlights the locations of vortex structures in the flow. All simulations adopt the APIC
method without surface tension but instead with a gravitational force and a fixed inflow velocity.

13

Under review as a conference paper at ICLR 2020

Initial setup Basic Reference Ground truth Initial setup Basic Reference Ground truth

Figure 13: Stream flow starting from a randomly initialized setup for the width and height of two
obstacles. The color indicates the direction of velocity, in each case, for basic, reference, and ground
truth versions.

Basic model Ground truth Our model
Test A (after 300 steps)

Basic model Ground truth Our model
Test B (after 500 steps)

Figure 14: Corrected stream flow simulations. Our model is applied to two test cases A and B. The
density fields are compared at the selected steps. The color indicates the direction of velocity.

The grid resolution for the basic and corrected simulations is 32×16, and the reference grid is four
times finer.

Comparing the reference and basic simulations, we can find that the basic simulation has difficulties
resolving the rotating motions that form behind the step geometries. We use the network model B
(see Appx. A.1 and Fig. 9b) and train the model with the data from ten simulations. Fig. 14 shows
the results of our model applied to two test cases. A notable improvement of our model is that it
manages to reintroduce the vortex above the right step that was lost in the basic version. The shape
of the left vortex also improves to match the ground truth version.

A.4 PERFORMANCE

Here, we give details about the performance of our method to illustrate the gains that can be achieved
by evaluating our trained model. Table 1 shows the timings measured from different simulations of
each example. All experiments were performed on an Intel Xeon E5-1620 3.70 GHz processor with
128 GB memory. The trained NN models were evaluated with the CUDA support and TensorFlow
on an NVIDIA GeForce GTX 960 GPU with 4 GB video memory. The reference is a full simulation
with four times higher resolution evaluated with an optimized CPU-based solver (the same one using
to generate the input for our method).

Table 1: Performance comparison. Simulation timings (in seconds) are measured for 1,000 simula-
tion steps. Here, un. and sup. denote the unsupervised and supervised learning models, respectively.

Example Test Basic Reference Ours
Rising smoke (Fig. 8) A 9.40 104.46 17.56 (un.) 19.91 (sup.)

B 9.87 117.21 17.12 (un.) 18.96 (sup.)
Liquid stream (Fig. 14) A 18.00 85.49 29.86 (sup.)

B 19.58 84.10 31.82 (sup.)

14

	Introduction
	Related work
	Correcting numerical simulations
	Correction function
	Temporal regularization of corrections
	Unsupervised Learning with Differentiable Physics

	Experiments
	Supervised correction of rising smoke
	Naive correction
	Learning with a differentiable PDE solver

	Discussion and Conclusion
	Appendix
	Neural network model
	Rising smoke experiments
	Liquid stream with step obstacles
	Performance

